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Abstract 

Most visual programming languages (VPLs) are domain-specific, with few general-

purpose VPLs like Programming Without Coding Technology (PWCT). These general-

purpose VPLs are developed using textual programming languages and improving them 

requires textual programming. In this thesis, we designed and developed PWCT2, a dual-

language (Arabic/English), general-purpose, self-hosting visual programming language. 

Before doing so, we specifically designed a textual programming language called Ring 

for its development. Ring is a dynamically typed language with a lightweight 

implementation, offering syntax customization features. It permits the creation of 

domain-specific languages through new features that extend object-oriented 

programming, allowing for specialized languages resembling Cascading Style Sheets 

(CSS) or Supernova  language. The same Ring implementation allows us to create 

projects for desktops, WebAssembly, and the Raspberry Pi Pico microcontroller. The 

Ring Compiler and Virtual Machine are designed using the PWCT visual programming 

language where the visual implementation is composed of 18,945 components that 

generate 24,743 lines of code (written in ANSI C language), which increases the 

abstraction level and hides unnecessary details. Using PWCT to develop Ring allowed us 

to realize several issues in PWCT, which led to the development of the PWCT2 visual 

programming language using the Ring textual programming language. PWCT2 provides 

approximately 36 times faster code generation and requires 20 times less storage for 

visual source files. It also allows for the conversion of Ring code into visual code, 

enabling the creation of a self-hosting VPL that can be developed using itself. PWCT2 

consists of approximately 92,000 lines of Ring code and comes with 394 visual 

components. Moreover, using Ring in this project demonstrates the feasibility of 

utilizing the language for large-scale projects. PWCT2 is distributed to many users 

through the Steam platform and has received positive feedback, On Steam, 1772 users 

have launched the software, and the total recorded usage time exceeds 17,000 hours, 

encouraging further research and development in the field of general-purpose VPLs. 
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 الخلاصة

المرئية    البرمجة  لغات  المرئيةتم تصميمها لمجالات محددةمعظم  البرمجة  لغات  قليل من    التي صممت  ، مع عدد 

يتم تطوير هذه اللغات المرئية باستخدام لغات  ايضا  .  النصي  كودكتابة التقنية البرمجة بدون  للأغراض العامة مثل  

نصية. في هذه الأطروحة، قمنا بتصميم  البرمجة  استخدام اليتطلب    وتطويرها  تحسينهامما يعني ان  البرمجة النصية  

تقنيةوتطوير   من  الثاني  النصي  الجيل  الكود  كتابة  بدون  مرئية  البرمجة  برمجة  لغة  وهي   ة اللغ  ثنائية، 

. )اي يمكن تطويرها من داخلها باستخدام البرمجة المرئية(  ، ومتعددة الأغراض، ومستضافة ذاتيًاالانجليزية(/)العربية

 ةديناميكي  برمجةهي لغة    قرين خصيصًا لتطويرها.  صممت    قرينقبل القيام بذلك، قمنا بتصميم لغة برمجة نصية تسمى  

مخصصة لمجال  . إنها تسمح بإنشاء لغات  حيةالكلمات المفتا، وتوفر ميزات تخصيص  لها بناء داخلي صغير الحجم

لغة أوراق    لغات تشبهببناء  من خلال ميزات جديدة تعمل على توسيع البرمجة الموجهة للكائنات، مما يسمح    محدد

المتتالية ) بإنشاء مشاريع لأجهزة سطح   قرين  صدار من الإ. يسمح لنا نفس  سوبرنوفالغة  أو    (سي اس اسالأنماط 

ستخدام  إب  كل من المترجم والالة الافتراضية  تصميم. تم  بيري باي بيكوسراتحكم الدقيق  م، والوالويب اسمبليالمكتب،  

بينما  مرئي  مكون    18,945حيث ان البناء المرئي مكون من  ،  بدون كتابة الكود النصيالبرمجة    ول من تقنيةالجيل الأ

التفاصيل    خفاءإمستوى التجريد وزيادة  يعني    ذيوالمن اسطر الكود بلغة السي    24,743  الكود النصي الناتج عبارة عن

بإدراك العديد من المشكلات،   قلغة البرمجة رينلتطوير  من التقنية  الجيل الاول  ستخدام  إغير الضرورية. سمح لنا  

النصية  البرمجة  ستخدام لغة  إب  النصي  كودكتابة الالجيل الثاني والجديد من تقنية البرمجة بدون  مما أدى إلى تطوير  

  20مرة ويتطلب مساحة تخزين أقل بنحو    36أسرع بنحو  بشكل    النصي  كودعملية توليد ال  الجيل الثاني. يوفر  قرين

  وفر لناإلى كود مرئي، مما ي  النصي  قرين. كما يسمح بتحويل كود  مقارنة بالجيل الاول  مرة لملفات المصدر المرئية

  92000من حوالي  الجيل الجديد  . يتكون  يمكن ان يتم تطويرها عبر إستخدامها  ستضافةالإ  يةذات  لغة برمجة مرئية

  إمكانيةفي هذا المشروع  قرينستخدام  إمكونًا مرئيًا. علاوة على ذلك، يوضح  394ويأتي مع   قالرين بلغة سطر كود

  إستيمعلى العديد من المستخدمين من خلال منصة الجيل الجديد  . تم توزيع بهذا الحجممشاريع  تطوير ستخدام اللغة لإ

  17000مستخدم بتشغيل المشروع وتجاوز إجمالي وقت الإستخدام    1772على إستيم قام   وقد تلقى ردود فعل إيجابية،

 .للأغراض العامة لغات البرمجة المرئية المصممةمجال  فىمما يشجع على المزيد من البحث والتطوير  ساعة
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Chapter 1:  Introduction 

1.1 Overview  

The demands for software applications are increasing because computers are now 

a very important part of our daily lives. Today, software runs on a variety of devices, 

including high performance clusters, personal computers, embedded devices, and 

distributed systems. Applications are developed in different areas and the cost can vary 

greatly as free and open-source software competes with proprietary software. Reducing 

costs, improving reliability, and increasing scalability are among the requirements that 

software developers face. In the age of information technology, software development 

plays a vital role in responding to the needs of companies and organizations for high-

quality information systems. This leads to the need for more programmers and more 

productive software development tools to be able to respond quickly to the needs of 

companies. As a result of this complexity in software requirements, many aspects of 

software development have evolved, and many tools have been developed to help 

programmers [1-2].  

Integrated development environments (IDEs) such as Microsoft Visual Studio, Qt 

Creator, and Eclipse are very important for large projects. Unfortunately, these tools do 

not eliminate the need for programmers to know the strict syntax of each programming 

language they use, where understanding of general programming paradigms is essential 

but not sufficient. Representation of the software in the textual source code files is 

limited to text as we cannot include images and graphics to make them part of the 

source code. Also, the more expressive a programming language is, the more complex 

the syntax becomes, making programs difficult to understand or write. This challenge 

opens the door to the uses of visual programming languages and tools that attract more 

users to programming and increase software development productivity [3-7].  

Visual programming languages allow the development of applications and 

computer programs using more than one dimension and provide a programming system 

that is based on interaction with graphical elements that combine text, shapes, colors, 

and time instead of writing source code based on text. There are many visual 

programming languages, but most of the successful and widely used visual languages 

are used in education, such as Alice and Scratch (shown in Figure 1.1) or in a specific 

field such as Blueprints (Unreal game engine) and LabView (Industrial automation).  
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Figure 1.1 The Scratch Visual Programming Language 

There are general-purpose visual programming languages and systems like Lava, 

Tersus, Limnor, Envision, and Unit. However, these VPLs and systems are not widely 

used, according to the TIOBE Index, which measures the popularity of programming 

languages. Additionally, there are few studies that evaluate such systems through the 

development of large-scale applications and systems [8-10].  

Programming languages like Visual Basic and Visual C# are not Visual Programming 

Languages (VPLs). All these languages are textual programming languages where the 

programmer must write the textual code using the language’s syntax to create useful 

applications. Environments such as Microsoft Visual Studio and Qt Creator are not 

considered VPLs. These environments enable the software developers to create parts of 

the application using visual components, but the textual code is necessary to complete 

useful and real applications. On the other hand, VPLs use only visual components instead 

of writing textual code [11-12]. In textual programming languages like C++ and Java, the 

code is text-based. It is one dimensional. The compiler reads the source code token by 

token. In VPLs, the graphical representation uses more than one dimension. Each 

graphic object has its place in 2D or 3D worlds. Each object can have its own shape, color, 

and image. There are many relationships that can appear between objects, such as: 

Inside, outside, touching, next to, etc. Some visual languages also use the Time 

dimension (before/after) as another dimension in the graphic code [13].  
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A VPL can have one of the following five visual representations [14-15]:  

1. Diagrammatic: uses components of shapes and text and uses links to connect 

between shapes and represent the control or data flow.  

2. Iconic: uses icons from the domain of the problem.  

3. Form-based: uses forms such as spreadsheet or data-entry forms.  

4. Block-based: uses blocks that are pieced together to create programs.  

5. Hybrid: uses a mixture of any of the above four.  

Visual programming systems can use different interaction methods. For 

example, Scratch uses drag-and-drop because it’s designed for children, while the 

Envision visual structured editor (shown in Figure 1.2) uses command-based interactions 

because it’s designed for programmers. Some VPLs use a syntax-directed editor that 

recognizes the syntax and prevents the programmer from making syntax errors; other 

VPLs provide a free editor in which the programmer can make mistakes during the 

development process and the VPL compiler can detect errors during the compilation 

process. The syntax-directed editor is more suitable for novice programmers, while the 

free editor offers more flexibility for advanced programmers [16]. 

 

Figure 1.2 The Envision Visual Programming System. 
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A VPL’s framework is a collection of tools that enable the developers to create 

VPLs in less time with less effort and better quality by utilizing ready-to-use and well-

tested tools. Programming Without Coding Technology (PWCT) is a general-purpose 

visual programming system designed with the concept of enabling the creation of visual 

programming languages (VPLs) in mind. PWCT includes tools that facilitate this process 

and come with multiple groups of visual components that generate code in various 

textual programming languages. [12, 17].   

There are many issues related to visual programming languages. Almost all visual 

representations are physically larger than the text they generate, so the space used to 

show a program in a VPL is greater when compared with a text-based program. Many 

large programs created by VPLs look like a maze of wires that are hard to understand. 

Many VPLs don’t provide a place for writing comments.  

The most successful VPLs are designed for specific applications (not for general 

purposes). There are few VPL’s frameworks, and most of them are designed for a specific 

category of visual programming languages. Most VPLs use a drag-and-drop visual 

programming approach and are not designed for fast interactions using the keyboard. 

Also, a lot of visual programming languages don’t support advanced dimensions like the 

Time dimension. Another issue is that the VPLs users can’t improve the visual language 

itself using visual programming because it’s based on textual programming language 

(TPL) code, and it’s common to use advanced languages like C++ to develop VPLs [18-

21]. The PWCT visual programming language (illustrated in Figure 1.3) addresses some 

of these issues through the following design decisions [12]: 

• Utilizing a visual representation based on the TreeView control, which solves the 

visual representation size issue and avoids the maze of wires problem. In PWCT, the 

program is represented as a group of steps called the Steps Tree.  

• Including hundreds of visual components that provide a general-purpose VPL. 

• Using a visual programming approach suitable for keyboard-based interaction. 

However, many issues remain unsolved. PWCT is not a self-hosting VPL, and 

developing or maintaining it requires writing textual code. Additionally, PWCT is limited 

to the Windows environment. Furthermore, PWCT has not been evaluated through the 

development of a large or complex project over many years, which could help in 

discovering more practical issues based on serious usage and analysis.  



 

5 
 

This thesis focuses on the development of PWCT2, a self-hosting visual programming 

language for application development. This research identifies the limitations in the 

previous PWCT implementation, defines the requirements for PWCT2, and includes the 

implementation and evaluation of the proposed visual programming language. The 

thesis also includes the design and implementation of a textual programming language 

developed to achieve two goals. The first goal is to evaluate PWCT, and the second is to 

be used in the development of the proposed visual programming language to ensure its 

quality and support future research projects. This textual language is designed for 

developing applications and tools. The proposed visual language could represent a step 

forward in the field of visual programming languages, aiming to create a more powerful 

general-purpose visual programming language. 

 

Figure 1.3 The PWCT visual programming language. 

1.2 Motivation 

After the success of many domain-specific visual programming languages like 

Scratch, Alice and Blueprints and reaching millions of users worldwide, it’s expected to 

find more interest in creating new visual programming languages. These languages help 

novice programmers to learn programming and help mainstream programmers to 

create high-quality programs faster, but these languages must be designed carefully to 

solve the problem without adding other critical problems and this is an important factor 

for new visual programming languages to gain popularity.  
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Additionally, the adoption of these new visual programming languages will not 

increase unless they can integrate with other development tools, highlighting the 

necessity of being able to import and export textual source code. 

Many software projects require different programming skills and different 

programming languages. This causes a problem for many companies and researchers 

that need to hire many programmers to develop a complete solution. In this research, 

we expect to provide a general-purpose visual programming language that can be used 

in developing complex and large software projects using visual programming.  

Also, designing a new textual programming language to be used in tools 

development like a general-purpose visual programming language will help many similar 

projects in their mission. In computer science, developments in programming languages 

and development tools are considered very helpful in practical and scientific projects. 

Through this research, we are going to help in this active and interesting area. 

1.3 Problem Statement 

Most large and complex software projects are developed using textual 

programming languages. The adoption of general-purpose visual programming 

languages by mainstream programmers is still in an early stage. A lot of general-purpose 

visual programming languages and systems are no longer under continuous 

development (Lava, Envision, etc.).  

These languages have features that can be merged, and a lot of features that can 

be improved. Also, most of these projects (PWCT, Limnor, etc.) don’t provide good and 

high-quality support for modern technologies that appeared after their initial 

development. There is an open space for innovation and producing useful ideas through 

research and development.  

To our knowledge, there is no dual-language, self-hosting, general-purpose visual 

programming language that can be used for developing large and complex software 

projects and provides support for various platforms, including Desktop, Web, 

WebAssembly, and 32-bit Microcontroller platforms, and be widely adopted by many 

software developers in real-world projects.   
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The research questions that we aim to answer during this research are:  

RQ1: What is the design of a modern textual programming language suitable for the 

development of the proposed dual-language, self-hosting, general-purpose visual 

programming language? 

RQ2: What are the advantages and disadvantages of using a general-purpose visual 

programming language like PWCT to develop and maintain a textual programming 

language compiler and virtual machine over many years? 

RQ3: What design decisions could be employed to create a lightweight, multi-paradigm 

dynamic programming language suitable for Desktop, Web, WebAssembly, and 32-bit 

Microcontrollers, using the same implementation? 

RQ4: What novel features could be used to extend the object-oriented programming 

paradigm to enable the development of internal domain-specific languages that 

resemble external domain-specific languages like CSS and Supernova? 

RQ5: What is the design of a modern general-purpose visual programming language that 

leverages advancements in visual programming research and considers current 

technology trends, such as the use of Large Language Models (LLMs) for generating 

textual source code?  

RQ6: Can we maintain and continue developing the new visual programming language 

using itself and have a self-hosting general-purpose visual programming language?  

1.4 Research Goal and Objectives  

The main goal of this thesis is the design and implementation of a new dual-

language self-hosting general-purpose visual programming language powered by a new 

textual programming language for applications and tools development. The new visual 

language must come with modern features and advantages that encourage and enable 

usage in advanced projects and applications. Visual language design must support 

improving the current projects or creating new projects from scratch based on the 

proposed textual programming language. The objectives of this research subject are: 

• The design and implementation of a textual programming language (called Ring) for 

applications and tools development to use it in developing the new self-hosting 

visual programming language. 
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• The design and implementation of a dual-language general-purpose self-hosting 

visual programming language (called PWCT2) for applications development. This 

visual language should support importing and exporting the textual source code 

written in the proposed dynamic programming language. 

1.5 Thesis Contributions 

This thesis provides the next contributions: 

• The first study to use visual programming to develop and maintain a compiler and 

virtual machine for a dynamic programming language for over eight years. We used the 

PWCT visual programming language to develop and maintain the Ring programming 

language. We have provided multiple releases each year to improve the design and 

respond to community feedback.  

• Novel features that can extend the object-oriented programming paradigm, enabling 

the development of domain-specific languages that resemble CSS and Supernova. 

Additionally, Ring’s customization features, such as syntax modification, could support 

multiple languages (e.g., Arabic, English). 

• The design and implementation of a dynamic programming language with broad cross-

platform compatibility, featuring a lightweight implementation that still provides rich 

features. 

• The design and implementation of the research prototype PWCT2, which offers 

enhanced features, lower storage requirements for visual source files, and better code 

generation performance compared to the first generation. 

• The design and implementation of the first VPL that supports code generation in the 

Ring language (RingPWCT), containing 394 visual components.  

• The design and implementation of a textual-to-visual code conversion tool called 

Ring2PWCT that can import Ring programming language code. Using this tool enables a 

self-hosting VPL based on Ring. 

• Testing the feasibility of using the Ring programming language compiler and virtual 

machine in the development of projects on a scale similar to PWCT2.  

• Arabic Translation for the PWCT2 Environment and the RingPWCT Visual Components.  
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1.6 Thesis Outline 

The remainder of this thesis is divided into the following chapters:  

• Chapter 2: This chapter offers an overview of dynamic programming languages and 

visual programming languages. It begins by introducing dynamic programming 

languages and their intriguing features. Following that, it highlights the main 

characteristics of visual programming languages. 

• Chapter 3: This chapter presents the existing research and developments relevant 

to the design of dynamic and visual programming languages. We begin by exploring 

the literature related to dynamic language design. Our review classifies the existing 

and related dynamic languages into various categories, providing an organized 

framework for comparison. We then select key dynamic languages from these 

categories that are most relevant to our work and conduct a comparative analysis 

with our proposed dynamic language, Ring. This analysis aims to identify the unique 

features and advancements of Ring, as well as highlight the gaps and areas for 

improvement within the existing literature. Subsequently, we shift our focus to 

visual programming languages (VPLs). We classify related VPLs into different 

categories and pinpoint those that have significantly influenced our design. By 

comparing these selected VPLs with our proposed visual programming language, 

PWCT2, we aim to underscore the distinctive aspects of PWCT2 and address the 

research gaps that our language fills. Through this literature review, we establish the 

foundation for our proposed languages and provide a thorough understanding of 

the existing landscape, setting the stage for the features introduced by Ring and 

PWCT2. 

• Chapter 4: This chapter presents the proposed dynamic programming language and 

its important features, such as syntax customization and novel features that extend 

object-oriented programming and enable the development of internal domain-

specific languages resembling CSS and Supernova. Additionally, this chapter 

introduces the critical details about the visual implementation and the significant 

design decisions made during development. 

• Chapter 5: This chapter presents the design of the proposed dual-language self-

hosting general-purpose visual programming language (PWCT2) and highlights the 
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important features of the visual programming environment compared to the first 

generation of PWCT. 

• Chapter 6: This chapter presents the experiments and results of the evaluation of 

the proposed textual programming language (Ring) and the proposed self-hosting 

visual programming language (PWCT2). The evaluation includes various 

measurements related to abstraction level and performance. Additionally, we 

provide different use cases.  

• Chapter 7: This chapter presents the discussion and highlights the discovered 

advantages and limitations of various experiments. We will analyse the findings in 

detail, discussing their implications and how they support the objectives of this 

thesis. Additionally, we will address the limitations encountered during our research, 

providing a critical evaluation of the potential challenges and areas for 

improvement. By examining these aspects, we aim to offer a thorough 

understanding of the strengths and weaknesses of the Ring dynamic programming 

language and the PWCT2 visual programming language. 

• Chapter 8: This chapter presents the conclusion, future work, and various research 

directions that become available after developing the Ring textual programming 

language and the PWCT2 visual programming language. 
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Chapter 2:  Background 

2.1 Introduction 

New programming languages are often designed to keep up with technological 

advancements and project requirements while also learning from previous attempts and 

introducing more powerful expression mechanisms. However, most existing dynamic 

programming languages rely on English keywords and lack features that facilitate easy 

translation of language syntax. Additionally, maintaining multiple implementations of 

the same language for different platforms, such as desktops and microcontrollers, can 

lead to inconsistencies and fragmented features. Furthermore, they usually do not use 

visual programming to fully implement the compiler and virtual machine. In this chapter, 

we will introduce dynamic programming languages and their interesting features. Then, 

we will introduce visual programming languages and their main characteristics. 

2.2 Dynamic Programming Languages 

Programming languages play a crucial role in producing systems and applications. 

They serve as the means of communication between us and the computer, enabling 

control and the creation of software and applications. Initially, there was machine 

language, which allowed us to program by directly controlling the operations provided 

by the hardware. Soon, many programming languages evolved, each with different 

goals—such as ease of learning, specific domain usability, using new programming 

paradigms, performance improvement, security, portability, or achieving flexibility [22–

25]. During the evolution of programming languages, a category known as dynamic 

programming languages emerged. Examples of such languages include Lisp, Smalltalk, 

Erlang, Python, Lua, and Julia, as demonstrated in Figure 2.1. (The vertical lines are 

designed to improve the figure's readability). 

These languages exhibit several features that defer determination and execution 

to runtime rather than compiling time. Notable characteristics include dynamic typing, 

flexible data structures, reflection, metaprogramming, and the ability to evaluate code 

from strings using functions like eval(). Additionally, dynamic languages often provide a 

Read-Eval-Print-Loop (REPL) for interactive development. The overarching goal of these 

languages is to achieve simplicity, flexibility and reduced compile time. Ultimately, this 

speeds up the development cycle and facilitates the creation of project prototypes in 

less time [26–33]. 
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Figure 2.1 Some of the dynamic programming languages, starting in 1960. 

Another category of programming languages is visual programming languages 

(VPLs). These languages use more than one dimension to create computer programs 

graphically through text, shapes, colors, etc. They have achieved notable usage in 

education through projects like Scratch [34–36]. Unlike the Scratch visual programming 

language, which enables children to create multimedia applications using a user 

interface in their native language, most dynamic programming languages rely on English 

keywords. Unfortunately, these dynamic programming languages lack features that 

facilitate easy translation of language syntax and libraries into other human languages 

[37–42]. 

While most visual programming languages are domain-specific, there are 

projects classified as general-purpose and applicable to a wide range of programming 

tasks. One such project is the Programming Without Coding Technology (PWCT) 

software, a visual programming language that supports code generation in multiple 

textual programming languages, including the C programming language [34]. Most of 

the popular dynamic programming language implementations are based on using 

textual programming languages like C, C++, etc. We assume that using visual 

programming to create the dynamic programming language compiler and virtual 

machine is possible and provides a more user-friendly implementation by avoiding 

syntax errors and increasing the abstraction level. 

Dynamic programming languages as software products differ from one another 

in terms of design, syntax, semantics, paradigms, features, implementation, execution 
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methods, libraries, tools, and supported platforms, resulting in variations in the domains 

where they are most suitable for use [43–52]. Some dynamic programming languages 

are specifically tailored for domains like R, MATLAB, and dBase [53–55]. On the other 

hand, some dynamic programming languages serve as general-purpose tools suitable 

for a wide range of tasks like Python [56–61]. Domain-specific languages are designed 

for a specific domain, and they can be classified into two main types. The first type is 

Internal/Embedded DSLs, which are embedded inside general-purpose languages and 

use their constructs, while the second type is External DSLs (Like CSS, SQL, Supernova, 

etc.), which use its syntax and semantics. Dynamic programming languages like Ruby 

could be used to create internal DSLs. However, these internal DSLs will not resemble 

external DSLs [62–65]. 

The Supernova dynamic programming language is a domain-specific language 

distributed with the PWCT Visual Programming language [66]. This language was 

developed by the author to explore creating simple GUI applications using command-

based syntax that looks natural, as demonstrated in Figure 2.2. 

After developing Supernova, we considered whether we could develop a new 

programming language that supports object-oriented programming and extend it with 

novel features to enable the development of embedded domain-specific languages 

resembling CSS and Supernova [34,66]. 

 

Figure 2.2 Using commands in the Supernova programming language. 

With the rise of popularity of the Internet of Things (IoT) [67–69], numerous pro-

jects—such as MicroPython and mRuby—have endeavored to leverage popular dynamic 

programming languages for embedded systems and microcontroller development. This 

requires developing a lightweight implementation and has led to the challenge of 

maintaining different implementations for the same programming language, where one 

implementation could miss features that exist in another implementation [70–73]. 
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Also, while we find many dynamic languages used for web application 

development on the server side, JavaScript has dominated the scene as the language 

used at the front-end inside web browsers. With the emergence of WebAssembly 

(binary instruction format that can be executed by modern web browsers), it has 

become more practical to use several other languages within the browser. However, this 

led to the development of different language implementations to allow dynamic 

languages to fully benefit from this leap. We assume that creating a new dynamic 

programming language in this era may necessitate considering this evolution to 

maximize its advantages [74–76]. 

2.3 Visual Programming Languages 

Programming languages are essential for the development of systems and 

applications. They act as a bridge between humans and computers, facilitating control 

and the creation of software. Over time, a variety of programming languages have 

emerged, most of which use textual source code to create and represent computer pro-

grams [23,25]. During the evolution of programming languages, a category known as 

visual programming languages (VPLs) emerged. These languages create and represent 

computer programs graphically, using more than one dimension and incorporating a mix 

of text, colors, and shapes in their visual representations [77,78].  

In Figure 2.3, we present some of the VPLs and systems developed from 1966 to 

2024, showcasing a clear trend of increasing innovation and development in this field. 

The vertical lines are designed to improve the figure's readability. Early pioneering 

efforts are illustrated by the development of GPE (Graphical Program Editor) in 1966 and 

Pygmalion in 1975 [79,80], followed by subsequent languages such as Prograph, 

Simulink, and Lab-VIEW in the 1980s [81–83]. The 2000s saw the emergence of 

educational and accessible VPLs, like Scratch and Alice, which have become instrumental 

in teaching programming to younger audiences. For example, Scratch enables children 

to create stories, multimedia applications, and computer games using a user interface 

in their native language (Arabic, English, etc.) [84]. More recent advancements 

introduced in the literature include Envision, Node-RED, Blueprints, and FlowPilot, 

reflecting the continuous expansion. [85–88]. 
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Figure 2.3 Some of the visual programming languages starting from 1966. 

Most visual programming languages are either used in education or specific 

fields. Only a few projects have been designed to be general-purpose and versatile. One 

of these projects is Programming Without Coding Technology (PWCT), which supports 

code generation in multiple textual programming languages, such as C, Harbour, Python, 

and Supernova. PWCT introduces a visual programming approach called the Graphical 

Code Replacement (GCR) method, which is an alternative to the traditional Drag-and-

Drop approach. GCR is based on Automatic Steps Tree Generation and Update in 

response to interaction with components that provide users with simple data entry 

forms. This method combines programming using a Diagrammatic approach and 

programming using a Form-based approach, seamlessly integrating the two through an 

Automatic Visual Representation Generation/Update process. GCR enables the design 

and implementation of advanced visual components that could include optional 

features that change the structure of the generated visual representation. Also, PWCT 

is designed to support fast interactions through the computer keyboard where using the 

Mouse is optional. Additionally, PWCT incorporates the Time Dimension at the program 

design level and supports a feature called play programs as movies that enables step-

by-step implementation visualization [34,66].  

PWCT does not support importing textual source code and is designed to operate 

exclusively on Microsoft Windows. Furthermore, the implementation of PWCT is based 

on Microsoft Visual FoxPro, which is no longer under active development. These issues 

need to be addressed when developing a new generation of PWCT. We assume that 

using PWCT to develop and maintain the Ring programming language compiler and 
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virtual machine will enable discovering more issues. The proposed PWCT2 design could 

be influenced by advancements in other VPLs where a literature review could be done 

to learn about useful features introduced in the literature. By integrating these proven 

features from other successful VPLs, PWCT2 can provide a more flexible and user-

friendly environment. Most VPLs and systems are developed using textual programming 

languages; for example, the first generation of PWCT was developed using Visual FoxPro 

and Envision was developed using C++. Self-hosting PWCT2 is crucial, as it allows the 

development and modification of the PWCT2 environment using the same visual 

programming tools that it provides to users. This means that developers can update and 

enhance PWCT2 through visual programming rather than writing textual code, making 

the process more intuitive and accessible [89].  

We assume that using the proposed Ring programming language to develop 

PWCT2 could yield better results. The choice to transition from Visual FoxPro to the Ring 

programming language for the second generation of PWCT was driven by several key 

factors. Both Visual FoxPro and the proposed dynamic languages are designed to 

support object-oriented programming (OOP), and each comes with an integrated 

development environment (IDE), a Graphical User Interface (GUI) framework, and a 

form designer, making them both suitable for many similar programming tasks. 

However, the proposed dynamic programming language could distinguish itself with the 

advantage of compatibility across multiple modern operating systems, which ensures 

that the new generation of PWCT can operate efficiently on various systems. The 

proposed dynamic language could include features and libraries that are specifically 

designed to be used in developing PWCT2. This decision not only leverages Ring’s 

strengths but also provides an excellent test of its features and capabilities, particularly 

since PWCT2 is an advanced project. [90,91]. 

2.4 Chapter Summary 

In this chapter, we introduced dynamic programming languages, highlighting their 

unique and interesting features. Following this, we explored visual programming 

languages and discussed their main characteristics. These two types of programming 

languages offer distinct approaches and benefits to developers. In the next chapter, we 

will delve into the literature review, examining relevant studies, theories, and works that 

underpin the concepts discussed throughout this thesis. 
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Chapter 3:  Literature Review 

3.1 Introduction 

In this thesis, we develop and introduce two programming languages: the Ring 

dynamic programming language and the PWCT2 visual programming language. This 

chapter presents the existing research and developments relevant to the design of 

dynamic and visual programming languages.  

We begin by exploring the literature related to dynamic language design. Our 

review classifies the existing and related dynamic languages into various categories, 

providing an organized framework for comparison. We then select key dynamic 

languages from these categories that are most relevant to our work and conduct a 

comparative analysis with our proposed dynamic language, Ring. This analysis aims to 

identify the unique features and advancements of Ring, as well as highlight the gaps and 

areas for improvement within the existing literature. 

Subsequently, we shift our focus to visual programming languages (VPLs). We 

classify related VPLs into different categories and pinpoint those that have significantly 

influenced our design. By comparing these selected VPLs with our proposed visual 

programming language, PWCT2, we aim to underscore the distinctive aspects of PWCT2 

and address the research gaps that our language fills.  

Through this literature review, we establish the foundation for our proposed 

languages and provide a thorough understanding of the existing landscape, setting the 

stage for the features introduced by Ring and PWCT2. 

3.2 Related Dynamic Programming Languages 

The design of the proposed programming language is associated with various 

categories of dynamic programming languages. In Table 3.1, we present some of the 

different categories along with examples of dynamic programming languages that could 

fit within them. It is worth noting that some programming languages can be classified in 

more than one category. For instance, Ruby could be classified in both categories two 

and three, while a language like Tcl could fall into the first three categories. 
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Table 3.1 Some categories of dynamic programming languages and examples. 

Refs. Category Examples 

[43–46] Lightweight and Embeddable  Lua, Squirrel, Wren, etc. 

[50,57] Comes with Ready-to-Use Libraries Tcl, Perl, Python, etc.  

[33,64] Support creating Embedded DSLs Lisp, Ruby, etc. 

[43,55] Comes with Powerful IDEs Smalltalk, Visual FoxPro, etc. 

[40,41] Supporting Non-English Syntax Supernova, Citrine, etc. 

[53–55] Domain-specific dynamic languages R, xBase, etc. 

[30,92,93] Concurrency-oriented design Erlang, Elixir, etc. 

[27,94,95] Comes with a focus on Performance Julia, Mojo, etc. 

[70–73] Other implementations  MicroPython, mRuby, etc. 

The first category is Lightweight and Embeddable languages [43–46], designed for 

ease of integration and minimal resource consumption, making them suitable for various 

environments. The second category includes Languages that Come with Ready-to-Use 

Libraries, offering a rich set of pre-built functionalities to accelerate development 

[50,57]. Support for Creating Embedded DSLs is the third category, providing flexibility 

for niche applications [33,64]. The fourth category is Languages that Come with Powerful 

IDEs, which enhance the development experience through robust tools and features 

[32,55]. The fifth category encompasses Languages Supporting Non-English Syntax, 

broadening accessibility for developers worldwide [40,41]. Domain-Specific Dynamic 

Languages form the sixth category, tailored for fields to optimize efficiency and 

effectiveness [53–55]. The seventh category focuses on Concurrency-Oriented Design, 

managing simultaneous tasks crucial for high-performance applications [30,92,93]. 

Languages with a Focus on Performance make up the eighth category, ensuring rapid 

execution and responsiveness [27,94,95]. The ninth category, Other Implementations, 

includes different implementations of popular dynamic languages that focus on 

supporting microcontrollers or embedded systems. These implementations could be 

developed by the same team that created the original language (like mRuby) or by 

another team of developers who take the original language implementation and modify 

it by adding or removing features or changing the implementation (like MicroPython) 

[70–73]. In Table 3.2, we present the key features of our proposed language and its 

connections to some other dynamic programming languages.  
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Table 3.2 The main features of the proposed dynamic programming language. 

Criteria 
Lua 

[45] 

Python 

[96] 

Ruby 

[97] 

VFP 

[55] 

Supernova 

[41] 

Proposed  

Language (Ring) 

Open Source √ √ √ X √ √ 

Portable √ √ √ * * √ 

Lightweight √ * * X √ √ 

Embeddable √ √ √ X X √ 

Dynamic Typing √ √ √ √ √ √ 

Function like Eval() √ √ √ √ X √ 

Classes Concept * √ √ √ X √ 

Inheritance Concept * √ √ √ X √ 

Private Attributes * * √ √ X √ 

Batteries Included * √ √ √ * √ 

IDE * √ * √ * √ 

Form Designer * * * √ * √ 

Non-English Syntax * * * * √ √ 

Case insensitive X X X √ √ √ 

1-based indexing √ X X √ √ √ 

Change Keywords X X X X X √ 

Internal DSL √ √ √ √ X √ 

IDSL (Custom Syntax) X X X X X √ 

Visual Implementation X X X X √ √ 

VI Based on CPWCT X X X X X √ 

Desktop √ √ √ √ √ √ 

Web √ √ √ √ X √ 

WebAssembly * √ √ X X √ 

Microcontroller * * * X X √ 

No-GIL √ * * X X √ 

Register based VM √ X X X X X 

Off-side rule X √ X X X X 

xBase (Database DSL) X X X √ X X 
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Deliberately, we chose at least one programming language from each relevant 

category (the first five categories) to provide a broader context for our language design. 

As we compare these languages, if a feature is absent in the basic distribution but 

available through external libraries, tools, or ongoing projects, we denote it with a (star) 

in the corresponding cell. 

The Lua programming language stands out due to its compact language features and 

efficient implementation, which are written in ANSI C. It serves as an embeddable 

language, making it suitable for integration into projects that require scripting 

capabilities through a relatively fast scripting language. Lua is commonly used for 

scripting in game development. Notably, Lua does not include the concept of classes but 

instead emulates object-oriented concepts through its small and extensible language 

features. Additionally, Lua lacks a rich standard library [43–46]. Some programming 

languages, such as Squirrel and Wren, are designed to compete with Lua for game 

scripting. They use a different syntax based on braces and provide direct support for 

classes. Similar to Lua, they also lack a rich standard library. Although Wren seems no 

longer under active development, a smaller version of the language called Lox is used to 

introduce how interpreters are developed, allowing us to observe the usage of dynamic 

languages in introducing compiler and virtual machine concepts [47]. On the other hand, 

we have another lightweight scripting language called Tcl, which was introduced five 

years before Lua. While not as lightweight as Lua, Tcl comes with a rich standard library. 

Tcl is known for its command-based syntax—where everything is treated as a string—

and its popular GUI library (Tcl/Tk), which is used in other programming languages like 

Perl, Python, and Ruby for GUI tasks [48–52]. 

Microsoft Visual FoxPro (VFP) is a fast-commercial dBase dialect that natively 

supports object-oriented programming. It includes a powerful IDE with auto-complete 

features and a GUI builder (Form Designer) like Visual Basic. However, the latest release 

of the language (Visual FoxPro 9.0 SP2) is a 32-bit Windows product and is no longer 

actively developed [55]. 

Python is immensely popular. Although not as lightweight as Lua or Tcl, Python 

boasts a rich standard library and supports various programming paradigms. It has found 

widespread use in scientific computing and machine learning. Python comes with an 
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integrated development environment (IDE) called IDLE, although it lacks a Form 

Designer/Builder, which exists in Visual FoxPro. While such tools exist for Python through 

external libraries and tools, having such features in the standard tools of the language 

could increase its usage in GUI development, especially since most standard IDEs for 

desktop platforms come with these features [56–58]. 

The Ruby programming language is an example of a dynamic language that is used 

to create DSLs. This reduces the development cost, and the learning curve required to 

create a DSL. Unfortunately, these DSLs will not look like Supernova or SQL because they 

are influenced by the Ruby syntax [64,65]. 

With respect to syntax translation, numerous projects have attempted to address 

this gap. For example, several Arabic programming languages (Like Supernova) have 

been developed with a focus on using Arabic syntax. However, most of these projects 

remain unused in production due to limited features and are no longer actively 

developed [37–42]. Another approach involves creating packages that introduce 

translation as a feature. For instance, zhpy is a Python package that enables the writing 

of source code using traditional Chinese keywords, which is then converted to Python. 

However, this approach can suffer from multiple issues, including additional 

development and testing efforts, as well as lower compile-time performance due to the 

extra layer of translation before invoking the Python interpreter. Some programming 

language designers have recognized this challenge and intentionally introduced syntax 

localization. For instance, the Supernova programming language supports both Arabic 

and English syntax simultaneously, allowing an easy way to share libraries written in 

different languages. However, adding translation support for additional human 

languages without modifying the language implementation remains a complex task. In 

contrast, the Citrine programming language provides multiple versions that support over 

100 human languages. Unfortunately, it does not offer an easy mechanism for sharing 

code across these language versions within the same project, as sharing code requires 

translation [39–41]. 

The implementation of dynamic programming language virtual machines could use a 

Global Interpreter Lock (GIL) to ensure that only one thread can access the interpreter at 

a time. This provides safety and avoids race conditions but prevents better performance 
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from using threads on multi-core systems for CPU-bound tasks [59–61]. For a 

programming language like Python, there is ongoing work towards removing the GIL in 

recent versions. 

The proposed dynamic programming language is designed to incorporate and 

improve features related to the first five categories: Lightweight, Embeddable, Scripting, 

and Batteries-Included, providing powerful support for embedded DSLs, and it comes 

with an IDE suitable for GUI development. Additionally, it provides syntax flexibility and 

supports non-English syntax. Importantly, it does not belong to other categories, such as 

domain-specific languages, concurrency-oriented languages, or those focused solely on 

performance. While the proposed language is not a domain-specific language itself, it 

could be used to create domain-specific languages. Additionally, while it is not 

specifically designed around concurrency or performance, its proposed 

implementation—using a VM without a GIL—allows the use of threads to improve the 

performance of CPU-bound applications. The proposed programming language is 

designed to have a small implementation and provide direct support for multiple 

programming paradigms in the first place, then be fast enough and provide better 

runtime performance. 

3.3 Related Visual Programming Languages 

Languages like Visual Basic and Visual C# fall into the category of textual 

programming languages, not visual programming languages (VPLs). Programmers need 

to write text-based code using the specific syntax of these languages to develop large 

and complex real-world applications. Tools like Microsoft Visual Studio 2022 are known 

as integrated development environments (IDEs) rather than VPLs. These environments 

allow software developers to create portions of applications using visual elements, but 

textual code is essential to achieve full control over the application's functionality. In 

contrast, VPLs rely exclusively on visual components without the need to write textual 

code directly. In text-based programming languages like C++ and Java, the code is linear 

and one-dimensional, with the compiler processing it token by token. In contrast, VPLs 

utilize graphical representations that span multiple dimensions. Each graphical element 

occupies a specific position within a 2D or 3D space and can have unique shapes, colors, 

and images. Various relationships can be depicted among these objects, such as being 

inside, outside, touching, or adjacent to one another. Additionally, some visual languages 
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incorporate the time dimension (before/after) to further enhance the graphical code 

representation [11,78]. 

A visual programming language can have several different representations. One 

option is diagrammatic, which uses shapes and text components with links to connect 

shapes and illustrate control or data flow. Another representation is iconic, which utilizes 

icons derived from the problem’s domain. There are also form-based representations 

that incorporate forms like spreadsheets or data-entry forms and block-based 

representations that feature blocks assembled to form programs. Additionally, a VPL can 

be hybrid, combining elements of any of these four representations [14,15]. 

The design of the proposed visual programming language is associated with various 

categories of VPLs. In Table 3.3, we present some of the different categories based on 

their visual representations or usage scope, along with examples of visual programming 

languages that fit within them. It is worth noting that some VPLs can be classified into 

more than one category. For instance, Scratch could fall into both the first and fifth 

categories, as it is a visual programming language that uses block-based programming 

and is designed for use in education and teaching children about programming. 

Table 3.3 Some categories of visual programming languages/systems and examples. 

Ref. Category Examples 

[98–100] Block-based  Scratch, Snap!, etc. 

[101–104] Diagrammatic  Tersus, RAPTOR, etc.  

[105–108] Iconic Kodu, Limnor, etc. 

[109–111] Form-based and spreadsheet-based Forms/3, FAR, etc. 

[112,113] Domain-specific Blueprints, Pure Data, etc. 

[114,115] General-purpose PWCT, Envision, etc. 

In Table 3.4, we present the key features of our proposed visual programming 

language and its connections to some other visual programming languages from 

different categories. As we compare these visual languages, if a feature is absent but 

available through external ongoing projects, we denote it with a (star) in the 

corresponding cell.  
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We selected Scratch because it is a popular VPL for education that uses blocks-based 

programming. Forms/3 is chosen as an example of form-based and spreadsheet-like 

programming, with support for the time dimension. Lava is included because it is a VPL 

that uses the TreeView control and supports object-oriented programming (OOP). 

Envision is selected as a research prototype for a general-purpose visual programming 

system that features interactive visualizations. Finally, PWCT is chosen because it is a 

general-purpose VPL used in advanced projects, such as developing the Ring 

programming language. 

Table 3.4 The main features of the proposed visual programming language. 

Criteria 
Scratch 

[116] 

Forms/3 

[117] 

Envision 

[118] 

Lava 

[119] 

PWCT 

[120] 

Proposed  

VPL (PWCT2) 

Open Source √ X √ √ √ √ 

Portable √ X √ √ X √ 

Rich Colors √ X √ X X √ 

Time Dimension X √ X X √ √ 

Auto-Run √ √ X X X √ 

Rich-Comments X X √ X X √ 

Interactive Visualization X X √ X X √ 

Self-hosting X X * X X √ 

Form Designer X √ X √ √ √ 

Steps Tree/Blocks √ X X √ √ √ 

Steps Tree/Blocks (DAD) √ X X X X √ 

Play programs as movie X X X X √ √ 

Supports OOP X X √ √ √ √ 

Children Oriented √ X X X X X 

Research Oriented X √ √ √ X X 

 

In the efforts made by the researchers to make Envision a self-hosting visual 

programming environment, significant strides were achieved. A code generation 

framework was designed and implemented to represent macros in Envision when 

importing code from C++. Additionally, an extra stage in the existing C++ import system 

was developed to facilitate macro import by reconstructing them from expanded code 



 

25 
 

using preprocessor information from Clang. Although the authors reported that time 

constraints and issues in existing components prevented the complete achievement of 

the goal, it is important to note that using C++ for Envision implementation introduces 

some challenges in implementing a self-hosting VPL because of the numerous features 

and preprocessor usage [89]. 

Multiple research studies highlight the importance of ensuring the construction of 

correct programs through visual programming languages. This addresses key aspects of 

program correctness and reliability, which are critical for enhancing both usability and 

the practical effectiveness of visual programming environments. PWCT provides two 

modes of operation. The first mode follows the concept of a syntax-directed editor and 

prevents composition errors when connecting components. The second mode uses a 

free editor where mistakes can occur and are then detected by the compiler. In PWCT2, 

the visual editor prevents composition errors, and the user can use the customization 

window to allow or disallow errors when typing expressions in the interaction page 

[16,121]. 

The first generation of PWCT is influenced by Lava 0.7.2 (using a TreeView control to 

represent the program structure) and Forms/3 (using the Time Dimension). It introduces 

new features like the Graphical Code Replacement (GCR) method (instead of drag-and-

drop) and playing programs as a movie using the Time Dimension. The proposed visual 

programming language (PWCT2) builds on PWCT by incorporating the GCR method, 

Steps Tree, Time Dimension, and playing programs as a movie. It also draws inspiration 

from Scratch, incorporating rich colors and block-level drag-and-drop support. 

Additionally, PWCT2 is influenced by the Envision visual programming system, enabling 

rich comments and supporting interactive visualization. 

The proposed VPL is implemented using the Ring language, supports Ring code 

generation, and enables importing Ring code, making it a self-hosting VPL. These 

capabilities are particularly important in the age of large language models (LLMs) and 

code generation, as they enable the use of LLMs to generate Ring code that can be used 

in PWCT2 and updated using visual programming. Since Forms/3, Lava, and Envision are 

no longer under active development, and while Scratch is actively developed, it is 

domain-specific, and PWCT, though general-purpose, is designed for MS-Windows, we 
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expect that the proposed VPL, with its support for multiple platforms and modern 

features, could be a valuable addition to the landscape of VPLs. It could be especially 

useful for Ring programmers or novice programmers who want to learn about the Ring 

language through visual programming, as this proposed VPL is the first to support the 

Ring programming language. 

While visual tools such as Blockly 2022 and Node-RED 4.0.2 are very popular and 

serve as the foundation for many visual programming languages, we believe that the 

PWCT2 approach and its interactive textual-to-visual code conversion offer notable 

flexibility. This could attract more users with coding backgrounds to try the PWCT2 visual 

programming approach. Additionally, such features could influence future updates to 

Blockly and Node-RED if more users find them useful and necessary [85,86,122,123]. 

No-code platforms provide highly intuitive drag-and-drop interfaces and prioritize 

rapid development, allowing non-technical users to quickly build entire applications 

without any coding knowledge. These tools simplify the development process for 

specific application types, making them accessible to a wider audience. While visual 

programming languages (VPLs) provide a visual approach to traditional programming 

[124,125].  

Both PWCT2 and no-code development tools aim to simplify the creation and 

development of software and applications, but they serve different needs. For example, 

PWCT2 focuses on making traditional coding more accessible by providing flexibility and 

customization for a wide range of applications. Through further development, the 

PWCT2 visual programming language can act as an intermediate-level abstraction layer 

between traditional coding and no-code. General-purpose visual programming 

languages like PWCT2 can be used as the foundation for building no-code platforms, 

enabling higher levels of abstraction and ease of use while maintaining full control 

through visual programming. 
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3.4 Chapter Summary 

In this chapter, we conducted a thorough literature review, classifying and 

comparing existing dynamic and visual programming languages. Through this analysis, 

we have determined the key characteristics and unique features of both the proposed 

dynamic programming language and the proposed visual programming language, 

highlighting the research gaps they address. 

• Most of the dynamic languages are developed using textual programming.  

• There are few studies on developing a language with a lightweight implementation 

and rich features. 

• Few programming languages offer built-in support for easy translation.   

• Embedded DSLs doesn’t resemble external DSLs, such as CSS or Supernova. 

• There is limited research on the use of VPLs in large and complex system projects. 

• Many GPVPLs are no longer under active development. 

• Importing textual code is uncommon or incomplete in most VPLs. 

• The Time Machine in PWCT does not support the Auto-Run feature. 

• There are no self-hosting GPVPL. 

In the next chapter, we will delve into the design and implementation of the Ring 

programming language. We will explore its most important features and contributions, 

demonstrating how it advances the current state of dynamic programming languages. 
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Chapter 4:  The Ring Programming Language 

4.1 Introduction 

The primary aim of developing the Ring programming language, as demonstrated 

in Figure 4.1, is to use visual programming to develop a lightweight and embeddable 

dynamic programming language and environment that facilitates easy and rapid 

translation of language syntax. Additionally, the language will empower developers to 

create embedded domain-specific languages (DSLs) resembling external DSLs like CSS 

and Supernova. The language is a multi-paradigm, providing direct support for object-

oriented concepts such as classes, objects, encapsulation, and inheritance. 

Furthermore, our language offers cross-platform support for desktop, web, 

WebAssembly, and 32-bit microcontrollers—all using a unified implementation. This 

implementation is based on a visual programming design that generates ANSI C code for 

the bytecode compiler and the virtual machine. As a “batteries-included” language, it 

comes with rich libraries and tools, including an integrated IDE with a form designer. 

This chapter addresses the first research question (RQ1). 

 

Figure 4.1 The key features of the proposed dynamic language and environment. 
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In this chapter, we delve into our system design and implementation. We highlight 

the essential features of the proposed dynamic programming language, Ring, and pre-

sent the system architecture. Our focus lies on the language features that facilitate 

localization, syntax customization, and the development of domain-specific languages. 

The language has been meticulously designed to offer syntax flexibility and empower 

users to customize the language syntax according to their specific needs. This leads to 

the ability to create internal domain-specific languages (IDSLs) that look like external 

domain-specific languages without the need to create specific parsers for them where 

the language constructs will be enough to achieve this goal. 

4.2 System Architecture 

In Figure 4.2, we present the system architecture, which comprises three layers: the 

language layer, the batteries-included layer, and the tools layer. The language layer is 

closely tied to the compiler and the virtual machine implementation. It defines the core 

programming language features, syntax, and semantics. In the Batteries-Included Layer, 

we encounter various extensions and libraries that cater to different domains. These 

include support for GUI, databases, web development, game development, and even 

platforms like Raspberry Pi Pico. The tools layer encompasses both command-based 

utilities (such as the package manager and REPL) and graphical tools like the form 

designer. 

In the language layer, we have visual implementation, generated code, build scripts, 

and automated tests. Visual Implementation is developed using Programming Without 

Coding Technology (PWCT) software (version 1.9) [34,66]. The generated code is written 

in the C programming language (specifically ANSI C) and necessitates a C compiler to 

build the Ring executable. Throughout development, we employed multiple compilers, 

as illustrated in Table 4.1. With respect to the build scripts and the automated tests, we 

have employed batch files and shell scripts to automate the build process. Additionally, 

we have a CMake file that can generate the C project for multiple compilers [126]. This 

file uses CMake version 3.5. After each update to the project’s source code and before 

committing code using Git [127], we used to run a comprehensive suite of tests. This 

process is now automated through a Ring program that executes each test in a separate 

process and verifies the output against the expected results. We are using Git version 

2.42. 
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Figure 4.2 The proposed system architecture. 

Table 4.1 C Compilers used for building our Ring Compiler/VM. 

C Compiler Platform/OS (Target) 

Watcom C/C++ MS-DOS 

Microsoft Visual C/C++ Microsoft Windows 

GNU C/C++ Ubuntu Linux 

Clang macOS 

Android-clang Android 

Emscripten WebAssembly 

GNU ARM embedded toolchain Raspberry Pi Pico 

 

The General library provides common features used by other components, such as 

the loader, compiler, and VM. These features include functions for processing files and 

directories, especially when Ring is used on an operating system that provides a file 

system. Additionally, the library implements Strings, Lists, and Hash Tables. One of the 

crucial features offered by the library is the Memory Pool, which pre-allocates memory. 

The size of the pre-allocated memory depends on the environment: a few kilobytes are 

allocated when using Ring on microcontrollers like the Raspberry Pi Pico, while several 
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megabytes of memory are pre-allocated when using Ring on desktop environments such 

as Windows, Linux, and macOS. 

Since the proposed programming language can serve as both a scripting language 

and an embeddable language, it needs features that fulfill these dual roles. This is 

achieved through the loader, which plays a managerial role in our system design. The 

loader determines what actions will be taken and what will be avoided. It can print usage 

information, process source code or bytecode files, execute code from strings, halt 

operations at specific points (such as obtaining scanner tokens), or display applied 

grammar rules, among other tasks. To achieve these objectives, the loader calls the 

Compiler/VM components. 

Since the implementation never uses C global variables, the loader also creates the 

system state, and the state pointer is passed to different functions that require access to 

common information about the processed files, the current stage, the memory pool, and 

so on. 

In the Ring compiler, we have three main modules: the scanner, the parser, and the 

code generator. The scanner reads the textual source code and converts it into tokens 

(such as keywords, operators, identifiers, and constants). The parser processes these 

tokens, checking for correct adherence to the language grammar, and then invokes the 

code generator functions to produce bytecode. Ring employs a single-pass compiler 

[128], where parsing, code generation, and optimization are interleaved. However, the 

language performs only a few optimizations during code generation. 

All these decisions are made in favor of maintaining a small implementation. The 

language implementation utilizes a stack-based virtual machine [24]. This virtual machine 

is specifically designed for the language and contains many instructions that directly map 

to its features. In total, there are 128 instructions within the virtual machine. The VM 

comes with 255 built-in functions and provides an API for extensions written in the C 

language. 

In the Batteries Included Layer, we have a powerful tool called the Binding Generator 

(Like SWIG for Python [129]). Our tool is written in Ring itself and allows us to use 

straightforward configuration files that describe and customize the functions and classes 
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available in C/C++ libraries. Once these configuration files are in place, the generator 

works by producing the extension code. This code enables us to seamlessly use those 

C/C++ functions and classes from within the Ring language programs. To build 

extensions, we can employ a C/C++ compiler, resulting in dynamic link libraries (DLLs), 

shared objects (SOs), or dynamic libraries (Dylibs) according to the platform 

(Windows/Linux/macOS) [130]. 

In Table 4.2, we find a list of external C/C++ libraries used by the standard Ring 

extensions provided by the language. The selection of these libraries is based on our 

experience of using them in previous projects. Most of these libraries enjoy popularity 

within the C/C++ community and cover various programming domains, including 

Database, Graphics, Multimedia, Games, Terminal, GUI, Network Programming, and Web 

Development. 

These libraries exhibit different characteristics that impact the produced software. 

For instance, the Qt GUI Framework offers an extensive array of classes and features, but 

delving into it necessitates investing more time to study the framework [131]. 

Consequently, programs built with Qt may have larger runtimes. On the other hand, a 

lightweight GUI library like Libui has fewer features compared to Qt, but it excels in being 

compact. Notably, most of the GUI tools in the Tools layer are based on RingQt. 

Table 4.2 A list of C/C++ Libraries used by Ring Extensions. 

Domain C/C++ Libraries/Tools Count 

Terminal User Interface (TUI) ConsoleColors and RogueUtil 2 

Network and Security LibCurl, Libuv, and OpenSSL 3 

Web Servers HTTPLib and Apache Web Server 2 

Database ODBC, SQLite, MySQL, and PostgreSQL 4 

Games & multi-media Allegro, LibSDL, RayLib and Tilengine 4 

Graphics OpenGL, FreeGLUT and StbImage 3 

Graphical User Interface (GUI) Qt, Libui, and NAppGUI 3 

Common Files MiniZip, PDFGen and CJSON 3 

SDK for Specific Platforms Android SDK and Raspberry Pi Pico SDK 2 
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In the Tools layer, we have a group of command-based tools such as the Ring Package 

Manager, Ring2EXE, and the REPL. Additionally, we have GUI-based tools like the Ring 

Notepad, which serves as our code editor, and the Form Designer, which is used for 

designing application user interfaces and generating code following the MVC design 

pattern [132]. Furthermore, Ring includes an application for searching text in multiple 

files—a common feature required for large projects. All these tools are written using the 

Ring programming language itself. Software documentation helps users learn and use it. 

 The language is distributed with documentation of over 2000 pages in the English 

language that cover the different features and concepts. Also, there are chapters that 

cover the different extensions, libraries, and tools provided by the language. The 

documentation is created using Sphinx, a Python-based documentation tool. Specifically, 

we are using Sphinx version 6.2.1, HTML Help Workshop version 4.74.8702, and MiKTeX 

23.4. 

4.3 Non-English Syntax 

 The language scanner (The first phase in the compiler) supports specific commands 

(illustrated in Table 4.3) that allow users to change the language keywords and operators 

multiple times, facilitating easy translation of the language syntax. 

Table 4.3 Scanner commands provided by the Ring Compiler. 

Command Parameters Usage 

ChangeRingKeyword OldKeyword NewKeyword Change language keyword 

ChangeRingOperator OldOperator NewOperator Change language operator  

LoadSyntax Syntax file name as literal Load syntax file 

EnableHashComments None Support using # for comments 

DisableHashComments None Disable using # for comments 

In Figure 4.3, we present a WebAssembly application developed using Ring for 

online language experimentation. Additionally, we provide an example of how Scanner 

commands can be used to switch language keywords to Arabic syntax. The code begins 

by translating keywords (such as put, get, if, elseif, and endif) from English to Arabic. 

Subsequently, it employs this Arabic syntax to create a program that prompts the user 

for their age and delivers a message based on that input. 
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Figure 4.3 Arabic syntax within a WebAssembly application developed using Ring. 

Rather than including these Scanner commands at the start of every Arabic source 

code file, we can use the LoadSyntax command. This command allows us to load syntax 

files containing groups of these commands. Additionally, instead of placing the 

LoadSyntax command at the beginning of each source code file, we can simply add a file 

named (ringsyntax.ring) to the Arabic project folder. The Scanner will automatically load 

this file whenever we use any Ring source code file in the same folder. 

This approach draws inspiration from the use of (__init__.py) files in Python 

modules and the concept of (.htaccess) files in the Apache HTTP Server [133,134]. 

The application is developed using Ring through the following steps: 

1. The user interface is designed using the Ring form designer. The form file (try.rform) 

generates the tryView.ring file, which contains the RingQt source code that defines 

the window controls and layouts and sets the default style; 

2. In the controller class (tryController.ring), we determine the Ring code that will be 

executed based on user interaction with the application GUI; 

3. The (style.ring) file contains the Style class, which changes colors based on the 

selected style. The default style is Black, and the user can change it to another 

predefined style (Black, White, Blue, Modern, or Windows); 

4. The (samples.ring) file contains a Ring list that provides the predefined samples, 

where each sample is represented through a nested list containing the sample name 

and the sample code; 
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5. The (ringvm.ring) file contains a class that enables the sample’s source code to be 

run in an isolated Ring virtual machine. If the sample produces a runtime error or 

terminates the program, we can still use the Try Ring Online application executed by 

the caller VM; 

6. The (onlinering.ring) file contains functions that are automatically called before 

executing any sample code in the nested VM. These functions override the standard 

functions used for input/output operations. When the console application requires 

an input, these functions will pause the sub VM. Later, when the user enters the 

required data, the caller VM will update the state of the sub VM, set the variable 

value, and then resume the sub VM. 

4.4 Domain-Specific Languages 

One of the features provided by the Ring language is the ability to create domain-

specific languages (DSLs) on top of classes. These DSLs can employ specific syntax, and 

we have the freedom to design this syntax. The underlying idea relies on using braces to 

access objects, granting us the ability to utilize the attributes and methods provided by 

those objects. This section addresses the fourth research question (RQ4). 

Unlike some other programming languages that offer the “with” statement, in 

Ring, this feature is provided through an operator. This operator allows us to use this 

feature within expressions and in various places throughout the code. Notably, Ring 

does not require semicolons or new lines between statements. We can type different 

statements on the same line without any fuss. Additionally, in Ring, every valid 

expression is an acceptable statement, giving us the freedom to write various values, all 

of which will be accepted by the compiler.  

Ring classes also support properties. Typing a property name can invoke the getter 

method and execute the associated code. Moreover, Ring goes a step further by 

allowing us to define methods like braceStart() and braceEnd(). These methods are 

automatically called when we access an object using braces. Furthermore, the language 

automatically invokes a method called braceExprEval() when we write an expression 

inside braces. With these features, coupled with the ability to customize language 

keywords and operators, we can construct domain-specific languages that resemble 

external DSLs such as CSS, QML, SQL, and Supernova.  
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As an example, we will implement a tiny DSL. This simple DSL accepts a group of 

numbers. While entering numbers, we can highlight some of these numbers as 

important. Additionally, we could stop the processing using the “stop” command. The 

results of the process include both the summation of the entered numbers and a list of 

the important numbers. When typing numbers, using new lines is optional. Also, we do 

not need to use () or [] to group these numbers. 

Table 4.4 presents an example of how to use this tiny DSL and the expected 

output. In the example, we entered a group of numbers while asking for some of them 

to be highlighted using the (Important) word. Then, we decided to stop processing after 

the number 60 using the (Stop) word. 

Table 4.4 A simple domain-specific-language implemented using Ring. 

Usage (Ring Code) Output 

  new DSL { 

    200  

    400           Important  

    50  

    600           Important  

    60 

    10 20 30  

    40 50 60       Stop 

    70 80 90 

    800           Important 

  } 

Sum: 1520 

Important:  

400 

600 

To implement this tiny DSL, we only need to write one Ring class containing seven 

lines of compact code. Figure 4.4 demonstrates the implementation and analysis of the 

Ring features used in this class code. 
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Figure 4.4 Ring code to implement a simple domain-specific language. 

We begin by defining the class and setting its name (DSL). After that, we declare five 

attributes within our class: nSum, aImportant, important, stop, and lastvalue. Since our 

tiny DSL has two commands (Important and Stop), after declaring them as attributes, we 

define the methods getImportant() and getStop() to determine what happens when 

these words are used. The braceExprEval() method is called each time the language 

processes a number inside the braces that access the object. We sum up these numbers 

by adding them to the nSum attribute, and we store the last encountered number in the 

lastvalue attribute. Finally, when we finish using braces, the braceEnd() method is 

automatically called, printing the results. 

4.5 Object Oriented Programming 

The Ring programming language provides direct support for many features related 

to the object-oriented programming paradigm [135], such as classes, objects, 

encapsulation, composition, aggregation, inheritance, polymorphism, and operator 

overloading. Additionally, we have extended these features by introducing new 

capabilities, such as using braces to access objects (braceStart(), braceEnd(), 

braceExprEval(), etc.)  to facilitate the implementation of domain-specific languages 

(DSLs) using classes. 



 

38 
 

This allows us to seamlessly blend our DSL implementation with the well-known 

features of object-oriented programming. For instance, consider Figure 4.5, where we 

introduce an update to our domain-specific language. This updated DSL supports 

retrieving groups of computer prices and highlighting acceptable prices while displaying 

the output through a Graphical User Interface (GUI). The figure contains four sections. 

The first section represents the data used as input for the object created from the 

PickPrice class. The second section presents the PickPrice class. The third section is 

related to the DSL class. The fourth section, on the right side of the figure, shows the 

program’s output: a simple GUI window containing a list box. 

We define a new class called PickPrice, which inherits from the existing DSL class 

(still present in our code, starting from line 25). Inside the PickPrice class, we introduce 

a new attribute called Acceptable (used in place of the word “Important”). We define 

the getAcceptable() method, which is called when the Ring language encounters the 

word “Acceptable” within code, which uses braces to access an object created from the 

PickPrice class. Essentially, it acts as a wrapper method, invoking the existing 

getImportant() method from the parent class (DSL) to reuse its functionality. 

 

Figure 4.5 Extending our DSL using inheritance and the GUI library. 

At line 10, we override the braceEnd() method implementation. Instead of the 

command-based user interface, we replace it with a GUI. The GUI code leverages the 

GUILib library provided by the Ring programming language, utilizing the popular Qt 

framework. In line 17, we sort the numbers in our list (aImportant) using the Sort() 
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function and then add the items to a ListWidget. Line 23 introduces the braceError() 

method, designed to prevent errors when typing words like “Name”, “Price”, 

“Computer1”, etc. 

While we are inside class methods, using braces to access objects changes the 

current object. Consequently, we need different variables to reference the opened 

object or the object instance created from the current class. That is why we have (self) 

and (this). In line 16, while we are inside the window object, we pass this object to the 

setWinIcon() function using the (self) variable. In line 17, to access the aImportant 

attribute (inherited from the DSL class), we use the (this) variable to refer to the object 

instance that will be created from the PickPrice class. 

4.6 Batteries Included  

The language ships with numerous extensions that wrap up popular C/C++ libraries 

such as Allegro, LibSDL, OpenGL, Qt, and SQLite. These extensions provide convenient 

bridges between Ring and these well-established libraries, making it easier for 

developers to harness their capabilities.  

Ring libraries add another layer of abstraction on top of Ring extensions. One 

standout example is the Game Engine for two-dimensional (2D) Games. This engine 

consists of a set of classes built around the Allegro and LibSDL game programming 

libraries [136,137]. What is interesting is that the engine encourages a declarative coding 

style reminiscent of CSS or QML. So, when working with it, we can express the game logic 

in a way that feels quite intuitive and expressive. 

The language comes with an extension called RingPico, which supports Raspberry Pi 

Pico SDK [138]. In Figure 4.6, we see an example of using this extension. We can employ 

procedural programming and directly call the functions provided by the extension, much 

like we would when coding in a language such as C. Additionally, we have the option to 

build classes around these functions or leverage the features of the Ring language for 

more declarative code as demonstrated in the Figure.  

In this example, we load the file circuit.ring, which contains the classes Circuit, LED, 

and LEDSwitch. Inside this file, an object called Circuit is created from the Circuit class as 

a global variable. We can access this object directly using braces, as shown in Line 8. 
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Once we are inside the object, using words like LED or LEDSwitch is equivalent to 

accessing attributes defined in the Circuit class. 

 

Figure 4.6 Using Declarative Style in Ring for Raspberry Pi Pico programming. 

Using these attributes will call the getLED() and getLEDSwitch() methods. Invoking 

these methods creates new objects from the LED and LEDSwitch classes, which are then 

added to a list of objects defined inside the Circuit class. Additionally, the getLED() and 

getLEDSwitch() methods return these newly created objects. We can access these 

objects using braces, just as we did in lines 9, 14, and 16. Once we have access to an 

object, we can set its attributes. The additional magic related to the execution loop and 

responding to attribute values (such as Pin, Blink, and Delay) is handled through the 

braceEnd() method. This method initiates the execution loop and calls other methods 

that check the defined objects and their attributes. 

4.7 The IDE and the Form Designer  

We developed GUI-based tools (Demonstrated in Figure 4.7) like the Ring Notepad, 

which serves as our code editor, and the Form Designer, which is used for designing 

application user interfaces and generating code following the MVC design pattern [134]. 

Furthermore, Ring includes an application for searching text in multiple files—a common 

feature required for large projects. All these tools are written using the Ring 

programming language itself, totaling around 15,000 lines of Ring code. Developing 

these tools based on the Qt framework requires knowledge of GUI development, object-

oriented programming, and how to organize large programs in the Ring language. 
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Figure 4.7 Ring IDE (Code Editor, Form Designer, etc.) is developed using Ring itself. 

4.8 The Implementation (Using Visual Programming) 

Ring Visual Implementation is developed using Programming Without Coding 

Technology (PWCT) software (version 1.9) [34,66]. This software offers various visual 

programming languages, including HarbourPWCT, PythonPWCT, SupernovaPWCT, 

C#PWCT, and CPWCT [12,120]. 

Each visual language corresponds to a specific textual programming language used 

in the code generation process. In our case, we utilized CPWCT to design different 

components, such as the General Library, Loader, Compiler, and Virtual Machine, 

through visual programming. Subsequently, we obtained the source code in the C 

programming language. 

PWCT is designed to provide precise control, like what we experience with textual 

code editors, while also offering visual programming advantages such as reducing errors 

and the ability to work with multiple dimensions and a rich user interface. Notably, PWCT 

includes a powerful feature called the Time Dimension during visual programming. With 

this feature, each step or block generated in the program stores information about 

development time. Programmers can watch the program evolve step by step, revise the 

order of the construction process, and even run the program at specific points in time. 

The General library plays a crucial role in successfully implementing the Ring 

language as a lightweight programming language. Other components extensively reuse 
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the library functions to implement many language features using lists and hash tables 

instead of specific C structures. The list implementation (demonstrated in Figure 4.8) 

uses a Doubly Linked List, Deque (Double-Ended Queue), and Singleton Cache to store 

the pointer of the last visited item and the index of the next item. This allows for quick 

traversal of the list through a function that receives the item index as a parameter. 

 

Figure 4.8 Using PWCT to define the List structure which uses a singleton cache. 

Additionally, there is an optional array of pointers that can be used in specific 

situations to quickly find an item (through the item index) and use it without the need 

for the traverse process or using the singleton cache. Furthermore, if the size of the list 

items is known when creating new lists, memory could be allocated as a continuous 

block to be cache-friendly and minimize cache misses. Using this data structure to 

implement language features enables us to create a lightweight language with numerous 

capabilities while also contributing to stability and reducing memory management 

errors. It is like writing High-Level code like dynamic language code. However, it is 

essential to acknowledge one clear disadvantage of this approach: lower performance 

and increased memory usage compared to using specific C structures or arrays when 

implementing features.  

To strike a balance, during language development, we identified performance 

bottlenecks—such as function call implementations—and replaced them with specific 

low-level implementations based on a pre-allocated array of structures. Such 

optimizations became necessary once we started supporting the Raspberry Pi Pico 

microcontroller. 
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While the Singleton Cache consumes less memory compared to the array of 

pointers, it introduces a challenge: every read operation from the list items could 

potentially trigger a write operation if the cache is updated. Such behavior is undesirable, 

especially when sharing lists among threads. In this scenario, we opt for the array of 

pointers to avoid relying on the singleton cache.  

In Figure 4.9, we observe how the language grammar rules are implemented using 

PWCT. For each group of grammar rules, we define a specific function. We had a step 

that described each rule, allowing us to focus easily on specific rules using features like 

collapsing and expanding in the steps tree. Each group of steps associated with the same 

component can have an interaction page (a data entry form) that receives component 

parameters and controls the steps’ generation and update processes. Notably, all 

components, including the “Call Function” component, are created within the PWCT 

environment itself. We have the flexibility to create new visual components or update 

existing ones.  During the development of the Ring Compiler/VM, we exclusively used the 

standard components provided by PWCT. No new components were necessary because 

the available ones sufficed for implementing the required features. In the toolbar, there 

is a combobox for selecting the visual programming language. PWCT initially started with 

“HarbourPWCT” as the default visual language, but we specifically chose “CPWCT” to 

develop our project based on the C language. 

 

Figure 4.9 Implementing the Ring language grammar using PWCT. 
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Figure 4.9 shows a button labeled “The Time Machine.” Clicking this button provides 

a menu of options that allow us to play the program like a movie, revealing the 

construction steps. Another crucial button is the “VPL Compiler.” By using this button, 

we can examine the composition of different visual components, as demonstrated in 

Figure 4.10. An interesting feature in the results is the count of interactions (visual 

components) and the number of steps within the steps tree. These metrics provide 

insight into the abstraction level offered by the interaction pages of the visual 

components. 

 

Figure 4.10 Using the VPL Compiler to get statistics about the visual representation. 

An interesting question arises: why do we need a Visual Programming Language 

(VPL) Compiler if the visual language itself is designed to prevent errors? The answer lies 

in our ability to disable the Syntax Directed Editor, allowing us to manually arrange the 

generated steps for visual components to do quick organization and refactoring. 

However, this flexibility can sometimes lead to mistakes. Imagine a scenario where a 

component is inadvertently placed in the wrong location, and the programmer does not 

immediately notice the error. In such cases, the VPL compiler becomes invaluable—it 

can catch these composition errors and help ensure the program is correct. 

The Ring compiler generates bytecode, where each instruction must contain an 

operation code and can include zero, one, or two arguments. This bytecode is stored by 

the Ring compiler as a Ring List, allowing the compiler to easily insert instructions during 

code generation. However, when this bytecode is passed to Ring VM, it undergoes a 

conversion process to a more suitable representation for execution.  
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This representation is stored as a single continuous block in memory (rather than 

multiple byte-code chunks). Notably, it includes extra space that can be utilized for new 

instructions produced at runtime by the Eval() function. By having this additional space, 

the need for frequent memory reallocation is reduced. 

Within the Virtual Machine (VM), the bytecode representation employs fixed-size 

instructions. Specifically, the size of each instruction is 16 bytes for 32-bit 

microcontrollers (such as the Raspberry Pi Pico) and 24 bytes for 64-bit desktop 

environments. This bytecode is writable, allowing the VM to update instructions during 

runtime—caching certain values and even replacing instructions with faster alternatives 

that utilize pointers for variables, thus avoiding costly search processes. 

In Figure 4.11, we observe the structure of the bytecode on the left side. On the 

right side, we find the VM instructions that have been added to enhance performance. 

Opting for a writable long-byte code format is somewhat unconventional; for instance, 

Python uses 2 bytes per instruction, while Lua uses 4 bytes [139,140]. However, our 

deliberate choice of a long-byte code format serves two key purposes: 

• Simplicity of Implementation: Despite supporting a language with a substantial 

number of features (128 instructions), we aimed for a compact implementation. The 

writable long-byte code format allows us to achieve this without unnecessary 

complexity. 

• Performance Optimization: By using a longer bytecode format, we gain flexibility. We 

can improve the performance of specific instructions without resorting to a just-in-

time compilation of machine code or significantly increasing the overall 

implementation size. 

When considering the disadvantages of using a writable long-byte code format, it is 

essential to address a few key points. First, this approach results in larger memory 

requirements, which increases the likelihood of cache misses—a factor that directly 

impacts performance. Additionally, storing the byte code in writable memory can be 

costlier, especially on microcontrollers like the Raspberry Pi Pico [141,142]. However, to 

mitigate the drawbacks associated with the larger bytecode size, the Virtual Machine 

(VM) incorporates a clever strategy: some instructions serve multiple purposes.  
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This technique is well-known and proves useful in common scenarios. By identifying 

instructions that are frequently used together, we can optimize their representation. In 

doing so, we avoid allocating unnecessary space for instructions that do not require the 

full extent of the provided memory [143]. 

 

Figure 4.11 Ring Virtual Machine implementation using PWCT. 

The Virtual Machine (VM) implements several useful features when embedded 

within projects. For instance, during program execution, we can suspend or resume the 

VM [144], allowing a running program to request VM suspension while preserving its 

state. Additionally, the VM supports having multiple language states—meaning that 

more than one instance of the Ring VM can coexist within the same application.  

These features are of practical use in the “Try Ring Online” application. Within this 

application, when we write and run a program, it creates a new language state specific 

to our program. If the program requires input from the console, it halts the sub-virtual 

machine, signaling to the main VM that the console application is awaiting input. Users 

then type their input in a GUI provided by the main VM and click “Send”. These data are 

copied to a variable associated with Sub VM, and a resume operation follows. As a result, 

the console application in Sub VM can receive the input. This approach enables us to 

create a playground for the Ring language as a WebAssembly application without the 

need for threads. 

In summary, all the modules related to the General Library, Loader, Compiler, and 

Virtual Machine are designed using visual programming through PWCT. We have 43 

visual source files that generate 44 C source files and 28 C header files. Each visual source 

file could generate one or more textual files.  
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The Ring language keywords, standard functions, context-free grammar, compiler 

and runtime errors, and virtual machine instructions are published online on the Ring 

website (ring-lang.github.io/doc1.22/reference.html). To achieve a lightweight 

implementation while retaining a programming language with rich features and ensuring 

performance comparable to scripting languages, we made the following design decisions 

that address the third research question (RQ3) [139–144]: 

1. Applying principles such as “Don’t Repeat Yourself” (DRY) and the “Keep it simple 

and stupid” (KISS) principle. 

2. Using a single-pass compiler where the parsing and code generation are interleaved. 

3. The ability to separate the compiler and the virtual machine and use any of them 

alone. 

4. All the built-in functions are grouped in optional modules through preprocessor 

directives. 

5. Ring Lists vs. C Structures: In most cases, we opted for Ring Lists over C structures. 

6. Selective Use of C Structures: However, in specific features where performance 

impact matters significantly, we chose to use C structures. These targeted 

optimizations enhance critical parts of the language. 

7. Flexible List Implementation: Our list implementation combines various data 

structures and optimization techniques, including Doubly Linked Lists, Deques 

(Double-Ended Queues), Singleton Caches, arrays of pointers, Hash Tables, and 

continuous memory blocks. This flexibility accommodates diverse use cases. 

8. One block for Bytecode Storage: The bytecode resides in a single continuous 

memory block, avoiding fragmentation. Moreover, we intentionally allocate extra 

space within this block. This foresight reduces the need for frequent memory 

reallocation during runtime, especially when using the Eval() function. 

9. Writable Long-Byte Code Format: The bytecode format uses a longer 

representation, which allows for performance improvements. During runtime, 

instructions can be dynamically replaced with faster alternatives, all without 

resorting to just-in-time compilation to machine code or bloating the 

implementation size. 

10. The Virtual Machine does not use a global interpreter lock (GIL), which results in 

better performance when utilizing threads for CPU-bound tasks. 
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4.9 Chapter Summary 

In this chapter, we presented the design and implementation of the Ring dynamic 

programming language. We explored its most important features and contributions, 

highlighting the advancements it brings to the field of dynamic programming languages. 

We presented Ring features related to syntax customization and extending object-

oriented programming support with novel features that enable creating internal 

domain-specific languages that resembling external domain-specific languages like CSS 

and supernova. Also, we presented the visual implementation of the Ring Compiler/VM 

based on the PWCT visual programming language and listed the design decisions that 

are used to have a lightweight and multi-paradigm dynamic programming language. 

 In the next chapter, we will introduce the PWCT2 visual programming language. 

We will delve into its design, key characteristics, and main contributions.
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Chapter 5:  The PWCT2 Visual Programming Language 

5.1 Introduction 

The primary aim of developing the PWCT2 visual programming language, as 

demonstrated in Figure 5.1, is to use the Ring programming language to develop a 

research prototype for the second generation of the PWCT visual programming 

language. PWCT2 offers several enhanced features, including a more flexible 

environment, time dimension and auto-run, rich colors and customization, rich 

comments using text, lines, images, and HTML, an enhanced form designer for GUI 

applications, support for importing Ring source code and interactive textual-to-visual 

code conversion, self-hosting of the PWCT2 environment, and cross-platform 

implementation that supports Windows, Linux, and macOS. These features aim to 

improve the overall functionality, user experience, and performance of the PWCT2 

environment. This chapter addresses the fifth research question (RQ5). 

 

Figure 5.1 The key features of the proposed visual programming language. 
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In this chapter, we describe our system design and implementation. We highlight 

the important features of the proposed visual programming language, PWCT2, and 

present the system architecture, which is implemented using the Ring language. 

5.2 Implementation using the Ring language 

The architecture of the proposed visual programming language (shown in Figure 5.2) 

is divided into three main layers: Applications, PWCT Environment, and Ring Language. 

Each layer contains specific components that contribute to the overall functionality of 

the system. The bottommost layer, Ring Language, includes Development Tools, 

Libraries, Compiler, and Virtual Machine (VM). Development Tools provide various tools 

that assist in the development process, such as the package manager and Ring2EXE. 

Libraries consist of pre-written code libraries that developers can use to add functionality 

to their programs, saving time and effort by providing reusable code for common tasks. 

The compiler processes Ring textual source code and generates bytecode for the Ring 

Virtual Machine if the program is correct. If there are issues, it produces compile-time 

errors. The Virtual Machine (VM) provides a runtime environment for the programs 

written in Ring, executing the compiled code and managing the program’s execution 

[91,145]. 

 

Figure 5.2 The proposed self-hosting visual programming language architecture. 

The middle layer, PWCT Environment, consists of Visual Programming, the Ring to 

PWCT converter, and the File System (Visual Source). Visual Programming allows 
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developers to create programs using visual elements rather than traditional text-based 

code, providing a more user-friendly development experience. This is achieved through 

tools such as the Steps Tree editor, time machine, components browser, interaction 

pages (data-entry forms), and form designer. The Ring to PWCT converter assists in 

importing the textual source code written in Ring and visualizing the structure and flow 

of the program by offering graphical representations of the program’s logic. This enables 

us to continue program development using visual programming instead of relying on the 

textual source code. The File System (Visual Source) manages the visual source files 

within the PWCT environment, organizing and storing information about the visual 

elements used in the development process. PWCT can generate Ring source code from 

these visual source files, enabling the execution of these programs using the Ring 

compiler and virtual machine. 

The topmost layer, Application Layer, has the various applications, including 2D 

games, that can be developed using PWCT based on the Ring programming language, 

ranging from simple utilities to complex software solutions. Overall, the architecture of 

the proposed system is designed to provide a comprehensive and user-friendly 

environment for visual programming based on the Ring programming language, making 

it accessible to both novice and experienced Ring developers. 

5.3 Flexible Visual Environment 

In this section, we introduce the design differences between PWCT (the first 

generation of Programming Without Coding Technology) and PWCT2 (the proposed new 

generation). In PWCT, visual programming is achieved through four sub-systems: Goal 

Designer, Components Browser, Interaction Pages, and Form Designer. The Goal 

Designer is used for designing modules and provides the Steps Tree Editor and the Time 

Machine. The Components Browser enables users to select specific components, each 

offering one or more interaction pages (data-entry forms). Entering data into these 

interaction pages generates or updates steps managed by the Goal Designer [34,66]. 

5.3.1 Single Main Window and Several Dockable Windows  

In PWCT [66], the visual programming sub-systems are not designed to be used 

simultaneously on one screen; each sub-system uses a separate window. For instance, 

the Goal Designer and Components Browser, or the Components Browser and 
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Interaction Pages, cannot be viewed at the same time. In the proposed visual 

programming language PWCT2, this design has been revised to use a single main window 

for all sub-systems, as shown in Figure 5. Each sub-system now occupies a separate dock-

able window [146,147], allowing users to view all sub-systems simultaneously, which 

avoids the complete redrawing of the screen when switching from one to another. We 

also added two dock-able windows: one for Project Files, where users can quickly 

navigate to specific folders and open visual source files, and another for the Output 

window, where users can see the program output, send input to the running program, 

or terminate it at any time. 

The previous generation of PWCT did not provide these features (project 

files/output window) and relied on operating system dialog boxes to open files and the 

command prompt window to display program outputs [12]. Another feature added by 

PWCT2, which does not exist in PWCT, is the ability to open multiple interaction pages 

simultaneously. This simplifies the process of reading and updating programs. The Steps 

Tree Editor provides a feature to open all the interaction pages at once through a 

keyboard shortcut. 

 

Figure 5.3 PWCT2 uses a main window and dock-able windows. 

The program illustrated in Figure 5.3 is a simple example that prints two lines of text: 

“Hello, World!” and “Welcome to PWCT2.”. The proposed visual programming language 

makes it straightforward to create and modify the program visually. Users can add, 

remove, or change steps by interacting with the Steps Tree and the Print Component. 
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For instance, to change the text being printed, users can simply edit the text in the Print 

Component interaction page and click “Ok.” Additionally, new steps can be added by 

selecting the desired components from the Components Browser. 

The Components Browser (left panel) lists various visual components that can be 

used in the program. These components belong to the RingPWCT visual programming 

language. Categories include Comments, Templates, Console, Control Structures, and 

more. Each category contains specific components, such as “Print Text”, “Get Input”, 

“The If Statement”, and “For Loop”. We can find and select a component using the mouse 

or through a search process by the component name or part of the name. 

The Steps Tree (middle panel) displays the structure of the program in a hierarchical 

tree format. The program starts with a “Start Point” and includes steps generated by the 

Basic Program component, such as “The First Step”, “Load Files”, “Statements”, 

“Functions”, and “Classes”. Using the Basic Program component is optional, and these 

generated steps are just comments for organization. Additionally, there are steps 

generated by the Print Text component, like “Print Hello, World! (New Line)” and “Print 

Welcome to PWCT2 (New Line)”. In general, each step represents a specific action or 

command in the program, or it could be just a comment to provide a better 

understanding of what the program does or its structure. 

5.3.2 Flexible Steps Tree Editor  

The Steps Tree editor in PWCT2 is designed for flexibility and provides many features 

that do not exist in PWCT, including drag-and-drop functionality to move steps from one 

location to another instead of using cut and paste. This enhanced flexibility significantly 

improves the user experience by simplifying the process of organizing and modifying 

steps. In PWCT, when we add a step as a child to another step, the parent step must be 

of a type that allows children, and the added step will be at the end of the children. This 

is a limitation if we want to insert a new step between two other children, requiring the 

steps to be added first and then moved to the desired location. 

In PWCT2, the insertion process is supported, where selecting a step that does not 

support children and then adding a new step inserts it after the selected step. This 

change enhances the capability to modify the program’s structure on the fly, making 

development more intuitive. 
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The Steps Tree editor provides common features expected from editors, such as Find 

and Replace, Go-To, and Print to PDF, ensuring that users have access to essential editing 

tools. In Figure 5.4, we demonstrate how to insert steps between other steps by inserting 

the “Print TWO (New Line)” step between the steps that print the “ONE” and “THREE” 

messages on the screen. In the second section of the figure, we show how to use the 

Find and Replace window to find steps that contain specific text. These improvements 

collectively contribute to a more user-friendly development environment. 

 

Figure 5.4 Inserting steps in the Steps Tree and using the Find and Replace window. 

 



 

55 
 

5.3.3 RingPWCT Components in the Components Browser  

In PWCT [66], the environment includes multiple visual programming languages, 

such as HarbourPWCT, CPWCT, PythonPWCT, and SupernovaPWCT. Each visual language 

comes with a group of components classified into different domains, generating textual 

source code in specific textual programming languages like Harbour, C, Python, and 

Supernova.  

In our research prototype of PWCT2, we focus on supporting the Ring programming 

language through the RingPWCT visual programming language, which provides visual 

components that generate textual source code in the Ring programming language.  

Table 5.1 provides an overview of the 394 visual components available in the 

RingPWCT visual programming language within PWCT2. 

The table categorizes the components into different domains, specifying the 

number of components in each domain and providing an example for each domain. For 

instance, the General domain includes six components, with “Quick Start” as an 

example, while the Console domain comprises four components, with “Print Text” being 

one of them. Other notable domains include Control Structures, with 13 components 

like “For-In Loop”, and GUI, which has the highest count of 88 components, exemplified 

by the “Window Class”.  

The table also highlights various other domains such as Functions, Program 

Structure, Lists, Strings, Date and Time, and Math, among others. Each domain contains 

a specific number of components tailored to different programming tasks. For example, 

the Date and Time domain includes seven components like “Add Days”, while the 

Database domain, one of the most extensive, contains 34 components such as “ODBC 

Connect”. This comprehensive categorization helps users navigate and utilize the diverse 

set of tools available in RingPWCT to enhance their programming experience within 

PWCT2. 
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Table 5.1 The RingPWCT visual programming language components. 

ID Domain Components Count Example 

1 General 6 Quick Start 

2 Console 4 Print Text 

3 Control Structures 13 For-In Loop 

4 Variables and Operators 17 Assignment 

5 Functions 3 Define Function 

6 Program Structure 2 Load Source File 

7 Lists 15 New Empty List 

8 Strings 16 Get String Length 

9 Date and Time 7 Add Days 

10 Check Data Type 3 Check Character 

11 Math 1 Math Functions 

12 Files 29 Read File to String 

13 System 12 Get System Variable 

14 Dynamic Code 3 Eval 

15 Database 34 ODBC Connect 

16 Security and Internet Functions 11 Download 

17 Object-Oriented Programming 10 Define Class 

18 Functional Programming 3 Anonymous Function 

19 Reflection 29 Globals Info 

20 Standard Library 71 Stack Class 

21 Web Library 12 WL WebPage Class 

22 LibCurl Library 5 LibCurl Easy Init 

23 GUI 88 Window Class 

5.3.4 Advanced Visual Components and Templates  

In PWCT [12], visual components are based on a specific scripting language designed 

for the PWCT environment. This scripting language is intended to be easy to use and 

increase productivity by providing specific commands that guide the steps generation 

process based on data entered in the interaction pages. However, this scripting language 

is very limited and provides simple concepts related to variables, if-statements, 

steps/code generation, and rules for relationships among components. It does not have 



 

57 
 

loops, functions, or the ability to be extended without modifying its interpreter [148]. 

These limitations prevent the development of rich and powerful components that could 

perform advanced tasks during steps generation. Components are designed under the 

assumption that the component generating the steps will also be responsible for 

updating these steps. In other words, a component cannot generate steps that belong 

to other components. For example, to create a template of steps that belong to different 

components, a specific visual source file with these generated steps must be created. 

The user can then start a new visual source file from these templates. This means that 

these templates must be used at the start of creating new visual source files, and 

multiple templates cannot be used in the same visual source file without creating a new 

template that integrates them. 

PWCT uses two different programming languages: Visual FoxPro for developing the 

PWCT environment and a scripting language called RPWI designed for developing visual 

components. In the proposed visual programming language (PWCT2), the Ring textual 

programming language is used for developing both the PWCT2 environment and the 

visual components. Using Ring for developing the environment components enables us 

to create advanced components and avoids the known limitations of RPWI. For example, 

we have the Quick Start component, which can be used to generate steps that belong to 

multiple components, as shown in Figure 5.5. 

 

Figure 5.5 A component that generates steps that belong to other components. 
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The Quick Start component contains many templates that we can use. One of these 

templates is the Modify Lists Using Loop template. Selecting this template generates 

multiple steps that belong to different visual components, such as the For In component, 

Switch component, Case component, etc. The Quick Start component can also generate 

comments and provides a No Comments checkbox to avoid generating comments if 

desired. 

5.4 Time Dimension and Auto-Run 

In PWCT, users can use the Time Machine to change the time position and go 

backward in time to see the program at a specific point in the past and check the order 

of steps added to the program. We also have the option to play the program as a movie 

and see how the visual components are used step by step to create the program. 

Additionally, we can run the program at a specific point in the past and see the program 

output at that point. In PWCT2, we support the Auto-Run feature as shown in Figure 5.6, 

where changing the time position or adding new steps to the program will directly 

execute the program and display the output in the output window. 

 

Figure 5.6 Using the Time Machine and the Auto-Run feature. 
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The program contains a for-loop and a conditional statement. The first position in 

the figure shows the initial state with a For loop running from x = 1 to 10 with a step of 

1 and an If statement checking if x equals 3. The second position captures the execution 

of the If statement when x equals 3, printing “Three” on a new line. The third position 

demonstrates the continuation of the loop, printing the value of x on a new line for each 

iteration. The output on the right side of the third screenshot lists the numbers 1 to 10, 

with “Three” replacing the number 3, highlighting the effect of the conditional 

statement. 

5.5 Rich Colors and Customization 

Unlike PWCT, which provides one style for the environment (White Style), PWCT2 

enables us to select the PWCT environment style (White, Dark, Blue, etc.). Like in PWCT, 

we have a Customization window to determine the colors used in the Steps Tree editor 

based on the step type (see Table 5.2). Each visual component can generate one or more 

steps in the Steps Tree after entering the required data on the interaction page. These 

generated steps might belong to the same component or be related to other 

components if the original component is a template. We can use the same component 

again by clicking the ‘Again’ button on the interaction page. 

Table 5.2 Different types of Steps inside the Steps Tree. 

ID Step Type Description 

1 Start Point The program root (one for each visual source file) 

2 Comment  Just a comment and does nothing during runtime 

3 First The first step generated by the component  

4 Allows Interaction The step could include sub steps 

5 Leaf The step cannot include sub steps 

PWCT2 can use multiple colors in each step to highlight the data entered by the user 

from the text generated by the visual component, whereas PWCT uses one text color 

and one background color per step. This improvement is inspired by Scratch [149]. 

Additionally, we can show or hide the dock-able windows as needed. As shown in Figure 

5.7, we focus on the Steps Tree editor and interaction pages after setting the style to 

Dark and customizing the Steps Tree colors using the Customization window. 
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Figure 5.7 Using the Customization window to select the Steps Tree colors. 

Additionally, the Customization window enables us to set the Steps Tree background 

color and adjust the indentation level in the Steps Tree. In the Options tab, we also have 

advanced options that can enable the Auto-Run feature and control the environment’s 

behavior in different situations, such as opening the interaction pages in the Steps Tree 

dock-able window or in separate windows. 

In PWCT [12], users can open only one visual source file at a time for each instance 

of PWCT. Opening multiple visual source files simultaneously requires running multiple 

instances of PWCT. In PWCT2, we have the Project Files dock-able window, as shown in 

Figure 5.8, where we can easily select and open any visual source file or form file. 

Additionally, using the options in the Customization window, we can choose to open files 

in new tabs, allowing us to work with and view multiple files simultaneously. This 

improvement is inspired by popular editors and IDEs like Visual Studio and NetBeans 

[150,151]. The Customization window is open in the center, displaying two tabs: “Colors” 

and “Options”. The “Options” tab is selected, showing a list of customization options with 

checkboxes. The options listed in the Customization Window include Auto Run, Open 

files in new tabs, Show the Time Machine options, Steps Tree—Hide Step Code Tab, Show 

Steps Tree Lines, Light Tree Lines, Steps Tree—Show Nodes Icon, Open interaction pages 

in new windows, Allow Syntax Errors in Interaction Pages, Avoid Components Browser, 

Avoid Components Browser Auto-Complete, Components Browser—Always Show 

Search Window, Reflect changes in font size to other windows, and Borders around steps 

(in supported styles). 
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Figure 5.8 Opening multiple visual source files. 

For projects with many files, we have the option of a Main File (available in the 

toolbar), which we can run at any time to start the project, even if we are focusing on 

another sub-file within the project. Switching between files is easy using tabs that 

include the file name and are located at the bottom of the window. We can also view 

two files side by side in the PWCT2 environment by moving the dock-able window of the 

file. On the left side, there is a “Project Files” dock-able window displaying a list of files 

and folders related to a project named “GoldMagic800”, which is a puzzle game that 

contains 44 levels [152].  

The highlighted file is “gamebase.pwct”. In the center, there is a “Steps Tree” dock-

able window showing a hierarchical list of methods under the “Class GameBase”. On the 

right side, there are interaction pages for defining function components, if-statement 

components, assignment components, and class components. The user can determine 

which interaction pages to open simultaneously and use them to generate new steps 

and create programs without having to switch back to the components browser window. 

5.6 Rich Comments using Text, Lines, Images and HTML 

PWCT [12] enables adding comments to our Steps Tree, referred to as “user steps”, 

which use text to describe something or add information about the program. In PWCT2, 

we use different types of comments, not just text. We can add lines, images, and headers 

with specific fonts and colors. In Figure 5.9, we have a program that uses a Raspberry Pi 

Pico to control an LED, making it blink, with the ability to interact using a switch [153]. 
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 Using rich comments, we added a header that represents the sample title, followed 

by a horizontal line, and then an image of the circuit. Comments could include HTML, as 

demonstrated in Figure 5.10. This feature could be used for adding tables from both local 

and online web pages to our program. This improvement is inspired by the Envision 

visual programming system [154]. 

 

Figure 5.9 Using rich comments (Lines, Images, and Headers). 

 

Figure 5.10 Using HTML in comments. 
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5.7 Enhanced Form Designer for GUI Apps 

The Form Designer is a tool that simplifies the process of creating user interfaces by 

allowing users to easily add UI controls to the form, adjust properties, and define events 

such as click actions for buttons. In PWCT, the Form Designer, used for GUI applications, 

differs from popular form designers like those in Visual Studio. Instead of using a Toolbox 

and Properties window, the PWCT Form Designer utilizes the Components Browser and 

Interaction Pages, making it tightly integrated with the Goal Designer and not suitable 

for use as an external tool [155]. In PWCT2, we revised this design and provided a 

reusable Form Designer, which is successfully used in both PWCT2 and Ring Notepad 

(the IDE provided by the Ring programming language). In PWCT2, the Form Designer 

uses the Model-View-Controller (MVC) design pattern [132,156,157]. The Form 

Designer, as shown in Figure 5.11, allows users to visually design the user interface of 

their application. It includes the Toolbox, Form Layout, and Properties Panel. The Toolbox 

contains various UI elements, like labels, buttons, text edits, checkboxes, etc., that can 

be added to the form. The Form Layout is the main area where UI elements are placed. 

For example, in the figure, we notice it includes UI controls such as Title, Author, 

Abstract, and Output. This layout is related to an application that predicts the citation 

count of research papers in the field of Otology. The Properties Panel shows the 

properties of the selected object (e.g., a button named btnSelect). Properties include 

Name, Position (X and Y), Size (Width and Height), Text Color, Background Color, Font, 

Text, Image, and Click Event. 

 

Figure 5.11 Using the PWCT2 Form Designer. 
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The Steps Tree (left panel) displays a hierarchical view of the steps involved in the 

Controller visual source file, including importing the System.GUI package, checking if the 

file is the main source file, creating and accessing objects, defining the class, and more. 

The New Object Component (top middle panel) allows users to create a new object from 

a specific class. The Access Object Component (middle panel) is used to access an 

existing object within the program and allows us to use the object’s attributes and 

methods. The Call Method Component (bottom middle panel) is used to call a specific 

method supported by a specific object. 

5.8 Interactive Textual-to-Visual Code Conversion 

PWCT2 comes with a feature called interactive Textual-to-Visual code conversion, 

as demonstrated in Figure 5.12. The first section of the image illustrates the user writing 

Ring code, showcasing the textual input of programming constructs. In this section, the 

code creates an object from the point class, sets the object’s attributes, and defines the 

point class using the Ring programming language.  

In the second section, this Ring code is automatically converted into a visual 

representation using Ring2PWCT. The visual interface displays the code elements as 

graphical components, arranged in a logical flow that mirrors the structure of the original 

Ring code. This conversion allows users to interact with and manipulate the program 

visually, making it easier to understand, modify, and debug without delving into textual 

syntax. The transition from text to visual representation bridges the gap between textual 

programming and visual programming, enhancing the user’s experience and 

productivity. 

To start using this feature, it is sufficient for the keyboard Focus to be active at the 

Steps Tree at any step. Once the user starts typing, the components browser will be 

activated, where PWCT2 expects that the user is searching for a visual component to 

use. If the visual component does not exist, PWCT2 expects that the user will type Ring 

source code and highlight this code. If the user presses ENTER, PWCT2 will then use 

Ring2PWCT to generate the visual representation. The generated steps will be inserted 

into the selected location in the Steps Tree, enabling us to use this feature at any location 

in our program. 
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Figure 5.12 Interactive Textual-to-Visual code conversion (Ring2PWCT). 

This feature can be used to mix textual programming (for writability) and visual 

programming (for readability) in the same project [158,159]. Additionally, the code 

could be generated using large language models (LLMs) such as Copilot [160] as 

demonstrated in Table 5.3. Furthermore, this feature enables us to import current 

projects written in Ring so that we can continue developing them using PWCT2. 

The implementation of Ring2PWCT involves some of the same phases as compiling, 

such as scanning and parsing [24,47]. Instead of low-level code generation, we generate 

a visual source file. Alternatively, it can update the current file if Ring2PWCT is used to 

insert steps into the existing visual source file instead of creating a new one. Ring2PWCT 

is generally considered a form of translation, specifically source-to-source translation, 

because it converts source code from one high-level language to another (in this case, 

from Ring code to PWCT visual code) [161]. 
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Table 5.3 Using Copilot and PWCT2. 

Step Description Image 

1 

Use Copilot AI to generate textual source code in 

the Ring programming language. The task is to 

write a method in Ring code to be added to a class 

called Point, which has three attributes: x, y, and z. 

The method should ask the user for the values of 

these attributes using the getNumber() function 

and print a message asking the user to enter the 

value before using getNumber().  
 

2 

In this step, we switch to PWCT2, select the parent 

step in the Steps Tree Editor, and finally paste the 

generated source code. The parent step is called 

“Methods”, which exists in the Point class. Once 

we paste the textual source code, PWCT will 

display the pasted code in a popup rectangle to 

indicate that this is a textual-to-visual code 

conversion operation (not a search operation by 

the visual component name). Pressing ENTER will 

start the conversion process. 

 

3 

After the textual-to-visual code conversion process 

using Ring2PWCT, we will see the generated steps 

in the Steps Tree. We can continue development 

using the visual programming features provided by 

PWCT2, such as the Steps Tree Editor and Time 

Machine. 
 

Ring2PWCT is designed to pass errors when possible. For example, using the Ring 

code (for x = 1 to 10 if x = 3 ? “Three”) as input can be converted to visual code (similar 

to the first section in Figure 8), even if keywords such as EndFor and EndIf are missing. 

 



 

67 
 

5.9 Self-hosting the PWCT2 environment 

The PWCT visual programming language is developed using Visual FoxPro, where 

enhancing the development environment requires using VFP textual code. Although the 

environment includes a domain-specific language (RPWI) for visual component 

development, it remains textual code, and using visual programming to improve PWCT 

itself is not supported. Therefore, self-hosting PWCT2 could be an attractive feature 

because it allows the development and customization of the PWCT2 environment using 

its own visual programming tools.  

This approach enables us to improve and refine PWCT2 through visual programming 

instead of traditional textual coding, making the process more user-friendly and 

accessible, as shown in Table 5.4, which demonstrates converting a class from textual 

code to visual code. 

While PWCT2 is designed to support interactive textual-to-visual code conversion, 

this feature is intended to be used within the PWCT environment inside the Steps Tree 

Editor. Based on this feature, we developed a command-line tool that can take a Ring 

source file as input and produce a visual source file as output.  

Since PWCT2 and its visual components are written in Ring, we used this tool 

(Ring2PWCT) to convert the PWCT2 source code files from Ring to visual source files, 

allowing us to use PWCT2 to continue developing itself, addressing the sixth research 

question (RQ6). In Table 5.4, we present an example of using Ring2PWCT to convert one 

of the source code files related to the PWCT2 implementation using the Ring language.  

This file contains the View class for the (Print Text) visual component. This class 

inherits from the ComponentViewParent class, which contains common attributes and 

methods useful for developing new visual components inside PWCT2. 
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Table 5.4 Using Ring2PWCT to convert the PrintComponentView class. 

Attribute Value 

Class Name PrintComponentView 

Parent Class ComponentViewParent 

Textual Source  

(Ring) 

 

Visual Source 

(PWCT2) 

 

 

5.10 Cross-platform and Faster Implementation 

PWCT was developed as a Microsoft Windows product, with no native support for 

other operating systems like Linux and macOS. Additionally, PWCT is 32-bit software. 

Since PWCT2 is developed using the Ring programming language, which is a lightweight, 

versatile, and cross-platform language, it was possible to create a cross-platform and 64-

bit version of PWCT2 based on Ring and the Qt framework, supported by the RingQt 

extension. In Table 5.5, we present the modules, along with the count of files and lines 

of code. Figure 5.13 demonstrates using PWCT2 on macOS to develop the Tetris game 

using the Ring game engine for 2D games, which is based on the Allegro game 

programming library [162,163]. The game engine provides classes that can be used to 

quickly prototype simple 2D games. These classes include Game, Text, Sprite, Animate, 

Map, etc. 
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Table 5.5 PWCT2 modules. 

ID Module Files LOC Comment 

1 Environment 5 2649 300 

2 General Functions 9 524 122 

3 Translation 3 584 20 

4 Goal Designer 27 4908 1473 

5 Components Browser 5 8876 70 

6 VPL Components 1185 57,612 7167 

7 Component Parent Classes 3 739 283 

8 Form Designer 52 9487 312 

9 File System (Visual Source Files) 6 368 415 

10 Tools  59 6484 546 

 

Figure 5.13 PWCT2 for macOS. 

The PWCT2 project is one of the early advanced projects developed using Ring (see 

Figure 5.14). The Environment module provides the main window and creates the 

different dock-able widgets. The General Functions module encompasses general 

functions required by the software.  The Translation module handles various translation 

functions. The Goal Designer modules contain the Steps Tree Editor and the Time 

Machine. The Components Browser allows users to navigate through available 

components and select a component to use. 
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The VPL Components module, being the largest, includes all the RingPWCT visual 

programming language components necessary for creating and managing programs. The 

Component module provides the foundational elements required for the different visual 

components, including interaction pages and generating visual steps. The Form Designer 

module provides functionality for designing forms within the environment. The File 

System module manages the visual source files. Finally, the Tools module contains 

various utilities, including the textual-to-visual code converter (Ring2PWCT). 

 

Figure 5.14 The PWCT2 system developed using the Ring programming language. 

During the development of PWCT2, we made specific design decisions that resulted 

in improved performance compared to PWCT. These design decisions helped enhance 

various aspects of PWCT2, with notable improvements in code generation time and 

storage requirements for the visual source files. 

These design decisions are as follows: 

• The Steps Tree is stored in the visual source files in the correct order of control flow, 

with PWCT2 adding steps at the end of the file or inserting them based on their 

actual position. In contrast, PWCT always adds new steps at the end of the file, 

requiring the Steps Tree to be ordered during the code generation process. 

• Storing the visual source in memory through Ring Lists during development and 

saving to storage only when needed, instead of using database files and storage on 
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the hard disk during development as in PWCT. It is known that accessing computer 

memory is faster than accessing the hard disk drive. 

• Using the Ring programming language instead of Visual FoxPro. Since Ring 

development is active, the latest versions of the Ring Compiler/VM are produced 

using the latest versions of C/C++ compilers, which also benefit from the 

performance improvements in these tools. 

• Using the Qt framework for the GUI environment through RingQt. The framework is 

written in C++ and provides better performance with each update and direct 

support for the TreeView control instead of using ActiveX control as in PWCT. 

5.11 Arabic PWCT2 

Since the PWCT2 visual programming language is designed to support translation, 

besides the default English version, we provide a complete Arabic version, as 

demonstrated in Figure 5.15. In this figure, we see a program that prints numbers from 

one to ten. We print a text message before printing the numbers and another one after 

printing half of the numbers.   The translation covers various components in the system, 

such as the main window and sub-windows. Additionally, each of the 394 components 

in the RingPWCT visual programming language is translated, including the interaction 

pages' user interface and the generated steps inside the steps tree. Furthermore, the 

form designer is translated to use Arabic names for all user interface elements, including 

the toolbox and properties window. 

 

Figure 5.15 Arabic translation for the PWCT2 visual programming language. 
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5.12 Chapter Summary 

In this chapter, we introduced the PWCT2 visual programming language, outlining 

its design and key features. We examined how PWCT2 builds upon existing visual 

programming languages like PWCT and addressed the unique contributions it brings to 

the field. Through this exploration, we have highlighted the strengths of PWCT2, 

demonstrating its potential to enhance visual programming and software development 

based on the Ring programming language. 

In the next chapter, we will present the experiments and results that evaluate the 

effectiveness and performance of both the Ring dynamic programming language and 

PWCT2 visual programming language. This analysis will provide empirical evidence to 

support the claims and contributions discussed in the preceding chapters. 
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Chapter 6:  Experiments and Results 

6.1 Introduction 

In this chapter, we present the various results related to our study. First, we 

introduce results related to the Ring programming language then we introduce the 

results related to the PWCT2 visual programming language. The results include different 

aspects like use-cases, users feedback, performance evaluation, etc.  

6.2 Results related to Ring  

In this section we introduce results related to the Ring programming language. At 

first, we provide information about the early users, followed by download statistics. 

Next, we discuss multiple use cases. Additionally, we delve into our findings concerning 

Ring’s visual implementation using the PWCT visual programming language. Then, we 

present the results related to Ring’s lightweight implementation, followed by the 

performance benchmarks. 

6.2.1 Early Users and the Programming Language Used Prior to Ring 

Once we launched the Ring website in 2016, we posted a message in the Ring Group 

seeking users interested in trying or testing the language and contributing by reporting 

bugs. In the public group, interested users shared their age, gender, country (location), 

and the programming languages they used prior to Ring. We noticed 43 messages, with 

42 males and 1 female. Most of the users are between the ages of 20 and 35, and 81% 

reported that they were using C++, PHP, C#, Java, or Python, as demonstrated in Figure 

6.1. We noticed that 28 users (65%) were using statically typed languages, while 15 users 

(35%) were using dynamically typed languages. This diverse usage background reflects 

the rich experience of our users with different programming languages, leading to 

various feature requests in different directions. Developers who used C# requested the 

development and addition of the Form Designer to our code editor (Ring Notepad), 

which was developed and added to Ring in version 1.3. Developers with a C/C++ 

background asked for features related to C/C++ extensions, leading to the revision and 

improvement of the Ring API and the addition of tutorials on using it. Additionally, 

developers who used PHP for web development requested better support for web 

development, which led to the addition of the Apache web server to Ring Notepad in 

Ring 1.6. Those users helped us discover and fix many issues. They also improved the 



 

74 
 

Ring documentation by adding the Frequently Asked Questions (FAQ) chapter. Over time, 

they contributed over 800 samples of the Ring language to the RosettaCode website. 

 

Figure 6.1 Early users and the language used prior to Ring. 

6.2.2 Feedback from Online Course  

We presented a free online course consisting of 18 videos in Arabic that introduced 

the Ring programming language (covering input/output, control structures, procedural 

programming, and object-oriented programming). The course is available on YouTube 

(youtube.com/playlist?list=PLpQiqjcu7CuFc027iGHaBLPCZHuzCHkBC). We then invited 

interested learners to watch the course and submit the samples they wrote during their 

learning through GitHub so we could track their progress. We received samples from 76 

participants.  

In Table 6.1, we present the course content, while in Table 6.2, we introduce the 

statistics about the course. Twenty participants (26.3%) were not interested and finished 

fewer than two lessons, while 56 participants (73.7%) were interested and finished two 

or more lessons. Of those 56 participants, 23 (30% of the total) finished the course. We 

noticed that two participants became active contributors to Ring language samples and 

applications. The contributors help us test, report bugs, and add samples, applications, 

and tutorials. As of 2024, Ring is distributed with hundreds of samples and over 70 

applications/games, each ranging from a few hundred to a few thousand lines of Ring 

code. With respect to the female participants, four of them completed the course, one 

completed just one lesson, and the last one completed three lessons. 
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Table 6.1 Course Content. 

Lesson Description Duration (H:M:S)  

1 Installing Ring and writing the Hello World program 0:30:43 

2 Input/output, data types, strings, and numbers 0:36:33 

3 Arithmetic/Logical operators and the if Statement 0:58:20 

4 Lists, nested lists, and loops 1:01:71 

5 While Loop 0:48:34 

6 Defining and using Functions 0:45:30 

7 Standard functions 0:28:39 

8 Using Eval() 0:23:01 

9 Internet Library 0:38:47 

10 Database and SQL 0:33:13 

11 Classes and Objects 0:47:07 

12 Declarative Programming 0:52:29 

13 Domain-Specific Languages 0:19:46 

14 Domain-Specific Languages (Part 2) 0:46:33 

15 Functional Programming 0:42:37 

16 Reflection and Meta-Programming 0:27:57 

17 Memory Management and variables scope 0:58:28 

18 Interactive Debugger 0:22:08 

Table 6.2 Statistics from Online Course. 

Variable Value 

Male 70 

Female 6 

Completed less than two lessons 20 

Completed more than one lesson 56 

Completed the course 23 

Contributors 2 

6.2.3 Feedback After a One-Hour Lecture 

We presented a one-hour lecture about the Ring language to third-year students at 

the College of Computer and Information Sciences at King Saud University in Saudi 

Arabia. The lecture was presented twice: the first time to 35 students and the second 
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time to 25 students. All 60 students were male. They had studied multiple courses 

related to programming, including Introduction to Programming and Object-Oriented 

Programming. They used Java during these programming courses. After the one-hour 

lecture, we told them, “If you are interested in the Ring language, try to download and 

install it, write some simple programs, and see if you become more interested in learning 

about the language”. As shown in Figure 6.2, out of the 60 students, 44 were interested, 

and all of them successfully installed the language and tried writing some programs using 

it.  One of the students said, “Why don’t we learn Ring instead of Java? It seems easier”. 

Another student said, “This language looks like Python”. 

 

Figure 6.2 Feedback from students about Ring language after a one-hour lecture. 

6.2.4 Downloads Statistics and Users Group  

Ring, as an open-source programming language, is hosted on GitHub. Users have 

two options to get the language: they can clone the source code or download a 

precompiled binary release for Windows, Linux, or macOS.  

The project has garnered more than 1200 stars from developers worldwide. To 

foster discussions about the language, Ring maintains an official Google Group (over 450 

members). The group contains conversations covering various aspects of the language 

across more than 2800 topics [164]. 

External services tracking GitHub downloads indicate that the project has been 

downloaded over 18,000 times. Furthermore, a mirror exists for the project files hosted 

on Sourceforge. This mirror tracks download counts and their associated countries. 

Impressively, the downloads from this mirror have surpassed 62,500. 

In Figure 6.3, we present the operating systems used during downloads, while in 

Figure 6.4, we present the countries that have the most downloads [165]. We expect 

0 5 10 15 20 25 30 35 40 45 50

Interested to try Ring

Not Interested to try Ring
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that each programming language could be more popular in specific countries due to 

marketing reasons and the availability of educational resources.  

Many YouTube videos about the Ring language are presented in Arabic by Egyptian 

developers and YouTubers. This could also be one of the reasons Egypt has more users 

than other countries. 

 

Figure 6.3 Ring downloads statistics grouped by the Operating System. 

 

Figure 6.4 Ring downloads statistics grouped by the Country. 

6.2.5 Use Cases and Printed Books  

In Table 6.3, we present some of the use-cases of the proposed programming 

language and environment. These uses-cases are related to different domains like Front-

end applications for Machine Learning models, Games development, Text/Data 

processing, and Web development. We selected just one or two use-cases for each 

47,779

6599

1283

6892

0

10,000

20,000

30,000

40,000

50,000

60,000

Downloads

Windows Linux Macintosh Other



 

78 
 

domain to avoid unnecessary duplication. For more applications, the Ring language is 

distributed with over 80 applications/games/tools. 

Table 6.3 Some use cases for the Ring programming language and environment. 

Ref. Type Domain Description 

[166] Research Paper Front-end apps for ML Models Predicting citations count 

[167] Research Paper Front-end apps for ML Models Predicting game result 

[91] Printed Book (USA) Games Development Shooter Game 

[152] Steam Game Games Development Puzzle Game 

[168] Research Paper Text/Data Processing apps Predicting impedance 

[169] Printed Book (Egypt) Text/Data Processing apps Arabic Poetry Analysis 

[170] YouTube Videos Desktop/Web development Free course 

[171] Research Paper LLMs Training Dataset preparation 

The first two use-cases involve utilizing the form designer and the standard libraries 

such as GUILib, InternetLib, and JSONLib, to develop front-end applications for machine 

learning models [166,167]. These applications could offer a user-friendly interface that 

receives input from users. The input is then transmitted to the machine learning model 

over the internet, and the resulting prediction is returned in JSON format. Afterward, the 

application processes this data and displays the outcome. Additionally, the GUI 

(Graphical User Interface) could include features such as data visualization, statistics, or 

a display for the dataset using the grid control, as demonstrated in Figure 6.5. 

 

Figure 6.5 A GUI application developed using the Ring language. 
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The third use-case is about using the Ring programming language for 2D game 

development. This is explained through a printed English book (In the USA). The book 

contains nine chapters and is over 600 pages. The source code is available online through 

a GitHub project [91]. 

Figure 6.6 shows a puzzle game available on the Steam platform, written in Ring 

code and utilizing the Allegro and OpenGL libraries. The game, titled “Gold Magic 800”, 

comprises 44 levels [152]. These levels have been meticulously designed by a specific 

level designer, which was also developed using Ring. Notably, the Level editor employs 

the Qt library. This game serves as an excellent example of how different libraries 

provided by the Ring language can be seamlessly mixed within the same project. 

In [168], the Ring language is used to prepare a dataset before using it to train a 

machine learning model. Another use-case is developing a Ring program that analyzes 

Arabic poetry. The application contains over 3000 lines of Ring source code and is 

explained in detail in a printed Arabic book (In Egypt) [169]. 

In [170], A YouTube channel with over 350 K subscribers provided over 500 videos 

about the Ring programming language. These videos start by explaining the language 

fundamentals and how to apply the different programming paradigms using it. The 

videos cover desktop and web development, too. In [171], the authors used Ring 

language samples and documentation to train LLMs how to write Ring programs. 

 

Figure 6.6 The GoldMagic800 game—A puzzle game developed using RingAllegro. 
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6.2.6 Visual Implementation 

In Table 6.4, we present the results of our visual implementation. The Table includes 

details for each visual source file: the amount of storage used on the hard disk, the 

memory used by PWCT after loading the file, the number of visual components, the 

count of steps within the steps tree, the lines of code in the generated source files (.c), 

and the lines of code in the generated header files (.h) if the visual source also generates 

such files. Finally, we provide the total lines of source code (without comments/blank 

lines) generated by the visual source file. 

Table 6.4 Results of using PWCT to implement Ring compiler and virtual machine. 

Modules File Name 
Storage 

(MB) 

Mem.  

(MB) 
Components Steps 

Visible  

Steps 
Comment LOC 

Loader 
ring 2.07 21.5 211 320 287 35 236 

state 7.7 32 513 841 720 77 640 

General 

Library 

general 4.32 24.6 211 388 321 18 287 

hashtable 2.27 35 189 322 268 16 251 

item 4.04 24.3 231 440 356 54 301 

items 0.54 19.3 52 87 74 3 63 

list 10.85 40.1 969 1798 1432 118 1378 

string 3.94 26.6 271 497 399 18 383 

hashlib 1.72 25.5 54 81 70 3 59 

Compiler 

codegen 5.74 28.4 425 700 588 68 543 

expr 14.52 46.8 705 1263 1059 155 918 

objfile 5.98 29.1 524 934 757 85 606 

parser 3.61 23.9 327 460 415 49 372 

scanner 10.18 37.9 790 1318 1097 75 1006 

stmt 11.59 41.2 913 1603 1376 278 1132 

Virtual 

Machine 

vm 14.18 48.1 1498 2285 1992 278 1655 

vmapi 7.23 31.6 522 874 744 103 673 

vmduprange 0.8 21.2 70 127 104 6 94 

vmerror 1.5 20.7 139 265 220 37 186 

vmeval 2.48 21.8 233 428 371 81 295 

vmexit 1.82 21.1 83 167 132 15 119 
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vmexpr 12.28 43.8 986 1817 1445 57 1383 

vmext 10.5 36.2 34 72 59 9 43 

vmfuncs 7.78 32.7 498 1000 838 206 675 

vmgc 11.64 41.9 922 1746 1422 240 1264 

vmjump 1.97 21.3 119 231 183 11 170 

vmlists 7.21 30.7 379 674 549 36 513 

vmoop 11.13 39.9 820 1497 1268 215 1081 

vmperformance 3.45 25.6 192 332 273 24 255 

vmstackvars 6.85 30.4 487 997 770 81 697 

vmstate 5.5 27.2 385 619 578 146 435 

vmstrindex 0.69 19.6 49 78 67 2 61 

vmthread 1.59 44.4 148 262 219 32 191 

vmtrycatch 0.76 19.7 20 38 33 5 25 

vmvars 8.51 33.8 362 685 569 91 497 

Built-in 

Functions 

vminfo_ext 6.06 28.1 289 443 389 24 360 

dll_ext 10.74 37.1 89 147 123 4 112 

file_ext 9.57 36.9 688 1235 991 26 961 

genlib_ext 22.75 66.6 1732 2965 2438 169 2308 

list_ext 5.65 28.5 531 982 782 35 740 

math_ext 3.93 25.2 336 649 489 3 497 

os_ext 5.25 26.8 313 572 464 23 427 

refmeta_ext 8.05 33.5 636 1075 886 26 851 

Each visual source file belongs to one of the modules, such as Loader, General 

Library, Compiler, Virtual Machine, or the built-in functions. PWCT stores each visual 

source file in two files: *.SSF and *.FPT. The storage size listed in the table represents the 

summation of the file sizes of both files. The “components” column includes the total 

number of components used within the visual source file, even accounting for repeated 

usage of the same components. Each component corresponds to an interaction page 

(data-entry form) and may generate one or more steps. 
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We present a summary of the results in Table 6.5. Also, we highlight the results for 

each module in Figure 6.7. In this Figure, we notice that the Virtual Machine is the largest 

module while the optional “built-in functions” is the second largest module. 

 

Figure 6.7 Visual implementation size for each module. 

Table 6.5 Summary of visual implementation size. 

Criteria Total 

Modules 5 

Visual Source Files 43 

Storage Size (MB) 278.95 

Memory (MB) 1350.6 

Visual Components 18,945 

Steps 33,314 

Steps (Visible) 27,617 

Lines of Code (LOC) 24,743 

Comments 3037 

LOC including comments 27,780 

In Figure 6.8, we present the loading time required to display the visual 

representation and the code generation time for each visual source file. These values 

were measured 10 times for each file. The cell colors visually represent the performance 

metrics, where larger numerical values correspond to longer time durations, indicating 

lower performance. In Figure 6.9, we present the code generation time for large visual 

source files. The time is measured in seconds, and tests are performed using a Victus 

Laptop [13th Gen Intel(R) Core(TM) i7-13700H, Windows 11, PWCT 1.9]. 



 

83 
 

 

Figure 6.8 The loading time (LT) and code generation time (CGT). 

 

Figure 6.9 Code generation time (CGT) for large visual source files. 

6.2.7 Lightweight Implementation 

Developing a lightweight programming language is not just about providing a 

language with a small implementation. It is merely the beginning, and we must pay 

attention to the growth in the language size over time. In Table 6.6, we present the 

growth percentage in implementation size for the Ring programming language and other 
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known lightweight programming languages. The table presents the LOC of the first 

release and the LOC of the latest release. The LOC includes the compiler, VM, and the 

built-in functions. The growth in code size can be attributed to several factors, including 

fixing bugs, adding new features, performance improvements, the expansion of libraries 

and built-in capabilities, and enhancements in compatibility and interoperability. 

Table 6.6 Growth in implementation size. 

Language Period Implementation  LOC (FR) LOC (LR) Growth 

Ring 2016–2024 C 16,402 24,743 51% 

mRuby 2014–2024 C 18,134 23,742 31% 

Squirrel 2004–2022 C++ 9311 13,991 50% 

Lua 1993–2024 C 5603 20,081 258% 

Since Ring is designed to be a lightweight language, we have monitored the growth 

of the implementation size over the years. From 2016 to 2024, the implementation size 

has increased from 16 KLOC in Ring 1.0.0 to 24.7 KLOC in Ring 1.21.2, as demonstrated 

in Figure 6.10. The growth percentage in the implementation size is 51%. In Figure 6.11, 

we present the code size for the Lua Compiler/VM. The source code was written from 

1993 to 2024, and the implementation size increased from 5.6 KLOC in Lua 1.0.0 to 20 

KLOC in Lua 5.4.7. The growth percentage in implementation size is 258%. 

 

Figure 6.10 Generated code size for Ring Compiler/VM from 2016 to 2024. 
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Figure 6.11 Code size for Lua Compiler/VM from 1993 to 2024. 

In Figure 6.12, we present the generated code size for the Ring Compiler/VM for 

different Ring releases. The textual source code is generated in ANSI C and can be used 

by traditional programmers who may prefer text-based coding. This approach also 

enables adoption in settings where visual programming tools are less practical. 

 

Figure 6.12 Generated code size from Ring 1.0.0 to Ring 1.21.2. 
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6.2.8 Performance Benchmarks 

In Table 6.7, we provide a benchmark comparison of various versions of the Ring 

programming language (Ring 1.17, Ring 1.19, and Ring 1.21), including its WebAssembly 

implementations on Edge and Chrome browsers, against VFP 9.0 and Python 3.13. Tests 

are performed using a Victus Laptop [13th Gen Intel(R) Core(TM) i7-13700H, Windows 

11]. The benchmarks cover a range of computational tasks, including looping (Loop), 

mathematical calculations (MathMax), function calls (FuncCall), dynamic programming 

Fibonacci calculations (FibDP), recursive Fibonacci calculations (FibRec), and list filling 

(ListFill), with varying input sizes. These benchmarks are designed to reflect features that 

are very common in many programs, ensuring their relevance and applicability across 

different use cases. VFP was selected for this comparison because it is a multiparadigm, 

dynamic language used in the development of PWCT. Python 3.13 was selected due to 

its popularity and versatility as a dynamic language that supports multiple programming 

paradigms. The performance, measured in milliseconds, indicates substantial 

improvements in the newer versions of Ring, particularly in Ring 1.21. For instance, the 

execution time for FuncCall (100 M) decreased dramatically from 113,142 ms in Ring 

1.17 to 4058 ms in Ring 1.21. Figure 6.13 presents the performance of this benchmark. 

WebAssembly implementations show a slight increase in time compared to native 

executions. Overall, the data highlights significant performance enhancements in newer 

versions of Ring and offers a comparison of the efficiency of different programming 

environments. With respect to Ring support for microcontrollers, which is relatively new 

(first support started with Ring 1.21, released in September 2024), the performance 

results for Ring 1.21 running on the Raspberry Pi Pico reveal some interesting insights 

when compared to Ring 1.21 on a desktop. The Loop (500 k) benchmark was completed 

in 3.35 s, while MathMax (100 k) and FuncCall (100 k) took 3.54 s and 3.32 s, respectively. 

The Fibonacci Recursive (FibRec) at 25 iterations took 5.81 s, and the Dynamic 

Programming Fibonacci (FibDP) at 500 iterations was notably fast at 0.89 s. However, the 

ListFill (100 k) benchmark resulted in an “OUT OF MEMORY” error, which is expected 

given that the Raspberry Pi Pico has only 264 KB of SRAM. A dynamically typed language 

like Ring may encounter challenges on resource-constrained devices such as the 

Raspberry Pi Pico due to its limited memory and processing power. 
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Table 6.7 Performance benchmarks (Time in Milliseconds). 

Benchmark 

Ring 

1.17 

(2022) 

Ring 

1.19 

(2023) 

Ring 

1.21 

(2024) 

Ring 1.21 

WebAsm 

Edge 

Ring 1.21 

WebAsm

Chrome 

VFP 

9.0 

Python 

3.13 

Loop (500 K) 9 5 4 7 7 8 7 

Loop (1 M) 18 11 9 13 13 15 14 

Loop (10 M) 185 113 91 133 132 47 149 

Loop (100 M) 1896 1154 954 1362 1332 595 1534 

MathMax (100 K) 136 25 7 11 12 16 7 

MathMax (1 M) 1384 245 69 117 119 94 66 

MathMax (10 M) 13,847 2474 708 1161 1204 909 776 

MathMax (100 M) 139,373 24,868 7178 11,833 11,935 8968 7315 

FuncCall (100 K) 111 19 4 10 9 16 3 

FuncCall (1 M) 1134 194 39 97 94 110 32 

FuncCall (10 M) 11,337 1943 398 1001 962 1102 444 

FuncCall (100 M) 113,142 19,542 4058 10,164 9563 11,214 3297 

FibDP (500) 6 5 3 3 4 6 0.1 

FibDP (700) 11 10 5 5 6 13 0.3 

FibDP (1000) 21 19 10 10 11 15 0.4 

FibDP (1200) 29 27 15 15 17 16 0.4 

FibDP (500) 6 5 3 3 4 6 0.1 

FibRec (20) 22 6 1 2 3 16 0.3 

FibRec (25) 244 65 13 22 23 31 3 

FibRec (30) 2887 763 148 252 254 377 39 

FibRec (35) 33,847 8660 1691 2795 2810 4357 431 

ListFill (100 K) 10 10 6 11 12 14 5 

ListFill (500 K) 54 50 31 56 56 30 19 

ListFill (1 M) 108 99 62 112 113 63 35 

ListFill (10 M) 1085 1007 643 1143 1145 565 376 
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Figure 6.13 Function call (100 M) benchmark for Ring, VFP, and Python. 

Ring is distributed with support for game programming libraries, which enable us to 

create benchmarks for graphics and animations. In Figure 6.14, we demonstrate different 

frames from the Waving Cubes sample provided by the RayLib open-source library.  

This sample presents an animation of 3375 cubes by changing their position, color, 

and size. In Table 6.8, we present the performance results for this sample in Ring, C, and 

Python. C demonstrates the highest efficiency with 480 frames per second (FPS). Ring 

1.21 significantly improves upon its predecessor, achieving 170 FPS compared to Ring 

1.19’s 40 FPS, showcasing notable advancements in performance. Python 3.13 provides 

85 FPS. 

Table 6.8 The Waving Cubes benchmark. 

Language FPS (Min) FPS (Max) 

C 470 480 

Ring 1.21 161 170 

Python 3.13 80 85 

Ring 1.20 33 40 
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Figure 6.14 Different frames from the waving cubes animation. 

The Binding Generator for Ring extensions is the first significant program written in 

the Ring language itself and serves as an example and benchmark for file and text 

processing. The generator comprises 1407 lines of Ring code. It operates very efficiently 

by processing configuration files and generating the C/C++ code required for the 

extensions. The largest extension we have with the Ring language is RingQt, which 

generates over 211,000 lines of C/C++ code in just 3.42 s, as demonstrated in Table 6.9. 

Other extensions are smaller, and their code-generation process is completed in less 

than a second. 

Table 6.9 Using the Code Generator to generate RingQt source code. 

Variable Value 

Extension RingQt 

Configuration Files (Input) 439 

Input Size 478 KB 

Generated Files 197 

Generated Lines of Code 211,174 

Output Size 6.27 MB 

Processing Time 3420 ms 

The Ring IDE is designed as a project that includes a Code Editor, Form Designer, 

Web Browser, and a “Find in Files” application. Over the past eight years, it has proven 

to be a robust and reliable tool, supporting the development of all Ring samples and 
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applications distributed with the language. The IDE’s performance has consistently been 

impressive, with no notable issues encountered during regular use. To ensure its 

reliability, a stress test was conducted by opening all Ring applications and samples 

distributed with the language. Memory usage was observed to be 348 MB at startup, 

slightly increasing to 365 MB after opening 78 applications (253 files, totaling 76,924 

lines of code) and further to 439 MB after opening each file in the samples (1302 files, 

totaling 65,563 lines of code). This increase is attributed to the autocomplete feature, 

which caches all the words in each opened file. Tests are performed using a Victus Laptop 

[13th Gen Intel(R) Core(TM) i7-13700H, Windows 11, and Ring 1.21.2]. 

Additionally, the performance of opening and displaying a source code file was less 

than 250 ms for most files, as shown in Table 6.10. This performance depends on the file 

size. This demonstrates the Ring IDE’s capability to handle extensive development tasks 

without compromising performance. However, we continue to state in the Ring Group 

that the Ring IDE is just an example of Ring usage. Ring, as a language, can be used with 

different code editors based on programmer preference, which makes sense if the 

programmer is using multiple languages in a project. The Ring IDE only supports Ring 

source code files, which is a limitation in situations requiring a mix of programming 

languages. To load and display files, Ring Notepad uses functions written in C/C++, 

ensuring high performance. 

Table 6.10 Loading and displaying files in Ring IDE. 

Application/Sample Size (LOC) Loading Time (ms) 

Analog Clock 256 36 

Image Pixel 548 66 

Knight Tour 646 67 

Othello 780 78 

Visualize Sort 817 81 

Game Of Life 903 90 

Laser 1051 94 

Checkers 1354 124 

Get Quotes History 3401 117 

Discrete Fourier Transform 6417 203 
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6.3 Results related to PWCT2 

PWCT2 was released on the Steam platform in March 2023, based on Ring 1.17, 

and has received continuous updates based on community feedback [172]. We also keep 

updating the Ring version included in the software after each Ring release. The current 

version of the software is PWCT 2.0 Rev. 2025.01.20, which is based on Ring 1.22. In this 

section, we present the various results related to our study. First, we explore a variety 

of use cases. Subsequently, we examine our observations regarding the implementation 

of PWCT2 using the Ring language. Furthermore, we discuss the performance metrics of 

PWCT2. Finally, we provide details about download numbers, usage time, and user 

feedback. 

6.3.1 Use Cases 

The primary use case for the PWCT2 software is as an alternative to the Ring Code 

Editor, allowing users to create new projects based on Ring or to import and 

update/execute Ring programs instead of using Ring Notepad. Ring2PWCT plays a 

significant role in this process, while the Time Machine feature enables users to read the 

program step by step and run it from a previous point in time. This functionality 

facilitates the continued development and maintenance of numerous Ring samples and 

applications. 

In Figure 6.15, we introduce the SuperMan game, which is distributed with the Ring 

language. Using PWCT2, it was possible to import the game implementation and check 

it step by step. The game is based on the Ring game engine, which is designed for 

developing simple 2D games. PWCT2 comes with many samples related to game 

programming libraries like Allegro, RayLib, and Tilengine. These samples are converted 

from the Ring programming language project to PWCT2 through the Ring2PWCT tool, 

which converts Ring textual code to a PWCT2 visual source file. 

Since PWCT2 comes with a Form Designer and the required visual components to 

build GUI applications, it was possible to use it in developing multiple GUI applications, 

including an application to predict citation counts in the Otology field using the research 

paper title, author, and abstract [166]. In the Citations Prediction application, the user 

interface is designed using the PWCT2 Form Designer (the same designer provided by 

the Ring language), and the application logic is designed using PWCT2 before generating 
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Ring code. The application receives input from the user and submits it to the machine 

learning model through the internet using the LibCurl library. The models are developed 

using Microsoft Azure Machine Learning. The 394 visual components provided by 

RingPWCT and introduced in Table 3 offer sufficient features to develop such 

applications. 

 

Figure 6.15 Using PWCT2 to visualize and execute Ring language projects. 

 

Figure 6.16 Using PWCT2 to develop the Citations Prediction application. 

In Figure 6.16, we demonstrate the Azure class used by the Citations Prediction 

application to connect to the Machine Learning model. This class could submit the 

research paper title, authors, or abstract as input to the model and receives the 
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predicted citation count as output. Different machine learning models are utilized based 

on the selected input. The class contains the web service URL and the API key as 

attributes. Within the same project, in addition to the azure.pwct file, there are other 

files, such as sysdata.pwct, which includes some research paper samples. There are two 

form designer files: dataset.rform and predict.rform. The first file provides a table to 

select a research paper from the available samples. The second form is the main form of 

our application and allows users to enter the paper information to be used as input for 

the model and includes a button to open the other form in the dataset.rform file. These 

forms respond to GUI events that are handled by the files datasetController.pwct and 

predictController.pwct. When we open a form file using the project files window, PWCT2 

will automatically open the corresponding visual source file for the controller class. 

Another known application in the Ring language community that is developed using 

PWCT2 is the Find in Files application, which is distributed with Ring Notepad [145]. The 

application is shown in Figure 6.17. The application’s user interface is developed using 

the form designer and utilizes Qt layouts to automatically resize the controls. 

 

Figure 6.17 Find in Files application developed using PWCT2. 

The Find in Files application supports search, replace, and replace all operations on 

one or more files. During a search operation, the user can enable the (Match Case) 

checkbox to perform a case-sensitive search. Using the (Browse) button, the user can 
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select a specific folder to be used when searching for files. The application utilizes visual 

components related to file and text processing, as shown in Figure 6.18.  

 

Figure 6.18 Using PWCT2 to develop the Find in Files application. 

The (Read File) component receives two parameters: the (File) variable, which 

contains the file name to read, and the (Output) variable, which contains the file content 

as a string. The (String to List) component converts a Ring string to a Ring list that can be 

processed using list functions. Each list item will contain one line of text and can be 

processed using string processing components. For more efficient and high-performance 

implementation, it is recommended to avoid converting the string to a list since the 

string can be processed directly. 

6.3.2 Implementation of PWCT2 with the Ring Language 

The implementation of PWCT2 using Ring involves using the language compiler, 

virtual machine, libraries, and tools. Ring 1.17 was sufficient to release the PWCT2 

software on the Steam platform in 2023, but we found the language features and 

stability more satisfactory starting from Ring 1.19, where Ring 1.18 improved support for 

references and Ring 1.19 improved performance. Later versions released in 2024, such 
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as Ring 1.20, Ring 1.21, and Ring 1.22, provided additional features, stability, and 

performance improvements. In Table 6.11, we list information about the project size, 

including dependencies such as the standard library and the GUI library from Ring 1.22. 

Table 6.11 PWCT2 project size including dependencies. 

Attribute Value 

Source code files  1354 

Lines of Code  92 KLOC 

Dependencies 27 KLOC 

Total Lines of Code 119 KLOC 

In Table 6.12, we present the compile-time using different versions of the Ring 

language, the size of the generated Ring VM byte-code instructions, and the size of the 

generated Ring object file (default size and compressed size). The tests are done using a 

Victus Laptop [13th Gen Intel(R) Core (TM) i7-13700H, Windows 11]. 

Table 6.12 Using Ring to build the PWCT2 project. 

Attribute 
Ring 1.17  

(2022) 

Ring 1.19  

(2023) 

Ring 1.22  

(2024) 

Compile-time (ms) 1480 1152 871 

Byte-code Instructions 900,113 899,984 724,382 

Ring Object File Size (KB) 22,184 22,825 18,952 

Object File Compressed (KB) 2463 2483 2322 

The data show a substantial reduction in compile-time from 1480 milliseconds in 

Ring 1.17 to 871 milliseconds in Ring 1.22 (see Figure 6.19), highlighting significant 

enhancements in the compilation process. There is a notable decrease in the number of 

byte-code instructions from 900,113 in Ring 1.17 to 724,382 in Ring 1.22 (see Figure 

6.20), indicating more efficient bytecode generation.  

We can compile the PWCT2 project to a Ring object file, which can be run directly 

using the Ring Virtual Machine without the need to compile the project again using the 

Ring compiler. The size of the Ring object file initially increased slightly but then 

decreased significantly (see Figure 6.21) to 18,952 KB in Ring 1.22, reflecting 

optimization improvements.  
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Figure 6.19 Ring compile-time for PWCT2 from Ring 1.17 to Ring 1.22. 

 

Figure 6.20 Generated bytecode instructions for PWCT2 from Ring 1.17 to Ring 1.22. 

The compressed object file size remained relatively stable. Compressing the object 

file and reducing the required storage could be useful when distributing the project over 

the internet. However, the real size of the object file (without compression) matters 

because the Ring Virtual Machine processes and loads this file into memory when 

running the project. These results collectively illustrate the progress achieved with the 

subsequent versions of the Ring language. 
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Figure 6.21 Ring Object File Size for PWCT2 from Ring 1.17 to Ring 1.22. 

6.3.3 PWCT2 Performance 

Table 6.13 presents performance results related to the PWCT2 environment, 

showcasing various visual source files and their corresponding metrics. These files 

represent games and utilities such as StopWatch, Snake, Matching, Sokoban, Escape, 

Tessera, FlappyBird3000, and others. 

 Each sample is evaluated based on several criteria: file storage in kilobytes (KB), the 

number of visual components, steps involved, generated lines of code (LOC), loading 

time (LT) in milliseconds required to display the visual representation, and code 

generation time (CGT) in milliseconds. The data demonstrates a range of sample 

complexities, with file storage sizes varying from 41 KB to over 1000 KB, and visual 

components ranging from 40 to 1269.  

The number of steps and lines of code also vary significantly, highlighting the diverse 

nature of these visual source files. Loading and code generation times provide insights 

into the performance efficiency of PWCT2 across different applications. The 

measurements are done using a Victus Laptop [13th Gen Intel(R) Core(TM) i7-13700H, 

Windows 11, PWCT 2.0]. 
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Table 6.13 Measuring performance of PWCT2 (Time in Milliseconds). 

ID File Storage (KB) Components Steps LOC 
LT 

(ms) 

CGT 

(ms) 

1 StopWatch 41 40 74 54 73 3 

2 Snake 138 149 234 185 199 9 

3 Matching 218 215 330 275 287 13 

4 Sokoban 217 235 330 269 269 13 

5 Escape 250 277 401 329 330 14 

6 Tessera 268 269 418 337 370 17 

7 FlappyBird3000 260 263 429 341 358 17 

8 Pairs 283 287 432 362 374 17 

9 Cards 298 305 457 399 363 15 

10 SquaresPuzzle 299 327 513 378 429 20 

11 StarsFighter 321 329 530 423 449 21 

12 KnightTour 347 386 549 465 448 21 

13 Tetris 351 402 586 483 459 20 

14 Game2048 371 356 588 461 499 22 

15 Othello 427 422 653 536 562 25 

16 DFT 787 538 677 603 784 22 

17 MagicBalls 438 510 700 602 567 24 

18 Minesweeper 449 509 701 611 559 24 

19 SuperMan 465 480 757 607 622 30 

20 Laser 707 825 1139 955 918 39 

21 GameOfLife 773 870 1253 1066 1068 43 

22 Checkers 845 968 1307 1128 1077 43 

23 GoGame 946 1089 1453 1271 1166 47 

24 GetQuotesHistory 1021 1269 1555 1407 1228 51 

25 Chess 1012 1166 1560 1340 1270 52 

In Figure 6.22, we present the relationship between the number of steps and the 

required storage. The figure is a stacked bar chart comparing the storage (in KB) and 

steps for various applications or games developed using PWCT2. The x-axis lists the 

names of the applications/games, while the y-axis represents the values for storage and 
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steps. The blue segments of the bars represent storage, and the orange segments 

represent the number of steps in the visual source file. 

 

Figure 6.22 The relationship between the number of steps and the required storage. 

In Figure 6.23, we present the relationship between the number of visual 

components and the generated source code, showing that using visual components 

increases the abstraction level. In Figure 6.24, we demonstrate the relationship between 

both the loading time/code generation time and the step count in the visual source file. 

 

Figure 6.23 Using visual components increases the abstraction level. 
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We notice from Figure 6.24 that the loading time increases significantly as the file 

size and complexity grow, with a noticeable spike around the 600 ms mark, indicating 

that more complex files require more time to load. The orange line represents the code 

generation time, which remains relatively low throughout the different samples, with 

only minor fluctuations. The code generation time is more critical for developers because 

they may need to run the program multiple times during development and updating the 

visual code, making it essential to keep this time low for a smoother and more efficient 

development cycle. On the other hand, the loading time, while important, is typically 

incurred only once per file. By maintaining consistently low code generation time, 

PWCT2 enhances the development experience, making it more efficient and less time-

consuming for developers. 

 

Figure 6.24 The relationship between the LT/CGT and the step count. 

Table 6.14 demonstrates the performance and storage requirements of PWCT2 and 

PWCT [145] when using visual source files that contain at least 1000 steps by evaluating 

various metrics: file storage in kilobytes (KB), the number of steps, loading time (LT) in 

milliseconds (ms), and code generation time (CGT) in milliseconds (ms). These visual 

source files pertain to different visual programming languages (CPWCT vs. RingPWCT) 

and various programs. However, the step counts fall within the same range, representing 

the size of the visual programs, which influences the code generation performance and 

storage requirements.  
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PWCT2 shows significant improvements in file storage efficiency and code 

generation time, with much smaller file sizes (773 KB to 1012 KB) and faster code 

generation (43 ms to 52 ms) compared to PWCT, which has larger file sizes (7966 KB to 

11,397 KB) and much longer code generation times (1748 ms to 3862 ms). Although 

PWCT2 has higher loading times for the visual source files (1068 ms to 1270 ms) than 

PWCT (549 ms to 860 ms), this difference is not substantial and is due to new optional 

features in PWCT2, such as rich colors where the same steps can use more than one 

color. The faster code generation time in PWCT2 is crucial for developers who need to 

run the program multiple times during development, making it more efficient and less 

time-consuming. 

Table 6.14 Some large visual source files. 

Generation VPL File Storage (KB) Steps LT (ms) CGT (ms) 

PWCT2 RingPWCT GameOfLife 773  1253 1068 43 

PWCT2 RingPWCT Checkers 845  1307 1077 43 

PWCT2 RingPWCT GoGame 946  1453 1166 47 

PWCT2 RingPWCT Chess 1012  1560 1270 52 

PWCT CPWCT Vmfuncs 7966 1000 549 1748 

PWCT CPWCT Refmeta_ext 8243 1075 593 1993 

PWCT CPWCT File_ext 9799 1235 747 2651 

PWCT CPWCT Vm_oop 11397 1497 862 3862 

In Table 6.15, we present a summary of the key statistical metrics derived from 

analyzing the relationship between the number of steps, storage requirements, and code 

generation time (CGT). The analysis for PWCT2 is done for 25 visual source files 

presented in Table 11 which used RingPWCT. The analysis for PWCT is done for 43 visual 

source files related to CPWCT and introduced in the literature with storage size and code 

generation time [145]. We used the same hardware for all experiments. Also, to ensure 

the reliability and validity of our findings, we calculated the p-values for both Pearson 

and Spearman correlation coefficients across storage vs. steps and code generation time 

vs. steps. This statistical analysis allowed us to determine the significance of the 

observed relationships. By verifying that the p-values were well below the accepted 

threshold of 0.05. 
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Table 6.15 Statistical Analysis of RingPWCT and CPWCT samples. 

Attribute PWCT PWCT2 

Visual Programming Language CPWCT RingPWCT 

Visual Source Files Count (Sample Size) 43 25 

Pearson Correlation (Storage vs. Steps) 0.8693 0.9662 

Pearson Correlation (CGT vs. Steps) 0.9105 0.9947 

Spearman Correlation (Storage vs. Steps) 0.8198 0.9867 

Spearman Correlation (CGT vs. Steps) 0.9914 0.9855 

Average Storage per Step (KB/step) 13.6751 0.6543 

Average CGT per Step (ms/step) 1.2956 0.0353 

RMSE for Storage  23.4063 0.1082 

RMSE for CGT  1.0539 0.0032 

For PWCT2, our analysis revealed a very strong positive correlation between the 

number of steps and both storage and code generation time. This indicates that as the 

number of steps increases, both storage and CGT also increase in a nearly linear fashion. 

The average storage required per step was found to be 0.6543 KB, while the average CGT 

per step was 0.0353 milliseconds. Furthermore, the Root Mean Square Error (RMSE) 

values for storage per step (0.1082) and CGT per step (0.0032) were low, suggesting that 

the average values are reliable and well represented by the data. These findings 

demonstrate the efficiency and scalability of code generation in PWCT2, particularly in 

handling visual source files with a high number of steps. 

For PWCT, the average storage required per step was found to be 13.6751 KB, while 

the average CGT per step was 1.2956 milliseconds. Furthermore, the Root Mean Square 

Error (RMSE) values for storage per step (23.4063) and CGT per step (1.0539) were 

calculated, indicating some variability around the averages. Despite this variability, the 

correlations remain strong and statistically significant, underscoring the reliability of the 

data and the performance characteristics of PWCT. These findings highlight the 

substantial resource demands of code generation in PWCT, particularly as the number of 

steps increases. PWCT2 improves upon PWCT by storing the Steps Tree directly in visual 

source files according to the actual control flow, either appending or inserting steps as 

needed, whereas PWCT appends all steps to the end and reorders them only during code 

generation. 
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The statistically significant data and strong performance metrics allow us to 

generalize the findings when discussing the performance improvements of PWCT2 over 

PWCT. On average, PWCT2 is approximately 36.7 times faster in code generation time 

(CGT) per step and uses approximately 20.9 times less storage per step compared to 

PWCT. This significant improvement is evidenced by the lower average CGT and storage 

per step for PWCT2, as well as the low RMSE values, indicating high efficiency and 

consistency. These results highlight the advancements and effectiveness of PWCT2, 

making it a more efficient tool for visual programming tasks. 

6.3.4 User Feedback 

Once we started distributing the software and describing it as a visual programming 

tool and a replacement for the Ring Code Editor, users began joining the community 

group, which now has over 750 members, more than 100 discussion topics, and over 50 

announcements about software updates. In early 2023, most discussion topics were 

questions about using the software, its capabilities, and a few bug reports. We fixed the 

reported bugs and provided educational videos (see Table 6.16) to help users learn about 

the software and how to use it [173]. Then, we guided them to the PWCT2 samples and 

Ring language documentation to learn more about the software. Many of the recent 

topics in 2024 are questions about future directions and requests to support other 

textual programming languages like Lua, Python, and C#. 

Table 6.16 Statistics about educational videos introducing PWCT2. 

Attribute Value 

Total Videos Count 39 

Average Duration (M:S) 8:47 

Total Duration (H:M:S) 5:42:27 

Based on statistics from the Steam platform regarding PWCT2 web page visits from 

March 2023 to December 2024, the platform displayed the project title, logo, and short 

description over 1.73 million times to users through various lists. The software web page 

received over 159 K visits (a 9.2% clickthrough rate), including over 72 K visits from the 

United States, over 33 K visits from the Russian Federation, and over 11 K visits from 

Saudi Arabia. Over 20,000 users own the software and have added it to their Steam 

library, enabling them to download and use it at any time.  
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In Table 6.17, we present the minimum usage time and the percentage of users as 

reported by the Steam platform.  

Table 6.17 Usage time as reported by the Steam platform. 

Minimum Usage Time Percentage of Users 

30 min 27% 

1 h 0 min 19% 

2 h 0 min 13% 

5 h 0 min 8% 

10 h 0 min 5% 

 

Steam reported that 1772 users have downloaded and launched the software 

through Steam, with an average usage time of 9 h and 40 min. This means the software 

has been used for over 17,000 h as shown in Table 6.18. 

Table 6.18 Statistics about the PWCT2 from 1 March 2023 to 21 December 2024. 

Attribute Value 

Impressions 1.72 M 

Web page visits 159 K 

Software owners 20,623 

Users launched the software 1772 

Average usage time 9 h and 40 min 

Total usage time  Over 17,000 h 

In Figure 6.25, we present a horizontal bar chart that shows the download statistics 

of the PWCT2 software across different regions, listing only the top regions, such as 

North America and Western Europe. 
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Figure 6.25 Download statistics of the PWCT2 software across top regions. 

The regions and their corresponding percentages are as follows: North America at 

36.20%, Western Europe at 25.70%, Latin America at 6.20%, Central Asia at 6.10%, Asia 

at 5.90%, and Eastern Europe at 5.20%. The chart highlights the significant differences in 

the distribution of downloads across these regions, with North America having the 

highest percentage and Eastern Europe having the lowest. In Figure 6.26, we present the 

downloads across the top countries, showing that the United States has the highest 

number of downloads (31%), followed by Germany (10%) and Canada (5%). 

 

Figure 6.26 PWCT2 Software downloads across top countries. 

We conducted an analysis for the user reviews for the PWCT2 software on the Steam 

platform, while noticing important details such as review type, language used to write 

the review, and usage time in hours. The reviews are written in various languages, 

indicating a diverse user base. Out of the thirty-one reviews, twenty-eight users 

recommended the software, while three users did not.  
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The languages used in the reviews include Arabic, Chinese, English, Italian, Polish, 

Portuguese, Russian, Thai, and Turkish. Usage varies significantly, from as little as 0.1 h 

to an extensive 560.1 h. Notably, a user who used the software for 560.1 h recommended 

it, showing a high level of engagement. Other notable usage times (in their respective 

review languages) include 93.4 h (Thai), 61.4 h (English), and 56 h (Portuguese), all with 

positive recommendations. Figure 6.27 illustrates the proportion of positive and 

negative reviews for the PWCT2 software on the Steam platform.  

 

Figure 6.27 User satisfaction according to steam statistics. 

The user reviews provide a mix of positive and critical feedback. Users appreciate 

the software’s educational value, especially for beginners. The visual and organized 

approach to programming is praised, with some comparisons to Scratch. Users find it 

helpful for those with little coding knowledge and believe it has great potential for 

learning programming. 

With respect to negative feedback, we noticed that it was based on various reasons, 

including encountering bugs, requiring more educational resources, and seeking 

additional features to enhance usability. During 2023 and 2024, we worked on resolving 

all reported bugs, introduced more educational resources (videos and documentation), 

and added requested features such as Drag-and-Drop support in the Goal Designer, an 

expression builder in the interaction pages, as well as preventing composition errors in 

the Steps Tree. However, we believe there is room for further improvement in the 

educational resources and the features provided. 
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The software’s interface is described as smooth, with many features to learn. Some 

users highlight the convenience of having the entire programming interface visible and 

the ability to keep necessary interaction pages open. Some users also express 

satisfaction with features like Ring2PWCT and the Time Machine, which enhance their 

programming experience.  

There are positive remarks about the potential for serious projects. Many users 

express satisfaction with the software’s development and updates. On the other hand, a 

few users feel the software is not beginner-friendly and recommend it only for those 

with prior programming knowledge.  

Continued development and support are encouraged, with some users 

acknowledging our responsiveness in fixing issues. Overall, the reviews highlight both 

the strengths and areas for improvement in PWCT2, reflecting diverse user experiences 

and perspectives. 

6.4 Chapter Summary 

In this chapter, we presented the results and experiments that evaluated the 

effectiveness and performance of both the Ring dynamic programming language and 

the PWCT2 visual programming language. Additionally, we examined storage usage for 

visual source files in PWCT2, highlighting its impact on resource efficiency. Furthermore, 

we discussed the portability of Ring, which supports deployment across Desktop, 

WebAssembly, and Microcontroller environments, showcasing its versatility. Ring also 

features automatic memory management, equipped with a built-in garbage collector, 

ensuring efficient handling of memory allocation and deallocation. the results also 

incorporated user feedback, providing valuable insights into the usability and practical 

experiences with both languages. 

In the next chapter, we will engage in a discussion of our findings, delving into the 

implications and limitations discovered during our research.
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Chapter 7:  Discussion 

7.1 Introduction 

In this chapter, we will provide a comprehensive summary of the experiments and 

results presented in the previous chapter. We will analyse the findings in detail, 

discussing their implications and how they support the objectives of this thesis. 

Additionally, we will address the limitations encountered during our research, providing 

a critical evaluation of the potential challenges and areas for improvement. By 

examining these aspects, we aim to offer a thorough understanding of the strengths and 

weaknesses of the Ring dynamic programming language and the PWCT2 visual 

programming language. 

7.2 Ring dynamic programming language 

From Table 6.2, we notice that dozens of users learned the language through the 

available resources (documentation, samples, applications, and videos), and their 

feedback helped us grow the educational resources distributed with the language. For 

example, chapters such as FAQ, Scope Rules, Performance Tips, and General Information 

were added and enhanced based on this feedback. Also, many graphics programming 

samples (OpenGL Camera and background, Collision detection, Chess 3D, etc.) are 

developed by one of those users. Another important lesson learned from being close to 

users and responding to their feedback is that this not only encourages more people to 

get involved and report issues but also motivates users to become active contributors to 

the open-source project. However, we acknowledge the limitations and potential biases, 

especially regarding the demographic homogeneity (predominantly male participants) 

and the regional limitations of early feedback, which could affect the generalizability of 

the results. 

From the statistics in Figures 6.3 and 6.4, we can conclude that Ring, as a 

programming language and research prototype, has been tried by thousands of users 

[83,84]. Based on the use cases demonstrated in Table 6.3, the Ring programming 

language has proven to be versatile. It has been effectively utilized in a variety of 

domains, including desktop development (Ring IDE and Chess End Game application), 

game development (Shooter Game and Gold Magic 800 puzzle game), and data analysis 

(Arabic poetry analysis application). The language’s lightweight and embeddable nature, 
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combined with its support for many programming paradigms, allows for rapid 

development [91,152,166–171]. However, this versatility still needs to benefit more 

from the language’s ability to create domain-specific languages and localization 

packages. 

The remainder of this section addresses the second research question (RQ2). 

Abstraction is a known dimension in the Cognitive Dimensions Framework (CDF), which 

is utilized in many research studies for the usability analysis of visual programming 

languages [10]. Abstraction involves grouping elements or entities into a single entity to 

either reduce viscosity (making it less difficult to modify) or align the notation with the 

user’s conceptual structure. Abstractions are useful for modification and transcription 

tasks (copying content from one structure to another). They play a crucial role in visual 

implementation, as they significantly influence ease of use and can also increase 

protection against errors [174,175]. 

From the results in Table 6.5, we observe that Ring visual implementation comprises 

18,945 visual components, which in turn generated 24,743 lines of code. This finding 

highlights the significant advantage of visual implementation: it increases the 

abstraction level by 23.5% while concealing unnecessary details. Specifically, this 

advantage becomes apparent when specifying component data through interaction 

pages (data-entry forms). These interaction pages generate and update the steps tree 

based on the provided data. However, a different scenario emerges when considering 

the generated steps tree. The steps tree aims to provide additional information about 

the program structure and related details, resulting in a total number of steps that 

exceed the lines of code, as demonstrated in the “Steps” column. On the other hand, 

PWCT offers a “Read Mode” that allows users to hide many of these implementation 

details. In this mode, the “Visible Steps” column shows a count slightly less than the total 

lines of code. Despite this difference, the Steps Tree has a clear advantage: it facilitates 

easy interaction with groups of steps. Its tree structure directly provides two dimensions 

of interaction—siblings and children—which enhances usability and navigation within 

the visual implementation. This higher level of abstraction translates into a more 

productive development process by allowing developers to focus on the overall structure 

and functionality of the program rather than getting bogged down in the minutiae of 

code syntax.  
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The visual components provide a more intuitive and accessible interface, making it 

easier for developers to understand and modify the codebase. Additionally, this 

approach improves usability by reducing the likelihood of syntax errors and simplifying 

the debugging process. [34,66,120]. 

However, we have observed certain disadvantages while using PWCT: 

• Large Storage Size: Visual implementations tend to occupy more storage space 

compared to their textual counterparts. This is an important consideration, 

especially when dealing with large projects. 

• Memory Requirements for Multiple Instances: The PWCT environment is designed 

to open one visual source file at a time. To work with multiple files simultaneously, 

you need to run multiple instances of PWCT. Unfortunately, this approach comes 

with a memory cost. Opening all the visual source files related to the Ring compiler 

and virtual machine implementation (43 files) requires approximately 1.3 GB of 

memory. This could become an issue for larger projects that contain more visual 

source files, where opening these files simultaneously for quick navigation could be 

problematic. This might be required when searching in multiple files. We also 

noticed that PWCT supports search/replace in a single visual source file, which is not 

practical for large projects. To work around this issue, we used external tools to 

search in the generated textual source code. 

• Limitations of the Steps Tree Editor: The Steps Tree editor lacks support for drag-

and-drop functionality. Moving steps within the tree is possible only through cut-

and-paste operations. While this may not be a critical issue, it is worth noting for 

usability purposes because it forces us to use the keyboard to move steps faster 

from one location to another. 

• Performance Challenges with Large Visual Source Files: When dealing with visual 

source files containing thousands of components, performance can become an 

issue. Loading such files or generating source code may exhibit slower behavior. For 

example, our largest file (genlib_ext) contains 1732 components and 2965 steps. 

Loading the file and displaying the visual representation takes over two seconds, 

while generating the source code takes over 14 s, as demonstrated in Figures 6.8 

and 6.9. This results in slow development and iteration when tasks involve updating 

many visual source files. 
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• No support for importing textual source code. This missing feature introduces many 

limitations. If a programmer submits a GitHub pull request by modifying the textual 

source code of the Ring Compiler/VM, we cannot simply import these changes. 

Additionally, this is a barrier to integrating with AI tools that generate textual code. 

While in visual implementation, we could use external libraries provided through 

textual code (without visual implementation), the problem occurs when the 

generated source code (from visual implementation) is modified directly by other 

contributors in the project without making the change through visual programming 

first and then generating the textual source code. This leads to effort duplication. 

This demonstrates a limitation on collaborative development efforts. For users who 

might wish to integrate Ring with existing workflows or tools and are looking to 

modify the language implementation, we recommend making a choice and sticking 

to it: either use the visual implementation and make any changes through it first or 

use the generated textual source code and continue development based on it. 

• PWCT is designed to work only under Microsoft Windows. The support for other 

operating systems is not native and requires extra tools (Like Wine for Linux). 

Despite these challenges, our successful use of PWCT to develop and maintain the 

Ring programming language compiler and virtual machine demonstrates its value. 

However, addressing these scalability issues will be crucial if PWCT is to be adopted in 

larger projects in the future. 

Suggestions to mitigate these challenges: 

1. Separate the visual source into many files with clear names and purposes. 

2. Keep each visual source file to fewer than a few thousand steps. 

3. Open related visual source files according to the current task while closing unrelated 

visual source files (or not opening them) to provide easy navigation between PWCT 

instances through the operating system features. 

4. External tools are needed when searching multiple generated source code files. 

From Table 6.6 and Figures 6.10 and 6.12, we demonstrated the growth of the Ring 

language over eight years; while being a lightweight language, we noticed a growth in 

the implementation size from 16 KLOC in 2016 to 24 KLOC in 2024. This percentage of 

growth (51%) requires attention, and we could focus in the next years on reducing the 

implementation size since the core features have been implemented and the 
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implementation is stable and usable. With respect to adding new features, we will try to 

keep most of these new features in the libraries and the new domain-specific languages. 

From Tables 6.7, 6.8 & 6.9, we notice that the performance of the Ring programming 

language has improved over time, and it is now fast enough for many use cases as a 

scripting language. However, improving Ring’s performance remains a challenge, and we 

aim to provide optimizations and enhancements with each new release. 

7.3 PWCT2 visual programming language 

The diverse use cases of PWCT2 demonstrate its adaptability and utility in various 

programming scenarios. The primary use case for PWCT2 is as an alternative to the Ring 

Code Editor, which allows users to create new projects based on Ring, as well as visualize 

and execute Ring programs. This flexibility is further enhanced by the Time Machine 

feature, which enables users to read programs step by step and run them from a previous 

point in time, facilitating the continued development and maintenance of numerous 

Ring samples and applications. Additionally, PWCT2 supports the development of GUI 

applications through its Form Designer, which has been utilized to create applications for 

predicting citation counts in the Otology field and for finding files distributed with Ring 

Notepad. These applications showcase PWCT2’s capability to handle different tasks, such 

as integrating machine learning models developed using Microsoft Azure Machine 

Learning and providing user-friendly interfaces. Moreover, PWCT2’s ability to convert 

Ring textual code into visual code and vice versa using the Ring2PWCT tool underscores 

its potential as a flexible tool in both educational and professional settings. The practical 

use cases of PWCT2 highlight its contributions to simplifying programming and 

enhancing the overall development process based on the Ring programming language. 

The results presented in Tables 6.11 and 6.12 highlight the excellent compilation 

performance achieved during the development of PWCT2 using various versions of the 

Ring language. Furthermore, the number of byte-code instructions decreased in Ring 

1.22, indicating more efficient byte-code generation. However, despite these 

improvements, the size of the generated Ring object file remains relatively large, even 

though there was a reduction from 22,825 KB in Ring 1.19 to 18,952 KB in Ring 1.22. 

Addressing the large object file size could reduce the storage and memory requirements 

of the PWCT2 project. Tables 6.14 and 6.15 present an insightful comparison of PWCT2’s 

performance and its improvements over PWCT [145]. PWCT2 demonstrates significant 
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enhancements in file storage efficiency and code generation time. The results show that 

PWCT2 has much smaller file sizes, and a notably faster code generation compared to 

PWCT, which is crucial during multiple programs runs and updates. 

User feedback has played a crucial role in the development and refinement of 

PWCT2. Since its distribution as a visual programming tool and a replacement for the 

Ring Code Editor, the community group has grown significantly, now boasting over 750 

members. Notably, over 20,000 users have added the software to their Steam libraries, 

enabling them to download and use it anytime. Steam reported that 1772 users have 

launched the software, with an average usage time of 9 h and 40 min, cumulatively 

amounting to over 17,000 h of usage (Table 6.18). Regional and country-specific 

download data highlight that North America and the United States lead in downloads 

(Figures 6.25 and 6.26). User reviews on Steam (Figure 6.27) also present a mix of 

positive and critical feedback, with notable appreciation for the educational value, 

smooth interface, and unique features like Ring2PWCT and the Time Machine. 

Since PWCT2 currently supports the Ring programming language through RingPWCT 

visual components, these visual components follow the Ring language approach for 

representing different data structures, where Ring lists are used instead of arrays, linked 

lists, trees, hash tables, etc. However, by using classes and operator overloading, we can 

create custom types. The Ring Standard Library comes with specific classes for lists, 

trees, hash tables, etc., and the RingPWCT includes visual components that enable the 

use of these classes. With respect to scalability and creating large projects, the PWCT2 

approach is based on organizing large projects into folders, subfolders, and different 

visual source files, where a visual source file can load other files and use the functionality 

provided by them, such as functions and classes. However, more improvements are 

required in this area to provide visualizations that highlight information from different 

visual source files. 

The development and evaluation of PWCT2, the proposed research prototype and 

successor to PWCT, bring several noteworthy limitations to light. First and foremost, 

PWCT2 supports only the Ring programming language, whereas PWCT provided visual 

components for various textual programming languages, including Harbour, C, 

Supernova, Python, and C# [66]. This limitation restricts the versatility of PWCT2 and 
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may reduce its appeal to users who require support for multiple programming 

languages. Secondly, PWCT2 is not compatible with PWCT in terms of visual component 

design or visual source file formats. This incompatibility necessitates the development 

of tools to convert projects from PWCT to PWCT2, which could pose challenges for users 

looking to transition their existing projects. Additionally, PWCT2 is currently distributed 

as a desktop tool rather than a web-based application. The lack of a web-based version 

limits accessibility and convenience, highlighting a potential area for future development 

to enhance user experience and broaden the tool’s reach.  

Since PWCT2 is based on the Qt framework, which supports WebAssembly, and the 

Ring language also supports the WebAssembly platform, we plan to develop PWCT2 for 

WebAssembly in the future. At this stage, we have an online version of the Form 

Designer, and other components will be ported as well. While PWCT2 includes the 

Ring2PWCT feature, which allows it to accept Ring code generated by large language 

models, the process currently requires a copy-and-paste operation (e.g., from Copilot to 

PWCT2) [160]. A fully integrated solution, where writing a natural language prompt 

directly generates a visual representation without needing manual transfer, would be 

more efficient and user-friendly. This enhancement could significantly streamline the 

workflow and improve usability.  

Moreover, despite providing 39 instructional videos to explain PWCT2 features, 

using PWCT2 still demands a general understanding of programming and specific 

knowledge of the Ring language [173]. To achieve broader adoption, it may be necessary 

to expand educational resources, including tutorials and documentation, to support 

users with varying levels of expertise. 

In summary, while PWCT2 advances the capabilities of its predecessor and offers a 

robust platform for developing Ring-based applications, addressing the limitations 

identified could enhance its functionality, user experience, and appeal to a broader 

audience. Future work should focus on expanding language support, ensuring 

compatibility with PWCT, developing a web-based version, improving integration with 

natural language processing tools, and enhancing educational resources to support a 

diverse user base. 
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7.4 Chapter Summary 

In this chapter, we have thoroughly discussed the experiments and results, 

providing a comprehensive analysis of the strengths and limitations of the Ring dynamic 

programming language and the PWCT2 visual programming language. 

In the next chapter, we will present our overall conclusions and outline potential 

future work. We will summarize the key findings of this thesis and propose directions 

for further research and development, aiming to build upon the foundations laid by the 

Ring and PWCT2 languages.
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Chapter 8:  Conclusion and Future Work 

In this chapter, we present the conclusion of this thesis, along with the planned 

future work. 

8.1 Conclusion 

In this thesis we introduced the design, implementation and evaluation of the Ring 

textual programming language and the PWCT2 self-hosting visual programming 

language. Ring is a dynamically typed language developed and maintained for over eight 

years using visual programming through the PWCT visual programming language, where 

the generated code is based on ANSI C.  

The visual implementation is composed of 18,945 components that generate 24,743 

lines of ANSI C code, which increases the abstraction level and hides unnecessary details. 

Using PWCT to develop Ring allowed us to realize several issues in PWCT like large 

storage size and performance challenges with large visual source files. We addressed 

these issues through the development of the PWCT2 visual programming language using 

the Ring textual programming language.  

Ring combines a lightweight implementation with several advantages, such as a rich 

and versatile standard library, along with direct support for classes and object-oriented 

programming. Ring is adaptable across diverse platforms. Rather than creating separate 

language implementations for specific contexts, the same Ring implementation serves a 

wide range of environments. From desktop systems to WebAssembly and even 32-bit 

microcontrollers like the Raspberry Pi Pico, Ring addresses the problem of missing 

language features that exist in other implementations.  

To achieve this, we applied specific design decisions such as using a single-pass 

compiler, grouping built-in functions in optional modules through preprocessor 

directives, opting for Ring Lists over C structures, selectively using C structures for critical 

features, implementing flexible lists using various data structures and optimization 

techniques, storing bytecode in a single continuous memory block, using a writable long-

byte code format for performance improvements, and avoiding the use of a global 

interpreter lock for better thread performance. 
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Customization is a key feature of Ring, allowing developers to easily modify the 

language syntax multiple times. Moreover, Ring empowers the creation of domain-

specific languages through novel features that extend object-oriented programming. 

Beyond its language design, the underlying idea relies on using braces to access objects, 

granting us the ability to utilize the attributes and methods provided by those objects. 

Ring does not require semicolons or new lines between statements. We can type 

different statements on the same line without any fuss. Additionally, in Ring, every 

expression is an acceptable statement, giving us the freedom to write various values, all 

of which will be accepted by the compiler. Ring classes also support properties. Typing a 

property name can invoke the getter method and execute the associated code. 

Moreover, Ring goes a step further by allowing us to define methods like braceStart() 

and braceEnd(). These methods are automatically called when we access an object using 

braces. Furthermore, the language automatically invokes a method called 

braceExprEval() when we write an expression inside braces. With these features, coupled 

with the ability to customize language keywords and operators, we can construct 

domain-specific languages that resemble external DSLs such as CSS, QML, SQL, and 

Supernova. Also, Ring provides a practical development environment and facilitates 

rapid GUI application development. 

In summary, Ring emerges as a lightweight, versatile, and customizable dynamic 

language developed using visual programming, adapting seamlessly to the ever-evolving 

landscape of software development. The implementation based on visual programming 

increases the abstraction level, hides unnecessary details and provides a more user-

friendly implementation through visual programming advantages, such as avoiding 

syntax errors. 

Visual programming languages are helpful in making programming easier and faster 

to learn. This study introduces some useful improvements. We have developed the 

second generation of the PWCT visual programming language that includes enhanced 

features, works on different systems, performs code generation more efficiently than 

before, and reduces storage requirements. PWCT2 is a self-hosting visual programming 

language developed and maintained for over eight years using the Ring programming 

language. PWCT2 consists of approximately 92,000 lines of Ring code. 
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We also created the first visual programming language (RingPWCT) that generates 

code in the Ring programming language. RingPWCT contains 394 visual components that 

enable the development of a wide range of applications and tools, including PWCT2 

itself. This helps combine the ease of visual programming with the flexibility of Ring. 

Additionally, we tested how well the Ring programming language Compiler/VM works 

for developing an advanced project like PWCT2. We also designed a tool called 

Ring2PWCT to convert textual Ring code into visual code in PWCT2, making it easier to 

use.  

PWCT2 has been widely distributed to users via the Steam platform, receiving 

positive feedback. On Steam, the software has been launched by 1,772 users, with a total 

recorded usage time exceeding 17,000 hours. These improvements show that there is 

potential for making visual programming languages more accessible and effective for 

Ring developers. Our work provides a foundation for further development in this area. 

8.2 Future Work 

In the future, we plan to build multiple projects on top of the Ring programming 

language, such as a localization package for many human languages, various domain-

specific languages for different fields, and a modern framework that includes many 

templates for database applications. Our priority is to provide a complete translation of 

all language syntax and libraries into Arabic. Following this, we aim to develop a domain-

specific language for GUI development, like the Supernova language, but based on Ring’s 

features that extend object-oriented programming to support the creation of internal 

domain-specific languages. After that, we will focus on creating the framework and 

templates for database applications. 

In the future, we aim to enhance the PWCT2 visual programming language by 

supporting additional textual programming languages such as C, Java, C# and Python. 

We also plan to improve the environment by offering translations in various human 

languages, to make it more accessible to a global audience. Moreover, we intend to add 

more components that provide better support for Ring libraries, further enriching the 

functionality and usability of PWCT2. These enhancements will continue to build on the 

progress made and open new possibilities for users and developers. 
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