g clloldl

King Saud University

King Saud University
College of Computer and Information Sciences

Computer Science Department

Dual-Language General-Purpose Self-Hosted Visual
Language and new Textual Programming Language

for Applications

. N

dalad) (il &9 dall) Al ddLsatu) AL dui pa did
lidaill 8o dal Aoy Add g

DISSERTATION

by
MAHMOUD SAMIR FAYED
439106337

Supervisor

Dr. Yousef Ahmed Alohali

Submitted in partial fulfilment of the requirements for the Degree of
Doctor of Philosophy in the Department of Computer Science at the

College of Computer and Information Sciences.

Riyadh, Kingdom of Saudi Arabia

May 2025

Examination Committee Page

The committee for
[Mahmoud Samir Fayed]

certifies that this is the approved version of the following dissertation and is

acceptable in quality and form for publication in paper and in digital formats:

Dual-Language General-Purpose Self-Hosted Visual Language and new

Textual Programming Language for Applications

Dissertation Committee Members:

Committee Supervisor: Dr. Yousef—Ahn’ﬁe‘d’A@

Signature: @- =

Date: N yex w F1E /\

Committee First Member: Prqf. Abdulmalik Al-Salman

Signature: — YV f

Date: s\t & S)
e LI e E F L i \

Committee Second Member\: Prof. Abdel Monim Artoli
Signature: B e W ey

Date: 'ﬁ\)\ I /\Cf \

Committee Third Membwlil El Hindi
Signature: k 1 .

o
Date: Bl eSSy FRAD LY
— =<1 \

Committee Forth Membher: Dr. Mohamed Tounsi
Signature: & N

N\
Date: _9¢ /A /IQ\Q?(‘\
_a/ J / o)

King Saud University
2025

Declaration

I, Mahmoud Samir Fayed, hereby declare that the work presented in this thesis has not
been submitted for any other degree or professional qualification, and that it is the

result of my own independent work.

This Ph.D. thesis continues the path | began during my master's study at King Saud
University from 2012 to 2017, where the first generation of PWCT was introduced as a
general-purpose visual programming language for MS-Windows, primarily focused on
developing desktop database applications. Besides working on my master's thesis at
that time, | made an early attempt to create an initial prototype for the Ring
programming language compiler and virtual machine. However, after finishing my
master's study, it became clear that additional years of research and development
would be needed to create a production-ready textual programming language capable
of supporting advanced projects, such as the development of a modern self-hosting
visual programming language. It was evident that | needed to redesign and reimplement
most of the work done in the prototype to add more features, achieve a faster and safer

implementation of the language, and work on adding extensions, libraries, and tools.

Through my Ph.D. study from 2018 to 2025, the PWCT2 visual programming language
was developed, along with extensive work on the design and implementation of the Ring
programming language. The focus was on scientific contributions and achieving a level
of efficiency that enables the use of the Ring language in developing the PWCT2 visual
programming language. Additionally, the work involves testing, fixing many bugs during
development and adding support for more platforms, such as WebAssembly and 32-bit
microcontrollers like Raspberry Pi Pico. The contributions of the Ring textual
programming language were introduced in a 2024 research paper, and the contributions

of the PWCT2 visual programming language were introduced in a 2025 research paper.

| authorize King Saud University to lend this report to other institutions or individuals for

the purpose of scholarly research.

Abstract

Most visual programming languages (VPLs) are domain-specific, with few general-
purpose VPLs like Programming Without Coding Technology (PWCT). These general-
purpose VPLs are developed using textual programming languages and improving them
requires textual programming. In this thesis, we designed and developed PWCT2, a dual-
language (Arabic/English), general-purpose, self-hosting visual programming language.
Before doing so, we specifically designed a textual programming language called Ring
for its development. Ring is a dynamically typed language with a lightweight
implementation, offering syntax customization features. It permits the creation of
domain-specific languages through new features that extend object-oriented
programming, allowing for specialized languages resembling Cascading Style Sheets
(CSS) or Supernova language. The same Ring implementation allows us to create
projects for desktops, WebAssembly, and the Raspberry Pi Pico microcontroller. The
Ring Compiler and Virtual Machine are designed using the PWCT visual programming
language where the visual implementation is composed of 18,945 components that
generate 24,743 lines of code (written in ANSI C language), which increases the
abstraction level and hides unnecessary details. Using PWCT to develop Ring allowed us
to realize several issues in PWCT, which led to the development of the PWCT2 visual
programming language using the Ring textual programming language. PWCT2 provides
approximately 36 times faster code generation and requires 20 times less storage for
visual source files. It also allows for the conversion of Ring code into visual code,
enabling the creation of a self-hosting VPL that can be developed using itself. PWCT2
consists of approximately 92,000 lines of Ring code and comes with 394 visual
components. Moreover, using Ring in this project demonstrates the feasibility of
utilizing the language for large-scale projects. PWCT2 is distributed to many users
through the Steam platform and has received positive feedback, On Steam, 1772 users
have launched the software, and the total recorded usage time exceeds 17,000 hours,

encouraging further research and development in the field of general-purpose VPLs.

LDl

Craca Al 4 pall Aaa) Cad (e Qi dae e cdadme VLl Lgapanal a3 A all dae yull i alans
el aladialy 45 pall Cilalll o3y skt oy Liay) |l 2 oK1 LS () 50 e pall 4385 Jie dalal) (al 230
panally Liad cha g ylaY) 038 8 Auail) Al alasid Callaty s gl s Lgbund () iy Laa dpeail) Gl
Gll 40 48 e Aoy ddd ay el &I LU oy Aol A e (S il ks
(el A al) alatily Llals (e sy ghai (S g1) il Adliatinn g ¢ gial e Y) 820 5 oAl /A yall)
ASaalin das pddd & B b skl lasad Claaa 3) e dpaidae 4] apaal; L elly oLall J8
Jadd fainde Gl L mand Lgd) Lalitell ClalSl) Ganads Ol jue 8505 canall paaa 30 ol L]
G)osl Aad 4 el el e Laa «lSH dga gall daaall a3 e Jand 3aaa @l jae IR (e 235
s 3 36a Y aliie sl Gy (e laaY) Ll W ransy U5y su &3] 5l (U)ol o) Al el
plasinly dpual S8V AN 5 aa il (e JS apenali | S (b (g mansl) 3l aSaiall g ¢ laass) sl 5 il
Laias (5 3a (1550 18,945 (e (0580 (Sl Ll 0 G ¢l 3 5K AU (5 g dava) 45 (g0 J5Y) i)
Jralall cled) g 3 yaill (5 glua 83L) Fmy 53 5 o) 2ady 2 U Hlansd (30 24,743 (e 3 ke zilll aill 3)
(OISl G =l @l ol (53) A all Aad skl A8l (e J5Y) Jind) lodi] W e 4)5 puall e
Lpaill Aol Aad aladiuly oaaill 3 5SI ALUS () g e pal) 485 (ge ppaall s LN i) ki) (60l Laa
20 sk i (3% dalise iy 5550 36 saia g omd JSE ail) 0 SU Al dlee BN Jiall 50 B2
W s Las ¢ 0 35S () (adll B 258 disady ran LS W) Jiadly 4l 40 jal) jauaall lilal 5 e
92000 (s> (o waall diall ()5S galadins] e sy ghal oy () Sy ABLainYl) 4503 430 je dae 4
LilSa) £ 5 pdiall 138 (B (30) ot eam g celd e 3 Mo 6 50 UK 394 oo s 3 11 Al 0 S s
i) daie A (e (peadiveal) (e aall Jedaall Jaadl ao)58 a3 aaal) g o jlia o phail dall) aladsi)
17000 plasiny) iy Jaa) Hoadge o pball Jundiy a33%a 1772 58 aii) e cdlag) J28 240) 81108

Adal) Gl e W daeaall 4 el Al el Jlae (A skl 5 Ganall e 33l o anids les Aol

Associated Publications

Fayed, Mahmoud Samir, and Yousef A. Alohali. "PWCT2: A Self-Hosting Visual
Programming Language Based on Ring with Interactive Textual-to-Visual Code
Conversion." Applied Sciences 15, no. 3 (2025): 1521.

Fayed, Mahmoud Samir, and Yousef A. Alohali. "Ring: A Lightweight and Versatile
Cross-Platform Dynamic Programming Language Developed Using Visual
Programming." Electronics 13, no. 23 (2024): 4627.

Fayed, Mahmoud Samir, Muhammad Al-Qurishi, Atif Alamri, M. Anwar Hossain, and
Ahmad A. Al-Daraiseh. "PWCT: a novel general-purpose visual programming
language in support of pervasive application development." CCF Transactions on

Pervasive Computing and Interaction 2 (2020): 164-177.

Acknowledgements

In the name of Allah, Most Gracious, Most Merciful

Firstly, | would like to express my gratitude to my supervisor, Dr. Yousef Alohali, for his
exceptional support and guidance throughout my PhD journey. He began by teaching
me multiple PhD courses and the fundamentals of conducting research studies. His
unwavering direction continued during my PhD research, helping me connect my work

with recent research studies.

Also, | would like to say thanks to the members of the Ring project team for their

contributions in testing the software and adding more samples.

e Bert Mariani

e Ahmed Hassouna
e Mansour Ayouni

e Maijdi Sobain

e Youssef Saeed

e Azzeddine Remmal
e Mounir Idrassi

e llir Liburn

e Mohannad Al-Ayash
e Ahmed Zakaria

e Khalid Abid

e Gal Zsolt

e Jose Rosado

e Marino Esteban

e Magdy Ragab

Mahmoud Fayed
May 2025

Vi

This thesis is dedicated to my father, my wonderful mother, and my beloved family.

Vi

Table of Contents

Examination Committee Pagecccciiieeiiiieiiiiiiiiiniiieiiiiennieniniseeneseenensssssessssnssnes i
(D T=Tol T - 1 1 [o 1o 1Ot ii
1Y 023 1 - Yot P iiii
AaDIAl L iiiieeeeeenneeeeerennneeerennneeereennseeeeansseerennseeeeannsseeransnseeennnseeeennnseerennnnasernnnnnnns iv
Associated PUDIICAtionscc ot crree e s ree s rnn e renseesensesenanesennns v
0o g Lo T LT F= = 4 o U= o Vi
Table of CONLENLSccuiieeiiiicirc et renccreeeeereanesraneerensesensserenssesensessnnsesennnenen viii
LiSt Of FIBUIES ..cuuuiiiiieeiiiiiiiiiiiiieeicnieneccstesenessesnssesssennsssssennsssssesnssssssssnssssssenssssssans xi
List Of Tables...ccuuu ittt rs s e s s sen s s s s sennsssssannnsanns xiii
List Of AbBreviations........cceiiiiiiiiiiiiiicciirrccr e reen e e s sensssssennsssssasnnsnnns Xiv
Chapter 1: INtroductionccciiiiiiiiiiiiiiiiinrc e sneeseasesenssesensssssnssssnnns 1
O @ 1V =Y oV 1Y PSP PURPRN 1
1.2 MOtivation oo 5
1.3 Problem STat@mMeENt ... 6
1.4 ReSEArCh ODJECLIVES ..ooveiei it e e e e e e e e e e e e e naeeees 7
1.5 Thesis ContribUtioNS.......cooieiiiiiieeec e e e 8
1.6 ThesSisS OULINE c..euviieiceee e e e e e e e e e earaeeeeans 9
Chapter 2: Backgroundcccciiieiiiieiiiieiiiieiiiieeneneneierensisieesessnsssssssersnssessnsssssasessns 11
% R [o o Yo [W o1 4T o U 11
2.2 Dynamic Programming LANGUAEESuuuvvrvrrrvrvrrrvrrrririersiresisrnrrrssneerenerennnn. 11
2.3 Visual Programming LANGUAEESuvveeeeeeeeieiiiiirrieeeeeeeeeeiiirreeeeeeeeeesesnsnrseeeeeeens 14
N € o F- 1o X T g U 2 Y o -1 7SR 16
Chapter 3: Literature REVIEWccccceeiereniieenerienereeneereeneeressessaseesessessasesssnsessansesens 17
0 R [o o Yo [¥ ot oY o VAU 17
3.2 Related Dynamic Programming LaNgUAEES.......ccveeeeeeeeieiiinrrerereeeeeeeecinrreeeeeeens 17
3.3 Related Visual Programming Languagesccccvvveeeeeeeeiecciiirieeeee e, 22
3.4 Chapter SUMMAIY...ccoiiiiiiiieeeeeeeeecetrteeeee e e eeeeettraeeeeeeeeseeaatrereeeeeeeeesesnrrereeeeens 27
Chapter 4: The Ring Programming LAngUAEEcciveeueiiiirnnniiiiinnnsisinennssssnnensssssnenes 28
I [N o o Yo [¥ ot [o SRS 28

4.2 System ArChITECTUIE ..ot 29
4.3 NON-ENGIISh SYNTAX ...uiiiiiiiiiieiiiiiie et e e s saa e e 33
4.4 Domain-SPecifiCc LANGUAGESc.uvvieeeciieeeeeieee ettt sre e e e e e e eeaee e 35
4.5 Object Oriented Programmingccccccceeiiriiieeeeniiieeesnieeesssieeeeesineeesssssneeesnns 37
4.6 Batteries INCludedcooviiiiiiiii 39
4.7 The IDE and the FOrm DESIGNEr.........uviiiiieeiee it eee e 40
4.8 The Implementation (Using Visual Programming)ccccceevveeevcieeeiieecsveeennn 41
I T O P o) =T g U210 o o - [SR 48
Chapter 5: The PWCT2 Visual Programming LangUAgeccceeuereenrrennerrennereanereennenens 49
5.1 INtrOdUCHIONciiiiiiiiieece e 49
5.2 Implementation using the RiNg [aNgUAGEccvevevviiiiiiiriiee e 50
5.3 Flexible Visual ENVIironmMentcooouiiiiiiiiiiiiiieecee e 51
5.3.1 Single Main Window and Several Dockable Windowscccccccuvvveeeen... 51
5.3.2 Flexible Steps Tree Editor.......ccccuviiieieeee i 53
5.3.3 RingPWCT Components in the Components Browser........cccccoeeeuvvveenennnn. 55
5.3.4 Advanced Visual Components and Templates.......ccccccvvvveeeeeeeeicccnrreennnnn. 56
5.4 Time Dimension and AUTO-RUNccceiiiiiiiiiiiiieeeeee e 58
5.5 Rich Colors and Customizationcccceeveeiieeriieieenee e 59
5.6 Rich Comments using Text, Lines, Images and HTMLccccccevveeeeevccnnreeennnnnn. 61
5.7 Enhanced Form Designer for GUI APPS....cccocccciviiieieee e e eeecrveeeee e 63
5.8 Interactive Textual-to-Visual Code CONVErsioNn.........cccoceevieeireeneernieeneeeneenee 64
5.9 Self-hosting the PWCT2 environmentocccciiiiiieeei e, 67
5.10 Cross-platform and Faster Implementationcccccovieeeeeiie e, 68
5.11 Arabic PWECT2 ..ot 71
5.12 Chapter SUMMAIYuiiiiiiee et e e e et e e e e e e e e nbreeeeeeaeeeenans 72
Chapter 6: Experiments and RESUILScccceeieererienertenieteeneerennereeneerennerenserensecssnnesees 73
6.1 INTrOAUCTION ...eieiiiiiiece e 73

6.2 ReSUItS related t0 RiNG...uuieeiiiiiiiiiiiieeeee et ee et e e e e e e e eaarrereeeeees 73

6.2.1 Early Users and the Programming Language Used Prior to Ring.............. 73
6.2.2 Feedback from Onling CoUrSe.......ccceriiimiiriiienierieesee et 74
6.2.3 Feedback After a One-Hour LECTUreccueeeiiiiiiiieenieeiiecee e 75
6.2.4 Downloads Statistics and Users Groupcccccveeeeeeierccvviieeeee e eeccniveneeeenn 76
6.2.5 Use Cases and Printed BOOKSccovuiiiiiiiiiiiiiiiecniccec e 77
6.2.6 Visual Implementationcccceiviiiieiiniiiee e 80
6.2.7 Lightweight Implementation.........ccccceriieeciiiiee e, 83
6.2.8 Performance Benchmarks.........cooueiiiiiiiiiiieiieecee e 86

6.3 Results related t0 PWCT2uiiiiiieieeeee ettt 91
6.3.1 USE CASES..uuiiiiiiiiiiiiiiiiiiiiicn ittt 91
6.3.2 Implementation of PWCT2 with the Ring Language........ccccoceuevevrivvennnnns 94
6.3.3 PWCT2 PerfOrmanCecooceeiiiiiiiiieiiiieeiee ettt 97
6.3.4 User FEedbackc.ooiiiiiiiiiiieeee e 103

6.4 Chapter SUMMAIY.....oooiiiiieee e 107

(O =T o3 =T gy 0 1T ol U o o T 108
7.1 INTrOAUCTIONeiiiiiieciee e s e e 108
7.2 Ring dynamic programming langUage.......ccooevvrrereeeeeeeeciiirreeeeeeeeeeeeinrreeeee e 108
7.3 PWCT2 visual programming langUage........ccoccvrrereeeeeeeeiiiirreeeeeeeeeeeeinrreeeeeeens 112
A N € o F- 1o Y T g U 2T o -1 o SR 115
Chapter 8: Conclusion and FUtUIre WOrKccceveeiieenieiencrtencceeencerenerenneerenneerennens 116
8.1 CONCIUSION 1.ttt s sne e 116
8.2 FULUIE WOTK .o 118
(22T =T =T 4o =N 119

List of Figures

Figure 1.1 The Scratch Visual Programming LANQUAQEcoceceueeeericeeeeisiiieeeesineeens 2
Figure 1.2 The Envision Visual Programming SYStem.ccccceeevcveeeeiniueeeiriineeesssneeens 3
Figure 1.3 The PWCT visual programming [anguage.c.ccccoeecvueeeeriiueeeenicneeesnineeens 5
Figure 2.1 Some of the dynamic programming languages, starting in 1960. 12
Figure 2.2 Using commands in the Supernova programming language. 13
Figure 2.3 Some of the visual programming languages starting from 1966.................. 15
Figure 4.1 The key features of the proposed dynamic language and environment. 28
Figure 4.2 The proposed system QrehiteCture.oouccueeveeeeeeieiecciiieee e eeseeveeeee e 30
Figure 4.3 Arabic syntax within a WebAssembly application developed using Ring......34
Figure 4.4 Ring code to implement a simple domain-specific language. 37
Figure 4.5 Extending our DSL using inheritance and the GUI library.cuu...... 38
Figure 4.6 Using Declarative Style in Ring for Raspberry Pi Pico programming. 40
Figure 4.7 Ring IDE (Code Editor, Form Designer, etc.) is developed using Ring itself. ..41
Figure 4.8 Using PWCT to define the List structure which uses a singleton cache.......... 42
Figure 4.9 Implementing the Ring language grammar using PWCT.cccccevvvvvnen... 43
Figure 4.10 Using the VPL Compiler to get statistics about the visual representation. .44
Figure 4.11 Ring Virtual Machine implementation using PWCT.ccccceeeevicccvvvvennennn. 46
Figure 5.1 The key features of the proposed visual programming language. 49
Figure 5.2 The proposed self-hosting visual programming language architecture......... 50
Figure 5.3 PWCT2 uses a main window and dock-able windows.cccccccveeenunenn.. 52
Figure 5.4 Inserting steps in the Steps Tree and using the Find and Replace window. ..54
Figure 5.5 A component that generates steps that belong to other components. 57
Figure 5.6 Using the Time Machine and the Auto-Run feature.ccccceevcuveeeencnnnnnn. 58
Figure 5.7 Using the Customization window to select the Steps Tree colors. 60
Figure 5.8 Opening multiple visual SOUICe files.cccvvueeeeiieeiiiiiiiieeeeeeeeeeeccirreeeeeen 61
Figure 5.9 Using rich comments (Lines, Images, and Headers).cccccccovvevvvvennnnn... 62
Figure 5.10 Using HTML iN COMMENLES.cceeeeeeeeeeeeeeeeeeeeeeeeee et ee e e e e e e e e e 62
Figure 5.11 Using the PWCT2 FOIm DESIGNEr.ccoceeivveeeeeeeeeeeiiirereeeeeeeeieesinsseseeeeens 63
Figure 5.12 Interactive Textual-to-Visual code conversion (Ring2PWCT).u....... 65
Figure 5.13 PWCT2 fOr MACOS.uueeeeeeeeeieecirieeeeeeeeeeecciireeeeeeeeeeeestseseeseeeesessssnssenseesens 69
Figure 5.14 The PWCT2 system developed using the Ring programming language.70
Figure 5.15 Arabic translation for the PWCT2 visual programming language. 71
Figure 6.1 Early users and the language used prior to Ring.cccouveeeeeeeeeeeciivvennnnnnn. 74
Figure 6.2 Feedback from students about Ring language after a one-hour lecture.76
Figure 6.3 Ring downloads statistics grouped by the Operating System. 77
Figure 6.4 Ring downloads statistics grouped by the Country.cccccceeevicuveeeencnnenn. 77
Figure 6.5 A GUI application developed using the Ring language..............cccccceeeevuneen.. 78
Figure 6.6 The GoldMagic800 game—A puzzle game developed using RingAllegro.79
Figure 6.7 Visual implementation size for each module.ccccovvuveiniiueeennnnnnnn. 82
Figure 6.8 The loading time (LT) and code generation time (CGT).cccceeeccuveeeeennnenn.. 83
Figure 6.9 Code generation time (CGT) for large visual source files............cccccevvernunn. 83
Figure 6.10 Generated code size for Ring Compiler/VM from 2016 to 2024. 84
Figure 6.11 Code size for Lua Compiler/VM from 1993 to 2024.ccceevvuevcueeiverennnnn. 85
Figure 6.12 Generated code size from Ring 1.0.0 to Ring 1.21.2.cccccceeevvcuveeeencnnnenn. 85
Figure 6.13 Function call (100 M) benchmark for Ring, VFP, and Python. 88
Figure 6.14 Different frames from the waving cubes animation.................cccccceeeeveunenn.. 89

Xi

Figure 6.15 Using PWCT2 to visualize and execute Ring language projects. 92

Figure 6.16 Using PWCT2 to develop the Citations Prediction application. 92
Figure 6.17 Find in Files application developed using PWCT2.ccccoveeeeeeeiccccirneenannn. 93
Figure 6.18 Using PWCT2 to develop the Find in Files application.ccccccuvueeen.... 94
Figure 6.19 Ring compile-time for PWCT2 from Ring 1.17 to Ring 1.22......................... 96
Figure 6.20 Generated bytecode instructions for PWCT2 from Ring 1.17 to Ring 1.22. 96
Figure 6.21 Ring Object File Size for PWCT2 from Ring 1.17 to Ring 1.22. 97
Figure 6.22 The relationship between the number of steps and the required storage. .99
Figure 6.23 Using visual components increases the abstraction level. 99
Figure 6.24 The relationship between the LT/CGT and the step count. 100
Figure 6.25 Download statistics of the PWCT2 software across top regions. 105
Figure 6.26 PWCT2 Software downloads across top countries.ccccceeeeeccuveeeennnne. 105
Figure 6.27 User satisfaction according to steam StatiStics.cccceeeecueeeeeciuveeeennnne. 106

Xii

List of Tables

Table 3.1 Some categories of dynamic programming languages and examples. 18
Table 3.2 The main features of the proposed dynamic programming language. 19
Table 3.3 Some categories of visual programming languages/systems and examples. 23
Table 3.4 The main features of the proposed visual programming language. 24
Table 4.1 C Compilers used for building our Ring Compiler/VM...............cccccvvevvuvevrvennee. 30
Table 4.2 A list of C/C++ Libraries used by Ring EXteNSioNs.ccccccevueeevveeeeiueeeecueennnn. 32
Table 4.3 Scanner commands provided by the Ring Compiler.ccccovveeveeeeeeccennnnnn. 33
Table 4.4 A simple domain-specific-language implemented using Ring. 36
Table 5.1 The RingPWCT visual programming language components................c.......... 56
Table 5.2 Different types of Steps inside the Steps Tree.ccoueeeecvueeeeeciieeeeeiiineeanns 59
Table 5.3 Using Copilot aNd PWCT2.ueeeeeiieeeceiieeeee e e eecteeee e e e eeevaneeee e e e e e e nanaes 66
Table 5.4 Using Ring2PWCT to convert the PrintComponentView class. 68
Table 5.5 PWCT2 MOGUIES.oeceeeeeieeeee ettt eecttee e e e e e e saar e e e e e e e e enneaees 69
Table 6.1 COUIrSE CONTENL.uueeeeeeeeieeieeeee e eecccttee e e e e st e e e e e e e snraeree e e e e e esnnneeeens 75
Table 6.2 Statistics from ONliNe COUISE.ccuueeeeiiueeeeeciiieeeeeiieeeeesceeeeeeeraeeeeeeaaaeeeeas 75
Table 6.3 Some use cases for the Ring programming language and environment. 78
Table 6.4 Results of using PWCT to implement Ring compiler and virtual machine.80
Table 6.5 Summary of visual implementation Size.cccccceueeeeecieeeeeciiieeeeeeiieeeens 82
Table 6.6 Growth in implementation SiZe.ccuueeeeeeeeiecciiiieiee e eeccereee e e e 84
Table 6.7 Performance benchmarks (Time in Milliseconds).ccccoueeeeecieeiiniinnennnns 87
Table 6.8 The Waving Cubes BENCAMQATIK.ccccueeeeeeiuieeiiiiieeeesiieeeessvaeeesessneeeens 88
Table 6.9 Using the Code Generator to generate RingQt source code.cc.......... 89
Table 6.10 Loading and displaying files in RiNG IDE.cccccoueeeiiiueeeeesiieeeeeeciieeeenns 90
Table 6.11 PWCT2 project size including dependencies.ccccccoeeeevvuveenneeeeeeeeeinnnn. 95
Table 6.12 Using Ring to build the PWCT2 Project.couueeevveeeeeeeeeeiieiireeeeeeeeeeeeennnens 95
Table 6.13 Measuring performance of PWCT2 (Time in Milliseconds).c.......... 98
Table 6.14 Some large Visual SOUICE fil@S.oouucevvureeeeeeeiieiiiiiieeeeeeeeeeeeecirreeeeeeeeeenans 101
Table 6.15 Statistical Analysis of RingPWCT and CPWCT samples.ccueeeeeeeeeenns 102
Table 6.16 Statistics about educational videos introducing PWCT2.ccoeeeeveeeeennns 103
Table 6.17 Usage time as reported by the Steam platform.cccceevvvveveeeeeeeennnns 104

Table 6.18 Statistics about the PWCT2 from 1 March 2023 to 21 December 2024.104

Xiii

List of Abbreviations

ANSI American National Standards Institute
CDF Cognitive Dimensions Framework
CGT Code Generation Time

CSS Cascading Style Sheets

DSL Domain Specific Language

GCR Graphical Code Replacement

GIL Global Interpreter Lock

GUI Graphical User Interface

IDE Integrated Development Environment
IDSL Internal Domain-Specific Language
loT Internet of Things

JSON JavaScript Object Notation

KLOC Thousands of lines of code

LLM Large Language Model

MVC Model View Controller

OOP Object Oriented Programming

PWCT Programming Without Coding Technology
REPL Read-Eval-Print-Loop

SQL Structured Query Language

VFP Visual FoxPro

VM Virtual Machine

VPL Visual Programming Language

Xiv

Chapter 1: Introduction

1.1 Overview

The demands for software applications are increasing because computers are now
a very important part of our daily lives. Today, software runs on a variety of devices,
including high performance clusters, personal computers, embedded devices, and
distributed systems. Applications are developed in different areas and the cost can vary
greatly as free and open-source software competes with proprietary software. Reducing
costs, improving reliability, and increasing scalability are among the requirements that
software developers face. In the age of information technology, software development
plays a vital role in responding to the needs of companies and organizations for high-
quality information systems. This leads to the need for more programmers and more
productive software development tools to be able to respond quickly to the needs of
companies. As a result of this complexity in software requirements, many aspects of
software development have evolved, and many tools have been developed to help

programmers [1-2].

Integrated development environments (IDEs) such as Microsoft Visual Studio, Qt
Creator, and Eclipse are very important for large projects. Unfortunately, these tools do
not eliminate the need for programmers to know the strict syntax of each programming
language they use, where understanding of general programming paradigms is essential
but not sufficient. Representation of the software in the textual source code files is
limited to text as we cannot include images and graphics to make them part of the
source code. Also, the more expressive a programming language is, the more complex
the syntax becomes, making programs difficult to understand or write. This challenge
opens the door to the uses of visual programming languages and tools that attract more

users to programming and increase software development productivity [3-7].

Visual programming languages allow the development of applications and
computer programs using more than one dimension and provide a programming system
that is based on interaction with graphical elements that combine text, shapes, colors,
and time instead of writing source code based on text. There are many visual
programming languages, but most of the successful and widely used visual languages
are used in education, such as Alice and Scratch (shown in Figure 1.1) or in a specific

field such as Blueprints (Unreal game engine) and LabView (Industrial automation).

1

Scratch - Imagine, Program, Sha~ X == - o X

C M (%) httpsy//scratchmit.edu/projects/editor/?tutorial = getStarted @ A& ¢ M ¢ @ D L - O

e settings ~ [P Al 2 Eat- - Tutorials 3¢ Debug
= Code | 4 Gosumes | oy Sounds o] m X
@
Moion
@
Looks
® -
o
[
&6

100 rection | 102

OO0

AP agm

27/02.;2“02? s
Figure 1.1 The Scratch Visual Programming Language

There are general-purpose visual programming languages and systems like Lava,
Tersus, Limnor, Envision, and Unit. However, these VPLs and systems are not widely
used, according to the TIOBE Index, which measures the popularity of programming
languages. Additionally, there are few studies that evaluate such systems through the

development of large-scale applications and systems [8-10].

Programming languages like Visual Basic and Visual C# are not Visual Programming
Languages (VPLs). All these languages are textual programming languages where the
programmer must write the textual code using the language’s syntax to create useful
applications. Environments such as Microsoft Visual Studio and Qt Creator are not
considered VPLs. These environments enable the software developers to create parts of
the application using visual components, but the textual code is necessary to complete
useful and real applications. On the other hand, VPLs use only visual components instead
of writing textual code [11-12]. In textual programming languages like C++ and Java, the
code is text-based. It is one dimensional. The compiler reads the source code token by
token. In VPLs, the graphical representation uses more than one dimension. Each
graphic object has its place in 2D or 3D worlds. Each object can have its own shape, color,
and image. There are many relationships that can appear between objects, such as:
Inside, outside, touching, next to, etc. Some visual languages also use the Time

dimension (before/after) as another dimension in the graphic code [13].

A VPL can have one of the following five visual representations [14-15]:

1. Diagrammatic: uses components of shapes and text and uses links to connect

between shapes and represent the control or data flow.

2. Iconic: uses icons from the domain of the problem.

3. Form-based: uses forms such as spreadsheet or data-entry forms.

4. Block-based: uses blocks that are pieced together to create programs.
5. Hybrid: uses a mixture of any of the above four.

Visual programming systems can use different interaction methods. For
example, Scratch uses drag-and-drop because it’s designed for children, while the
Envision visual structured editor (shown in Figure 1.2) uses command-based interactions
because it’s designed for programmers. Some VPLs use a syntax-directed editor that
recognizes the syntax and prevents the programmer from making syntax errors; other
VPLs provide a free editor in which the programmer can make mistakes during the
development process and the VPL compiler can detect errors during the compilation

process. The syntax-directed editor is more suitable for novice programmers, while the

free editor offers more flexibility for advanced programmers [16].

e
ol

A

?

System.out.printin("Hello world” System.outprintin(*"Hello from another method")

° (,‘)(intx«- < 10HEEE

System.out.printin(x)

? -
S out.printin{'Three")

Figure 1.2 The Envision Visual Programming System.

A VPL's framework is a collection of tools that enable the developers to create
VPLs in less time with less effort and better quality by utilizing ready-to-use and well-
tested tools. Programming Without Coding Technology (PWCT) is a general-purpose
visual programming system designed with the concept of enabling the creation of visual
programming languages (VPLs) in mind. PWCT includes tools that facilitate this process
and come with multiple groups of visual components that generate code in various

textual programming languages. [12, 17].

There are many issues related to visual programming languages. Almost all visual
representations are physically larger than the text they generate, so the space used to
show a program in a VPL is greater when compared with a text-based program. Many
large programs created by VPLs look like a maze of wires that are hard to understand.

Many VPLs don’t provide a place for writing comments.

The most successful VPLs are designed for specific applications (not for general
purposes). There are few VPL’s frameworks, and most of them are designed for a specific
category of visual programming languages. Most VPLs use a drag-and-drop visual
programming approach and are not designed for fast interactions using the keyboard.
Also, a lot of visual programming languages don’t support advanced dimensions like the
Time dimension. Another issue is that the VPLs users can’t improve the visual language
itself using visual programming because it’s based on textual programming language
(TPL) code, and it’s common to use advanced languages like C++ to develop VPLs [18-
21]. The PWCT visual programming language (illustrated in Figure 1.3) addresses some

of these issues through the following design decisions [12]:

e Utilizing a visual representation based on the TreeView control, which solves the
visual representation size issue and avoids the maze of wires problem. In PWCT, the
program is represented as a group of steps called the Steps Tree.

e Including hundreds of visual components that provide a general-purpose VPL.

e Using a visual programming approach suitable for keyboard-based interaction.
However, many issues remain unsolved. PWCT is not a self-hosting VPL, and

developing or maintaining it requires writing textual code. Additionally, PWCT is limited

to the Windows environment. Furthermore, PWCT has not been evaluated through the
development of a large or complex project over many years, which could help in

discovering more practical issues based on serious usage and analysis.
4

This thesis focuses on the development of PWCT2, a self-hosting visual programming
language for application development. This research identifies the limitations in the
previous PWCT implementation, defines the requirements for PWCT2, and includes the
implementation and evaluation of the proposed visual programming language. The
thesis also includes the design and implementation of a textual programming language
developed to achieve two goals. The first goal is to evaluate PWCT, and the second is to
be used in the development of the proposed visual programming language to ensure its
quality and support future research projects. This textual language is designed for
developing applications and tools. The proposed visual language could represent a step
forward in the field of visual programming languages, aiming to create a more powerful
general-purpose visual programming language.

B store 57 picT E——
File Edit Data Code Veto DomainTree Goal Transporter Package Tooks Help

De d ¥ 4 ! o Language 0 News : PVWCT 2.0 (Source Code - WIT License for Windows Linu/macOS

Goal Designer

Aciive Goal: | Main SyntaxDirected Editor Steps Colors VPL Compiler
StepsTree | StepCose @ (G| ¥ B | @ B The Time Machine |

¥ Start Point (NOT STEP)
=— 8 The First Step
= Define New Window (win1), Title : "Welcome to PWCT"
= Window Events
o Window Properties [vieicome to PWCT - o X
= Window Controls
= Define Label (Ibl1), Caption : "Welcome to PWCT"
= Label Events
@ Label Properties
= Define New Button (btn1) , Caption : "Close Window" Welcome to PWCT
= Button Events . Close Window |
2 Event: ON CLICK : Action myclose() : g
@ Button Properties
@ End Of Window
@ Activate window
=— 8 Procedures
= Define Procedure MyClose
o Start Here
-3 win1.Release()
© End of Procedure

Server

Transporter Geal

~f? 4» Bac

Interaction

Component Define New Window Domain | HarbourPWCT | User Interface | GUIApplication | Windows 5 Close

Ready l*.
Figure 1.3 The PWCT visual programming language.

1.2 Motivation

After the success of many domain-specific visual programming languages like
Scratch, Alice and Blueprints and reaching millions of users worldwide, it’'s expected to
find more interest in creating new visual programming languages. These languages help
novice programmers to learn programming and help mainstream programmers to
create high-quality programs faster, but these languages must be designed carefully to
solve the problem without adding other critical problems and this is an important factor

for new visual programming languages to gain popularity.

Additionally, the adoption of these new visual programming languages will not
increase unless they can integrate with other development tools, highlighting the

necessity of being able to import and export textual source code.

Many software projects require different programming skills and different
programming languages. This causes a problem for many companies and researchers
that need to hire many programmers to develop a complete solution. In this research,
we expect to provide a general-purpose visual programming language that can be used

in developing complex and large software projects using visual programming.

Also, designing a new textual programming language to be used in tools
development like a general-purpose visual programming language will help many similar
projects in their mission. In computer science, developments in programming languages
and development tools are considered very helpful in practical and scientific projects.

Through this research, we are going to help in this active and interesting area.

1.3 Problem Statement

Most large and complex software projects are developed using textual
programming languages. The adoption of general-purpose visual programming
languages by mainstream programmers is still in an early stage. A lot of general-purpose
visual programming languages and systems are no longer under continuous

development (Lava, Envision, etc.).

These languages have features that can be merged, and a lot of features that can
be improved. Also, most of these projects (PWCT, Limnor, etc.) don’t provide good and
high-quality support for modern technologies that appeared after their initial
development. There is an open space for innovation and producing useful ideas through

research and development.

To our knowledge, there is no dual-language, self-hosting, general-purpose visual
programming language that can be used for developing large and complex software
projects and provides support for various platforms, including Desktop, Web,
WebAssembly, and 32-bit Microcontroller platforms, and be widely adopted by many

software developers in real-world projects.

The research questions that we aim to answer during this research are:

RQ1: What is the design of a modern textual programming language suitable for the
development of the proposed dual-language, self-hosting, general-purpose visual

programming language?

RQ2: What are the advantages and disadvantages of using a general-purpose visual
programming language like PWCT to develop and maintain a textual programming

language compiler and virtual machine over many years?

RQ3: What design decisions could be employed to create a lightweight, multi-paradigm
dynamic programming language suitable for Desktop, Web, WebAssembly, and 32-bit

Microcontrollers, using the same implementation?

RQ4: What novel features could be used to extend the object-oriented programming
paradigm to enable the development of internal domain-specific languages that

resemble external domain-specific languages like CSS and Supernova?

RQ5: What is the design of a modern general-purpose visual programming language that
leverages advancements in visual programming research and considers current
technology trends, such as the use of Large Language Models (LLMs) for generating

textual source code?

RQ6: Can we maintain and continue developing the new visual programming language

using itself and have a self-hosting general-purpose visual programming language?

1.4 Research Goal and Objectives

The main goal of this thesis is the design and implementation of a new dual-
language self-hosting general-purpose visual programming language powered by a new
textual programming language for applications and tools development. The new visual
language must come with modern features and advantages that encourage and enable
usage in advanced projects and applications. Visual language design must support
improving the current projects or creating new projects from scratch based on the

proposed textual programming language. The objectives of this research subject are:

e The design and implementation of a textual programming language (called Ring) for
applications and tools development to use it in developing the new self-hosting

visual programming language.

e The design and implementation of a dual-language general-purpose self-hosting
visual programming language (called PWCT2) for applications development. This
visual language should support importing and exporting the textual source code

written in the proposed dynamic programming language.

1.5 Thesis Contributions

This thesis provides the next contributions:

e The first study to use visual programming to develop and maintain a compiler and
virtual machine for a dynamic programming language for over eight years. We used the
PWCT visual programming language to develop and maintain the Ring programming
language. We have provided multiple releases each year to improve the design and

respond to community feedback.

e Novel features that can extend the object-oriented programming paradigm, enabling
the development of domain-specific languages that resemble CSS and Supernova.
Additionally, Ring’s customization features, such as syntax modification, could support

multiple languages (e.g., Arabic, English).

¢ The design and implementation of a dynamic programming language with broad cross-
platform compatibility, featuring a lightweight implementation that still provides rich

features.

¢ The design and implementation of the research prototype PWCT2, which offers
enhanced features, lower storage requirements for visual source files, and better code

generation performance compared to the first generation.

¢ The design and implementation of the first VPL that supports code generation in the

Ring language (RingPWCT), containing 394 visual components.

e The design and implementation of a textual-to-visual code conversion tool called
Ring2PW(CT that can import Ring programming language code. Using this tool enables a

self-hosting VPL based on Ring.

e Testing the feasibility of using the Ring programming language compiler and virtual

machine in the development of projects on a scale similar to PWCT2.

¢ Arabic Translation for the PWCT2 Environment and the RingPWCT Visual Components.

1.6 Thesis Outline

The remainder of this thesis is divided into the following chapters:

Chapter 2: This chapter offers an overview of dynamic programming languages and
visual programming languages. It begins by introducing dynamic programming
languages and their intriguing features. Following that, it highlights the main
characteristics of visual programming languages.

Chapter 3: This chapter presents the existing research and developments relevant
to the design of dynamic and visual programming languages. We begin by exploring
the literature related to dynamic language design. Our review classifies the existing
and related dynamic languages into various categories, providing an organized
framework for comparison. We then select key dynamic languages from these
categories that are most relevant to our work and conduct a comparative analysis
with our proposed dynamic language, Ring. This analysis aims to identify the unique
features and advancements of Ring, as well as highlight the gaps and areas for
improvement within the existing literature. Subsequently, we shift our focus to
visual programming languages (VPLs). We classify related VPLs into different
categories and pinpoint those that have significantly influenced our design. By
comparing these selected VPLs with our proposed visual programming language,
PWCT2, we aim to underscore the distinctive aspects of PWCT2 and address the
research gaps that our language fills. Through this literature review, we establish the
foundation for our proposed languages and provide a thorough understanding of
the existing landscape, setting the stage for the features introduced by Ring and
PWCT2.

Chapter 4: This chapter presents the proposed dynamic programming language and
its important features, such as syntax customization and novel features that extend
object-oriented programming and enable the development of internal domain-
specific languages resembling CSS and Supernova. Additionally, this chapter
introduces the critical details about the visual implementation and the significant
design decisions made during development.

Chapter 5: This chapter presents the design of the proposed dual-language self-

hosting general-purpose visual programming language (PWCT2) and highlights the

important features of the visual programming environment compared to the first
generation of PWCT.

Chapter 6: This chapter presents the experiments and results of the evaluation of
the proposed textual programming language (Ring) and the proposed self-hosting
visual programming language (PWCT2). The evaluation includes various
measurements related to abstraction level and performance. Additionally, we
provide different use cases.

Chapter 7: This chapter presents the discussion and highlights the discovered
advantages and limitations of various experiments. We will analyse the findings in
detail, discussing their implications and how they support the objectives of this
thesis. Additionally, we will address the limitations encountered during our research,
providing a critical evaluation of the potential challenges and areas for
improvement. By examining these aspects, we aim to offer a thorough
understanding of the strengths and weaknesses of the Ring dynamic programming
language and the PWCT2 visual programming language.

Chapter 8: This chapter presents the conclusion, future work, and various research
directions that become available after developing the Ring textual programming

language and the PWCT2 visual programming language.

10

Chapter 2: Background

2.1 Introduction

New programming languages are often designed to keep up with technological
advancements and project requirements while also learning from previous attempts and
introducing more powerful expression mechanisms. However, most existing dynamic
programming languages rely on English keywords and lack features that facilitate easy
translation of language syntax. Additionally, maintaining multiple implementations of
the same language for different platforms, such as desktops and microcontrollers, can
lead to inconsistencies and fragmented features. Furthermore, they usually do not use
visual programming to fully implement the compiler and virtual machine. In this chapter,
we will introduce dynamic programming languages and their interesting features. Then,

we will introduce visual programming languages and their main characteristics.

2.2 Dynamic Programming Languages

Programming languages play a crucial role in producing systems and applications.
They serve as the means of communication between us and the computer, enabling
control and the creation of software and applications. Initially, there was machine
language, which allowed us to program by directly controlling the operations provided
by the hardware. Soon, many programming languages evolved, each with different
goals—such as ease of learning, specific domain usability, using new programming
paradigms, performance improvement, security, portability, or achieving flexibility [22—
25]. During the evolution of programming languages, a category known as dynamic
programming languages emerged. Examples of such languages include Lisp, Smalltalk,
Erlang, Python, Lua, and Julia, as demonstrated in Figure 2.1. (The vertical lines are

designed to improve the figure's readability).

These languages exhibit several features that defer determination and execution
to runtime rather than compiling time. Notable characteristics include dynamic typing,
flexible data structures, reflection, metaprogramming, and the ability to evaluate code
from strings using functions like eval(). Additionally, dynamic languages often provide a
Read-Eval-Print-Loop (REPL) for interactive development. The overarching goal of these
languages is to achieve simplicity, flexibility and reduced compile time. Ultimately, this
speeds up the development cycle and facilitates the creation of project prototypes in

less time [26-33].
11

1960 1965 1970 1975 1980 1985 19%0 1995 2000 2005 2010 2015 2020

Figure 2.1 Some of the dynamic programming languages, starting in 1960.

Another category of programming languages is visual programming languages
(VPLs). These languages use more than one dimension to create computer programs
graphically through text, shapes, colors, etc. They have achieved notable usage in
education through projects like Scratch [34-36]. Unlike the Scratch visual programming
language, which enables children to create multimedia applications using a user
interface in their native language, most dynamic programming languages rely on English
keywords. Unfortunately, these dynamic programming languages lack features that
facilitate easy translation of language syntax and libraries into other human languages

[37-42].

While most visual programming languages are domain-specific, there are
projects classified as general-purpose and applicable to a wide range of programming
tasks. One such project is the Programming Without Coding Technology (PWCT)
software, a visual programming language that supports code generation in multiple
textual programming languages, including the C programming language [34]. Most of
the popular dynamic programming language implementations are based on using
textual programming languages like C, C++, etc. We assume that using visual
programming to create the dynamic programming language compiler and virtual
machine is possible and provides a more user-friendly implementation by avoiding

syntax errors and increasing the abstraction level.

Dynamic programming languages as software products differ from one another

in terms of design, syntax, semantics, paradigms, features, implementation, execution

12

methods, libraries, tools, and supported platforms, resulting in variations in the domains
where they are most suitable for use [43-52]. Some dynamic programming languages
are specifically tailored for domains like R, MATLAB, and dBase [53-55]. On the other
hand, some dynamic programming languages serve as general-purpose tools suitable
for a wide range of tasks like Python [56—61]. Domain-specific languages are designed
for a specific domain, and they can be classified into two main types. The first type is
Internal/Embedded DSLs, which are embedded inside general-purpose languages and
use their constructs, while the second type is External DSLs (Like CSS, SQL, Supernova,
etc.), which use its syntax and semantics. Dynamic programming languages like Ruby
could be used to create internal DSLs. However, these internal DSLs will not resemble

external DSLs [62-65].

The Supernova dynamic programming language is a domain-specific language
distributed with the PWCT Visual Programming language [66]. This language was
developed by the author to explore creating simple GUI applications using command-

based syntax that looks natural, as demonstrated in Figure 2.2.

After developing Supernova, we considered whether we could develop a new
programming language that supports object-oriented programming and extend it with
novel features to enable the development of embedded domain-specific languages

resembling CSS and Supernova [34,66].

I want window and the window title is Hello. Wteko e X

I want label and the label caption is Welcome.

I want button and the button caption is Close. Welcome

The window back color is white.

Figure 2.2 Using commands in the Supernova programming language.

With the rise of popularity of the Internet of Things (IoT) [67—69], numerous pro-
jects—such as MicroPython and mRuby—have endeavored to leverage popular dynamic
programming languages for embedded systems and microcontroller development. This
requires developing a lightweight implementation and has led to the challenge of
maintaining different implementations for the same programming language, where one

implementation could miss features that exist in another implementation [70-73].

13

Also, while we find many dynamic languages used for web application
development on the server side, JavaScript has dominated the scene as the language
used at the front-end inside web browsers. With the emergence of WebAssembly
(binary instruction format that can be executed by modern web browsers), it has
become more practical to use several other languages within the browser. However, this
led to the development of different language implementations to allow dynamic
languages to fully benefit from this leap. We assume that creating a new dynamic
programming language in this era may necessitate considering this evolution to

maximize its advantages [74-76].

2.3 Visual Programming Languages

Programming languages are essential for the development of systems and
applications. They act as a bridge between humans and computers, facilitating control
and the creation of software. Over time, a variety of programming languages have
emerged, most of which use textual source code to create and represent computer pro-
grams [23,25]. During the evolution of programming languages, a category known as
visual programming languages (VPLs) emerged. These languages create and represent
computer programs graphically, using more than one dimension and incorporating a mix

of text, colors, and shapes in their visual representations [77,78].

In Figure 2.3, we present some of the VPLs and systems developed from 1966 to
2024, showcasing a clear trend of increasing innovation and development in this field.
The vertical lines are designed to improve the figure's readability. Early pioneering
efforts are illustrated by the development of GPE (Graphical Program Editor) in 1966 and
Pygmalion in 1975 [79,80], followed by subsequent languages such as Prograph,
Simulink, and Lab-VIEW in the 1980s [81-83]. The 2000s saw the emergence of
educational and accessible VPLs, like Scratch and Alice, which have become instrumental
in teaching programming to younger audiences. For example, Scratch enables children
to create stories, multimedia applications, and computer games using a user interface
in their native language (Arabic, English, etc.) [84]. More recent advancements
introduced in the literature include Envision, Node-RED, Blueprints, and FlowPilot,

reflecting the continuous expansion. [85—-88].

14

1966 1971 1976 1981 1986 1991 1996 2001 2006 2011 2016 2021

Figure 2.3 Some of the visual programming languages starting from 1966.

Most visual programming languages are either used in education or specific
fields. Only a few projects have been designed to be general-purpose and versatile. One
of these projects is Programming Without Coding Technology (PWCT), which supports
code generation in multiple textual programming languages, such as C, Harbour, Python,
and Supernova. PWCT introduces a visual programming approach called the Graphical
Code Replacement (GCR) method, which is an alternative to the traditional Drag-and-
Drop approach. GCR is based on Automatic Steps Tree Generation and Update in
response to interaction with components that provide users with simple data entry
forms. This method combines programming using a Diagrammatic approach and
programming using a Form-based approach, seamlessly integrating the two through an
Automatic Visual Representation Generation/Update process. GCR enables the design
and implementation of advanced visual components that could include optional
features that change the structure of the generated visual representation. Also, PWCT
is designed to support fast interactions through the computer keyboard where using the
Mouse is optional. Additionally, PWCT incorporates the Time Dimension at the program
design level and supports a feature called play programs as movies that enables step-

by-step implementation visualization [34,66].

PWCT does not support importing textual source code and is designed to operate
exclusively on Microsoft Windows. Furthermore, the implementation of PWCT is based
on Microsoft Visual FoxPro, which is no longer under active development. These issues
need to be addressed when developing a new generation of PWCT. We assume that

using PWCT to develop and maintain the Ring programming language compiler and

15

virtual machine will enable discovering more issues. The proposed PWCT2 design could
be influenced by advancements in other VPLs where a literature review could be done
to learn about useful features introduced in the literature. By integrating these proven
features from other successful VPLs, PWCT2 can provide a more flexible and user-
friendly environment. Most VPLs and systems are developed using textual programming
languages; for example, the first generation of PWCT was developed using Visual FoxPro
and Envision was developed using C++. Self-hosting PWCT2 is crucial, as it allows the
development and modification of the PWCT2 environment using the same visual
programming tools that it provides to users. This means that developers can update and
enhance PWCT2 through visual programming rather than writing textual code, making

the process more intuitive and accessible [89].

We assume that using the proposed Ring programming language to develop
PWCT2 could yield better results. The choice to transition from Visual FoxPro to the Ring
programming language for the second generation of PWCT was driven by several key
factors. Both Visual FoxPro and the proposed dynamic languages are designed to
support object-oriented programming (OOP), and each comes with an integrated
development environment (IDE), a Graphical User Interface (GUI) framework, and a
form designer, making them both suitable for many similar programming tasks.
However, the proposed dynamic programming language could distinguish itself with the
advantage of compatibility across multiple modern operating systems, which ensures
that the new generation of PWCT can operate efficiently on various systems. The
proposed dynamic language could include features and libraries that are specifically
designed to be used in developing PWCT2. This decision not only leverages Ring’s
strengths but also provides an excellent test of its features and capabilities, particularly

since PWCT2 is an advanced project. [90,91].

2.4 Chapter Summary

In this chapter, we introduced dynamic programming languages, highlighting their
unique and interesting features. Following this, we explored visual programming
languages and discussed their main characteristics. These two types of programming
languages offer distinct approaches and benefits to developers. In the next chapter, we
will delve into the literature review, examining relevant studies, theories, and works that

underpin the concepts discussed throughout this thesis.

16

Chapter 3: Literature Review

3.1 Introduction

In this thesis, we develop and introduce two programming languages: the Ring
dynamic programming language and the PWCT2 visual programming language. This
chapter presents the existing research and developments relevant to the design of

dynamic and visual programming languages.

We begin by exploring the literature related to dynamic language design. Our
review classifies the existing and related dynamic languages into various categories,
providing an organized framework for comparison. We then select key dynamic
languages from these categories that are most relevant to our work and conduct a
comparative analysis with our proposed dynamic language, Ring. This analysis aims to
identify the unique features and advancements of Ring, as well as highlight the gaps and

areas for improvement within the existing literature.

Subsequently, we shift our focus to visual programming languages (VPLs). We
classify related VPLs into different categories and pinpoint those that have significantly
influenced our design. By comparing these selected VPLs with our proposed visual
programming language, PWCT2, we aim to underscore the distinctive aspects of PWCT2

and address the research gaps that our language fills.

Through this literature review, we establish the foundation for our proposed
languages and provide a thorough understanding of the existing landscape, setting the

stage for the features introduced by Ring and PWCT2.

3.2 Related Dynamic Programming Languages

The design of the proposed programming language is associated with various
categories of dynamic programming languages. In Table 3.1, we present some of the
different categories along with examples of dynamic programming languages that could
fit within them. It is worth noting that some programming languages can be classified in
more than one category. For instance, Ruby could be classified in both categories two

and three, while a language like Tcl could fall into the first three categories.

17

Table 3.1 Some categories of dynamic programming languages and examples.

Refs. Category Examples
[43-46] Lightweight and Embeddable Lua, Squirrel, Wren, etc.
[50,57] Comes with Ready-to-Use Libraries Tcl, Perl, Python, etc.
[33,64] Support creating Embedded DSLs Lisp, Ruby, etc.
[43,55] Comes with Powerful IDEs Smalltalk, Visual FoxPro, etc.
[40,41] Supporting Non-English Syntax Supernova, Citrine, etc.
[53-55] Domain-specific dynamic languages R, xBase, etc.
[30,92,93] Concurrency-oriented design Erlang, Elixir, etc.
[27,94,95] Comes with a focus on Performance Julia, Mojo, etc.
[70-73] Other implementations MicroPython, mRuby, etc.

The first category is Lightweight and Embeddable languages [43—-46], designed for
ease of integration and minimal resource consumption, making them suitable for various
environments. The second category includes Languages that Come with Ready-to-Use
Libraries, offering a rich set of pre-built functionalities to accelerate development
[50,57]. Support for Creating Embedded DSLs is the third category, providing flexibility
for niche applications [33,64]. The fourth category is Languages that Come with Powerful
IDEs, which enhance the development experience through robust tools and features
[32,55]. The fifth category encompasses Languages Supporting Non-English Syntax,
broadening accessibility for developers worldwide [40,41]. Domain-Specific Dynamic
Languages form the sixth category, tailored for fields to optimize efficiency and
effectiveness [53-55]. The seventh category focuses on Concurrency-Oriented Design,
managing simultaneous tasks crucial for high-performance applications [30,92,93].
Languages with a Focus on Performance make up the eighth category, ensuring rapid
execution and responsiveness [27,94,95]. The ninth category, Other Implementations,
includes different implementations of popular dynamic languages that focus on
supporting microcontrollers or embedded systems. These implementations could be
developed by the same team that created the original language (like mRuby) or by
another team of developers who take the original language implementation and modify
it by adding or removing features or changing the implementation (like MicroPython)
[70-73]. In Table 3.2, we present the key features of our proposed language and its

connections to some other dynamic programming languages.

18

Table 3.2 The main features of the proposed dynamic programming language.

Criteria

Lua

[45]

Python Ruby VFP Supernova

[96]

[97]

[55]

[41]

Proposed

Language (Ring)

Open Source
Portable
Lightweight
Embeddable
Dynamic Typing
Function like Eval()
Classes Concept
Inheritance Concept
Private Attributes
Batteries Included
IDE
Form Designer
Non-English Syntax
Case insensitive
1-based indexing
Change Keywords
Internal DSL
IDSL (Custom Syntax)
Visual Implementation
VI Based on CPWCT
Desktop
Web
WebAssembly
Microcontroller
No-GIL
Register based VM
Off-side rule
xBase (Database DSL)

v
v
v
v
v
v

*
*

*

< < X X X < X < X

*

*

x X < <

\4

< < < X X X £ X X X

*

*

\4

L <L < X X X < X X X

*

*

X

< < < <L L <L L < XX *

*

< X X X X X < < X X X < X < <

X X X X X X X < X < X X X < < <

\4

X X X < << << < < < < < L < <L <L <L LR L«

19

Deliberately, we chose at least one programming language from each relevant
category (the first five categories) to provide a broader context for our language design.
As we compare these languages, if a feature is absent in the basic distribution but
available through external libraries, tools, or ongoing projects, we denote it with a (star)

in the corresponding cell.

The Lua programming language stands out due to its compact language features and
efficient implementation, which are written in ANSI C. It serves as an embeddable
language, making it suitable for integration into projects that require scripting
capabilities through a relatively fast scripting language. Lua is commonly used for
scripting in game development. Notably, Lua does not include the concept of classes but
instead emulates object-oriented concepts through its small and extensible language
features. Additionally, Lua lacks a rich standard library [43—46]. Some programming
languages, such as Squirrel and Wren, are designed to compete with Lua for game
scripting. They use a different syntax based on braces and provide direct support for
classes. Similar to Lua, they also lack a rich standard library. Although Wren seems no
longer under active development, a smaller version of the language called Lox is used to
introduce how interpreters are developed, allowing us to observe the usage of dynamic
languages in introducing compiler and virtual machine concepts [47]. On the other hand,
we have another lightweight scripting language called Tcl, which was introduced five
years before Lua. While not as lightweight as Lua, Tcl comes with a rich standard library.
Tcl is known for its command-based syntax—where everything is treated as a string—
and its popular GUI library (Tcl/Tk), which is used in other programming languages like
Perl, Python, and Ruby for GUI tasks [48-52].

Microsoft Visual FoxPro (VFP) is a fast-commercial dBase dialect that natively
supports object-oriented programming. It includes a powerful IDE with auto-complete
features and a GUI builder (Form Designer) like Visual Basic. However, the latest release
of the language (Visual FoxPro 9.0 SP2) is a 32-bit Windows product and is no longer

actively developed [55].

Python is immensely popular. Although not as lightweight as Lua or Tcl, Python
boasts a rich standard library and supports various programming paradigms. It has found

widespread use in scientific computing and machine learning. Python comes with an

20

integrated development environment (IDE) called IDLE, although it lacks a Form
Designer/Builder, which exists in Visual FoxPro. While such tools exist for Python through
external libraries and tools, having such features in the standard tools of the language
could increase its usage in GUI development, especially since most standard IDEs for

desktop platforms come with these features [56—-58].

The Ruby programming language is an example of a dynamic language that is used
to create DSLs. This reduces the development cost, and the learning curve required to
create a DSL. Unfortunately, these DSLs will not look like Supernova or SQL because they

are influenced by the Ruby syntax [64,65].

With respect to syntax translation, numerous projects have attempted to address
this gap. For example, several Arabic programming languages (Like Supernova) have
been developed with a focus on using Arabic syntax. However, most of these projects
remain unused in production due to limited features and are no longer actively
developed [37-42]. Another approach involves creating packages that introduce
translation as a feature. For instance, zhpy is a Python package that enables the writing
of source code using traditional Chinese keywords, which is then converted to Python.
However, this approach can suffer from multiple issues, including additional
development and testing efforts, as well as lower compile-time performance due to the
extra layer of translation before invoking the Python interpreter. Some programming
language designers have recognized this challenge and intentionally introduced syntax
localization. For instance, the Supernova programming language supports both Arabic
and English syntax simultaneously, allowing an easy way to share libraries written in
different languages. However, adding translation support for additional human
languages without modifying the language implementation remains a complex task. In
contrast, the Citrine programming language provides multiple versions that support over
100 human languages. Unfortunately, it does not offer an easy mechanism for sharing
code across these language versions within the same project, as sharing code requires

translation [39-41].

The implementation of dynamic programming language virtual machines could use a
Global Interpreter Lock (GIL) to ensure that only one thread can access the interpreter at

a time. This provides safety and avoids race conditions but prevents better performance

21

from using threads on multi-core systems for CPU-bound tasks [59-61]. For a
programming language like Python, there is ongoing work towards removing the GIL in

recent versions.

The proposed dynamic programming language is designed to incorporate and
improve features related to the first five categories: Lightweight, Embeddable, Scripting,
and Batteries-Included, providing powerful support for embedded DSLs, and it comes
with an IDE suitable for GUI development. Additionally, it provides syntax flexibility and
supports non-English syntax. Importantly, it does not belong to other categories, such as
domain-specific languages, concurrency-oriented languages, or those focused solely on
performance. While the proposed language is not a domain-specific language itself, it
could be used to create domain-specific languages. Additionally, while it is not
specifically designed around concurrency or performance, its proposed
implementation—using a VM without a GIL—allows the use of threads to improve the
performance of CPU-bound applications. The proposed programming language is
designed to have a small implementation and provide direct support for multiple
programming paradigms in the first place, then be fast enough and provide better

runtime performance.

3.3 Related Visual Programming Languages

Languages like Visual Basic and Visual C# fall into the category of textual
programming languages, not visual programming languages (VPLs). Programmers need
to write text-based code using the specific syntax of these languages to develop large
and complex real-world applications. Tools like Microsoft Visual Studio 2022 are known
as integrated development environments (IDEs) rather than VPLs. These environments
allow software developers to create portions of applications using visual elements, but
textual code is essential to achieve full control over the application's functionality. In
contrast, VPLs rely exclusively on visual components without the need to write textual
code directly. In text-based programming languages like C++ and Java, the code is linear
and one-dimensional, with the compiler processing it token by token. In contrast, VPLs
utilize graphical representations that span multiple dimensions. Each graphical element
occupies a specific position within a 2D or 3D space and can have unique shapes, colors,
and images. Various relationships can be depicted among these objects, such as being

inside, outside, touching, or adjacent to one another. Additionally, some visual languages
22

incorporate the time dimension (before/after) to further enhance the graphical code

representation [11,78].

A visual programming language can have several different representations. One
option is diagrammatic, which uses shapes and text components with links to connect
shapes and illustrate control or data flow. Another representation is iconic, which utilizes
icons derived from the problem’s domain. There are also form-based representations
that incorporate forms like spreadsheets or data-entry forms and block-based
representations that feature blocks assembled to form programs. Additionally, a VPL can

be hybrid, combining elements of any of these four representations [14,15].

The design of the proposed visual programming language is associated with various
categories of VPLs. In Table 3.3, we present some of the different categories based on
their visual representations or usage scope, along with examples of visual programming
languages that fit within them. It is worth noting that some VPLs can be classified into
more than one category. For instance, Scratch could fall into both the first and fifth
categories, as it is a visual programming language that uses block-based programming

and is designed for use in education and teaching children about programming.

Table 3.3 Some categories of visual programming languages/systems and examples.

Ref. Category Examples
[98-100] Block-based Scratch, Snap!, etc.
[101-104] Diagrammatic Tersus, RAPTOR, etc.
[105-108] Iconic Kodu, Limnor, etc.
[109-111] Form-based and spreadsheet-based Forms/3, FAR, etc.
[112,113] Domain-specific Blueprints, Pure Data, etc.
[114,115] General-purpose PWCT, Envision, etc.

In Table 3.4, we present the key features of our proposed visual programming
language and its connections to some other visual programming languages from
different categories. As we compare these visual languages, if a feature is absent but
available through external ongoing projects, we denote it with a (star) in the

corresponding cell.

23

We selected Scratch because it is a popular VPL for education that uses blocks-based
programming. Forms/3 is chosen as an example of form-based and spreadsheet-like
programming, with support for the time dimension. Lava is included because it is a VPL
that uses the TreeView control and supports object-oriented programming (OOP).
Envision is selected as a research prototype for a general-purpose visual programming
system that features interactive visualizations. Finally, PWCT is chosen because it is a
general-purpose VPL used in advanced projects, such as developing the Ring

programming language.

Table 3.4 The main features of the proposed visual programming language.

Scratch Forms/3 Envision Lava PWCT Proposed

Criteria

[116] [117] [118] [119] [120] VPL (PWCT2)
Open Source v X v v Vv v
Portable \4 X \4 \4 X \4
Rich Colors Y X \4 X X \4
Time Dimension X v X X v v
Auto-Run v v X X X v
Rich-Comments X X \4 X X \4
Interactive Visualization X X \4 X X \4
Self-hosting X X * X X \4
Form Designer X Vv X v v v
Steps Tree/Blocks v X X \ ' v
Steps Tree/Blocks (DAD) v X X X X v
Play programs as movie X X X X Vv v
Supports OOP X X v v v v
Children Oriented Y X X X X X
Research Oriented X \4 \4 \4 X X

In the efforts made by the researchers to make Envision a self-hosting visual
programming environment, significant strides were achieved. A code generation
framework was designed and implemented to represent macros in Envision when
importing code from C++. Additionally, an extra stage in the existing C++ import system

was developed to facilitate macro import by reconstructing them from expanded code

24

using preprocessor information from Clang. Although the authors reported that time
constraints and issues in existing components prevented the complete achievement of
the goal, it is important to note that using C++ for Envision implementation introduces
some challenges in implementing a self-hosting VPL because of the numerous features

and preprocessor usage [89].

Multiple research studies highlight the importance of ensuring the construction of
correct programs through visual programming languages. This addresses key aspects of
program correctness and reliability, which are critical for enhancing both usability and
the practical effectiveness of visual programming environments. PWCT provides two
modes of operation. The first mode follows the concept of a syntax-directed editor and
prevents composition errors when connecting components. The second mode uses a
free editor where mistakes can occur and are then detected by the compiler. In PWCT?2,
the visual editor prevents composition errors, and the user can use the customization
window to allow or disallow errors when typing expressions in the interaction page

[16,121].

The first generation of PWCT is influenced by Lava 0.7.2 (using a TreeView control to
represent the program structure) and Forms/3 (using the Time Dimension). It introduces
new features like the Graphical Code Replacement (GCR) method (instead of drag-and-
drop) and playing programs as a movie using the Time Dimension. The proposed visual
programming language (PWCT2) builds on PWCT by incorporating the GCR method,
Steps Tree, Time Dimension, and playing programs as a movie. It also draws inspiration
from Scratch, incorporating rich colors and block-level drag-and-drop support.
Additionally, PWCT?2 is influenced by the Envision visual programming system, enabling

rich comments and supporting interactive visualization.

The proposed VPL is implemented using the Ring language, supports Ring code
generation, and enables importing Ring code, making it a self-hosting VPL. These
capabilities are particularly important in the age of large language models (LLMs) and
code generation, as they enable the use of LLMs to generate Ring code that can be used
in PWCT2 and updated using visual programming. Since Forms/3, Lava, and Envision are
no longer under active development, and while Scratch is actively developed, it is

domain-specific, and PWCT, though general-purpose, is designed for MS-Windows, we

25

expect that the proposed VPL, with its support for multiple platforms and modern
features, could be a valuable addition to the landscape of VPLs. It could be especially
useful for Ring programmers or novice programmers who want to learn about the Ring
language through visual programming, as this proposed VPL is the first to support the

Ring programming language.

While visual tools such as Blockly 2022 and Node-RED 4.0.2 are very popular and
serve as the foundation for many visual programming languages, we believe that the
PWCT2 approach and its interactive textual-to-visual code conversion offer notable
flexibility. This could attract more users with coding backgrounds to try the PWCT2 visual
programming approach. Additionally, such features could influence future updates to

Blockly and Node-RED if more users find them useful and necessary [85,86,122,123].

No-code platforms provide highly intuitive drag-and-drop interfaces and prioritize
rapid development, allowing non-technical users to quickly build entire applications
without any coding knowledge. These tools simplify the development process for
specific application types, making them accessible to a wider audience. While visual
programming languages (VPLs) provide a visual approach to traditional programming

[124,125].

Both PWCT2 and no-code development tools aim to simplify the creation and
development of software and applications, but they serve different needs. For example,
PWCT2 focuses on making traditional coding more accessible by providing flexibility and
customization for a wide range of applications. Through further development, the
PWCT2 visual programming language can act as an intermediate-level abstraction layer
between traditional coding and no-code. General-purpose visual programming
languages like PWCT2 can be used as the foundation for building no-code platforms,
enabling higher levels of abstraction and ease of use while maintaining full control

through visual programming.

26

3.4 Chapter Summary

In this chapter, we conducted a thorough literature review, classifying and
comparing existing dynamic and visual programming languages. Through this analysis,
we have determined the key characteristics and unique features of both the proposed
dynamic programming language and the proposed visual programming language,

highlighting the research gaps they address.

e Most of the dynamic languages are developed using textual programming.

e There are few studies on developing a language with a lightweight implementation
and rich features.

e Few programming languages offer built-in support for easy translation.

e Embedded DSLs doesn’t resemble external DSLs, such as CSS or Supernova.

e There is limited research on the use of VPLs in large and complex system projects.

e Many GPVPLs are no longer under active development.

e Importing textual code is uncommon or incomplete in most VPLs.

e The Time Machine in PWCT does not support the Auto-Run feature.

e There are no self-hosting GPVPL.

In the next chapter, we will delve into the design and implementation of the Ring
programming language. We will explore its most important features and contributions,

demonstrating how it advances the current state of dynamic programming languages.

27

Chapter 4: The Ring Programming Language

4.1 Introduction

The primary aim of developing the Ring programming language, as demonstrated
in Figure 4.1, is to use visual programming to develop a lightweight and embeddable
dynamic programming language and environment that facilitates easy and rapid
translation of language syntax. Additionally, the language will empower developers to
create embedded domain-specific languages (DSLs) resembling external DSLs like CSS
and Supernova. The language is a multi-paradigm, providing direct support for object-
oriented concepts such as classes, objects, encapsulation, and inheritance.
Furthermore, our language offers cross-platform support for desktop, web,
WebAssembly, and 32-bit microcontrollers—all using a unified implementation. This
implementation is based on a visual programming design that generates ANSI C code for
the bytecode compiler and the virtual machine. As a “batteries-included” language, it
comes with rich libraries and tools, including an integrated IDE with a form designer.

This chapter addresses the first research question (RQ1).

1- Implementation

using Visual
9- IDE & Form Programming

2-B
Designer Viseocd

Compiler and VM
(No GIL)

3- Lightweight
The key features of the and Embeddable

proposed dynamic
programming language

4- Direct support
for Classes and
Object-Oriented

Concepts
6- Support 5- Syntax
for embedded Flexibility &
DSLs similar Non-English
to external Syntax
ones

Figure 4.1 The key features of the proposed dynamic language and environment.

28

In this chapter, we delve into our system design and implementation. We highlight
the essential features of the proposed dynamic programming language, Ring, and pre-
sent the system architecture. Our focus lies on the language features that facilitate
localization, syntax customization, and the development of domain-specific languages.
The language has been meticulously designed to offer syntax flexibility and empower
users to customize the language syntax according to their specific needs. This leads to
the ability to create internal domain-specific languages (IDSLs) that look like external
domain-specific languages without the need to create specific parsers for them where

the language constructs will be enough to achieve this goal.

4.2 System Architecture

In Figure 4.2, we present the system architecture, which comprises three layers: the
language layer, the batteries-included layer, and the tools layer. The language layer is
closely tied to the compiler and the virtual machine implementation. It defines the core
programming language features, syntax, and semantics. In the Batteries-Included Layer,
we encounter various extensions and libraries that cater to different domains. These
include support for GUI, databases, web development, game development, and even
platforms like Raspberry Pi Pico. The tools layer encompasses both command-based
utilities (such as the package manager and REPL) and graphical tools like the form

designer.

In the language layer, we have visual implementation, generated code, build scripts,
and automated tests. Visual Implementation is developed using Programming Without
Coding Technology (PWCT) software (version 1.9) [34,66]. The generated code is written
in the C programming language (specifically ANSI C) and necessitates a C compiler to
build the Ring executable. Throughout development, we employed multiple compilers,
as illustrated in Table 4.1. With respect to the build scripts and the automated tests, we
have employed batch files and shell scripts to automate the build process. Additionally,
we have a CMake file that can generate the C project for multiple compilers [126]. This
file uses CMake version 3.5. After each update to the project’s source code and before
committing code using Git [127], we used to run a comprehensive suite of tests. This
process is now automated through a Ring program that executes each test in a separate
process and verifies the output against the expected results. We are using Git version

2.42.
29

Code Editor Web Tools Find In Files []

Tools Layer

[|
R “ m .

Batteries Included Layer =
Y csv ISON GameEnginef] € ~=e= @ M
;l”egm SDL) Q a

‘ o ‘ 000 = o B
V—‘rtual MaChine (VM)

‘ Visual Implementation ‘ System State Scanner Execution Loop

Language Layer

Code/ByteCode File Handler Parser VM Modules
Generated Code (ANSI C)

Code/ByteCode String Handler Code Generator Built-in Functions

General Library
’ Automated Tests ‘
I Common Data Structures l Memory Pool l

Figure 4.2 The proposed system architecture.

‘ Build Scripts ‘

Utility Functions I

Table 4.1 C Compilers used for building our Ring Compiler/VM.

C Compiler Platform/OS (Target)
Watcom C/C++ MS-DOS
Microsoft Visual C/C++ Microsoft Windows
GNU C/C++ Ubuntu Linux
Clang macOS
Android-clang Android
Emscripten WebAssembly
GNU ARM embedded toolchain Raspberry Pi Pico

The General library provides common features used by other components, such as
the loader, compiler, and VM. These features include functions for processing files and
directories, especially when Ring is used on an operating system that provides a file
system. Additionally, the library implements Strings, Lists, and Hash Tables. One of the
crucial features offered by the library is the Memory Pool, which pre-allocates memory.
The size of the pre-allocated memory depends on the environment: a few kilobytes are

allocated when using Ring on microcontrollers like the Raspberry Pi Pico, while several

30

megabytes of memory are pre-allocated when using Ring on desktop environments such

as Windows, Linux, and macOS.

Since the proposed programming language can serve as both a scripting language
and an embeddable language, it needs features that fulfill these dual roles. This is
achieved through the loader, which plays a managerial role in our system design. The
loader determines what actions will be taken and what will be avoided. It can print usage
information, process source code or bytecode files, execute code from strings, halt
operations at specific points (such as obtaining scanner tokens), or display applied
grammar rules, among other tasks. To achieve these objectives, the loader calls the

Compiler/VM components.

Since the implementation never uses C global variables, the loader also creates the
system state, and the state pointer is passed to different functions that require access to
common information about the processed files, the current stage, the memory pool, and

SO on.

In the Ring compiler, we have three main modules: the scanner, the parser, and the
code generator. The scanner reads the textual source code and converts it into tokens
(such as keywords, operators, identifiers, and constants). The parser processes these
tokens, checking for correct adherence to the language grammar, and then invokes the
code generator functions to produce bytecode. Ring employs a single-pass compiler
[128], where parsing, code generation, and optimization are interleaved. However, the

language performs only a few optimizations during code generation.

All these decisions are made in favor of maintaining a small implementation. The
language implementation utilizes a stack-based virtual machine [24]. This virtual machine
is specifically designed for the language and contains many instructions that directly map
to its features. In total, there are 128 instructions within the virtual machine. The VM
comes with 255 built-in functions and provides an APl for extensions written in the C

language.

In the Batteries Included Layer, we have a powerful tool called the Binding Generator
(Like SWIG for Python [129]). Our tool is written in Ring itself and allows us to use
straightforward configuration files that describe and customize the functions and classes

31

available in C/C++ libraries. Once these configuration files are in place, the generator
works by producing the extension code. This code enables us to seamlessly use those
C/C++ functions and classes from within the Ring language programs. To build
extensions, we can employ a C/C++ compiler, resulting in dynamic link libraries (DLLs),
shared objects (SOs), or dynamic libraries (Dylibs) according to the platform

(Windows/Linux/macOS) [130].

In Table 4.2, we find a list of external C/C++ libraries used by the standard Ring
extensions provided by the language. The selection of these libraries is based on our
experience of using them in previous projects. Most of these libraries enjoy popularity
within the C/C++ community and cover various programming domains, including
Database, Graphics, Multimedia, Games, Terminal, GUI, Network Programming, and Web

Development.

These libraries exhibit different characteristics that impact the produced software.
For instance, the Qt GUI Framework offers an extensive array of classes and features, but
delving into it necessitates investing more time to study the framework [131].
Consequently, programs built with Qt may have larger runtimes. On the other hand, a
lightweight GUI library like Libui has fewer features compared to Qt, but it excels in being

compact. Notably, most of the GUI tools in the Tools layer are based on RingQt.

Table 4.2 A list of C/C++ Libraries used by Ring Extensions.

Domain C/C++ Libraries/Tools Count
Terminal User Interface (TUI) ConsoleColors and RogueUtil 2
Network and Security LibCurl, Libuv, and OpenSSL 3
Web Servers HTTPLib and Apache Web Server 2
Database ODBC, SQLite, MySQL, and PostgreSQL 4
Games & multi-media Allegro, LibSDL, RayLib and Tilengine 4
Graphics OpenGL, FreeGLUT and Stbimage 3
Graphical User Interface (GUI) Qt, Libui, and NAppGUI 3
Common Files MiniZip, PDFGen and CJSON 3
SDK for Specific Platforms Android SDK and Raspberry Pi Pico SDK 2

32

In the Tools layer, we have a group of command-based tools such as the Ring Package
Manager, Ring2EXE, and the REPL. Additionally, we have GUI-based tools like the Ring
Notepad, which serves as our code editor, and the Form Designer, which is used for
designing application user interfaces and generating code following the MVC design
pattern [132]. Furthermore, Ring includes an application for searching text in multiple
files—a common feature required for large projects. All these tools are written using the

Ring programming language itself. Software documentation helps users learn and use it.

The language is distributed with documentation of over 2000 pages in the English
language that cover the different features and concepts. Also, there are chapters that
cover the different extensions, libraries, and tools provided by the language. The
documentation is created using Sphinx, a Python-based documentation tool. Specifically,
we are using Sphinx version 6.2.1, HTML Help Workshop version 4.74.8702, and MiKTeX
23.4.

4.3 Non-English Syntax

The language scanner (The first phase in the compiler) supports specific commands
(illustrated in Table 4.3) that allow users to change the language keywords and operators

multiple times, facilitating easy translation of the language syntax.

Table 4.3 Scanner commands provided by the Ring Compiler.

Command Parameters Usage

ChangeRingKeyword OldKeyword NewKeyword Change language keyword

ChangeRingOperator OldOperator NewOperator ~ Change language operator

LoadSyntax Syntax file name as literal Load syntax file
EnableHashComments None Support using # for comments
DisableHashComments None Disable using # for comments

In Figure 4.3, we present a WebAssembly application developed using Ring for
online language experimentation. Additionally, we provide an example of how Scanner
commands can be used to switch language keywords to Arabic syntax. The code begins
by translating keywords (such as put, get, if, elseif, and endif) from English to Arabic.
Subsequently, it employs this Arabic syntax to create a program that prompts the user

for their age and delivers a message based on that input.

33

2 D [y TyRingOnline x | =+ - [5} X

< C) hitpsi/ring-lang.github.io/web/tryringonline/project.htm Mt % D L % - O

Font Size: 16 ~ Style: Black - Sample Change Keywords (Arabic Syntax) ~ OQutput Clear (Output)

Source Code Clear (Code) » Run lizo o5 Lz o9 Mal
S pos S ... dlind Go

lole 30 ssbluws gl 3o Sl jaxll

23z law + "lins a5 Lz o Yol gulal

Translation

This Arabic syntax creates a program 237 o + "1 jac oF L dlas o pbl
that prompts the user for their age and sasll S5l
delivers a message based on the input

a3z pdaw + "lole 30 go Jily olgiw 10 sobuss ol oo

23z pdouw + "lole 30 solun ol o ST asll” gulol

Figure 4.3 Arabic syntax within a WebAssembly application developed using Ring.

Rather than including these Scanner commands at the start of every Arabic source
code file, we can use the LoadSyntax command. This command allows us to load syntax
files containing groups of these commands. Additionally, instead of placing the
LoadSyntax command at the beginning of each source code file, we can simply add a file
named (ringsyntax.ring) to the Arabic project folder. The Scanner will automatically load

this file whenever we use any Ring source code file in the same folder.

This approach draws inspiration from the use of (__init__.py) files in Python

modules and the concept of (.htaccess) files in the Apache HTTP Server [133,134].

The application is developed using Ring through the following steps:

1. The user interface is designed using the Ring form designer. The form file (try.rform)
generates the tryView.ring file, which contains the RingQt source code that defines
the window controls and layouts and sets the default style;

2. In the controller class (tryController.ring), we determine the Ring code that will be
executed based on user interaction with the application GUI;

3. The (style.ring) file contains the Style class, which changes colors based on the
selected style. The default style is Black, and the user can change it to another
predefined style (Black, White, Blue, Modern, or Windows);

4. The (samples.ring) file contains a Ring list that provides the predefined samples,
where each sample is represented through a nested list containing the sample name

and the sample code;
34

5. The (ringvm.ring) file contains a class that enables the sample’s source code to be
run in an isolated Ring virtual machine. If the sample produces a runtime error or
terminates the program, we can still use the Try Ring Online application executed by
the caller VM

6. The (onlinering.ring) file contains functions that are automatically called before
executing any sample code in the nested VM. These functions override the standard
functions used for input/output operations. When the console application requires
an input, these functions will pause the sub VM. Later, when the user enters the
required data, the caller VM will update the state of the sub VM, set the variable

value, and then resume the sub VM.

4.4 Domain-Specific Languages

One of the features provided by the Ring language is the ability to create domain-
specific languages (DSLs) on top of classes. These DSLs can employ specific syntax, and
we have the freedom to design this syntax. The underlying idea relies on using braces to
access objects, granting us the ability to utilize the attributes and methods provided by

those objects. This section addresses the fourth research question (RQ4).

Unlike some other programming languages that offer the “with” statement, in
Ring, this feature is provided through an operator. This operator allows us to use this
feature within expressions and in various places throughout the code. Notably, Ring
does not require semicolons or new lines between statements. We can type different
statements on the same line without any fuss. Additionally, in Ring, every valid
expression is an acceptable statement, giving us the freedom to write various values, all

of which will be accepted by the compiler.

Ring classes also support properties. Typing a property name can invoke the getter
method and execute the associated code. Moreover, Ring goes a step further by
allowing us to define methods like braceStart() and braceEnd(). These methods are
automatically called when we access an object using braces. Furthermore, the language
automatically invokes a method called braceExprEval() when we write an expression
inside braces. With these features, coupled with the ability to customize language
keywords and operators, we can construct domain-specific languages that resemble

external DSLs such as CSS, QML, SQL, and Supernova.

35

As an example, we will implement a tiny DSL. This simple DSL accepts a group of
numbers. While entering numbers, we can highlight some of these numbers as
important. Additionally, we could stop the processing using the “stop” command. The
results of the process include both the summation of the entered numbers and a list of
the important numbers. When typing numbers, using new lines is optional. Also, we do

not need to use () or [] to group these numbers.

Table 4.4 presents an example of how to use this tiny DSL and the expected
output. In the example, we entered a group of numbers while asking for some of them
to be highlighted using the (Important) word. Then, we decided to stop processing after

the number 60 using the (Stop) word.

Table 4.4 A simple domain-specific-language implemented using Ring.

Usage (Ring Code) Output

new DSL {
200
400 Important

50
Sum: 1520

600 Important
Important:

60
400

10 20 30
600

405060 Stop

70 80 90

800 Important

To implement this tiny DSL, we only need to write one Ring class containing seven
lines of compact code. Figure 4.4 demonstrates the implementation and analysis of the

Ring features used in this class code.

36

class DSL

nSum = @ lastvalue
stop = False important almportant = []
func getStop() stop = True
func getImportant() if !stop aImportant + lastvalue end
func braceExprEval (value) if !stop nSum += value end lastvalue = value
func braceEnd() ? "Sum: "+nSum ? "Important: " ? aImportant
PRINT-STATEMENTS
ADD ITEM
IF-STATEMENTS
ASSIGNMENTS
METHODS
ATTRIBUTES
CLASSES
OPERATORS
KEYWORDS
] |
0 1 2 3 4 5 6 7 8

Figure 4.4 Ring code to implement a simple domain-specific language.

We begin by defining the class and setting its name (DSL). After that, we declare five
attributes within our class: nSum, almportant, important, stop, and lastvalue. Since our
tiny DSL has two commands (Important and Stop), after declaring them as attributes, we
define the methods getimportant() and getStop() to determine what happens when
these words are used. The braceExprEval() method is called each time the language
processes a number inside the braces that access the object. We sum up these numbers
by adding them to the nSum attribute, and we store the last encountered number in the
lastvalue attribute. Finally, when we finish using braces, the braceEnd() method is

automatically called, printing the results.

4.5 Object Oriented Programming

The Ring programming language provides direct support for many features related
to the object-oriented programming paradigm [135], such as classes, objects,
encapsulation, composition, aggregation, inheritance, polymorphism, and operator
overloading. Additionally, we have extended these features by introducing new
capabilities, such as using braces to access objects (braceStart(), braceEnd(),
braceExprEval(), etc.) to facilitate the implementation of domain-specific languages

(DSLs) using classes.

37

This allows us to seamlessly blend our DSL implementation with the well-known
features of object-oriented programming. For instance, consider Figure 4.5, where we
introduce an update to our domain-specific language. This updated DSL supports
retrieving groups of computer prices and highlighting acceptable prices while displaying
the output through a Graphical User Interface (GUI). The figure contains four sections.
The first section represents the data used as input for the object created from the
PickPrice class. The second section presents the PickPrice class. The third section is
related to the DSL class. The fourth section, on the right side of the figure, shows the

program’s output: a simple GUI window containing a list box.

We define a new class called PickPrice, which inherits from the existing DSL class
(still present in our code, starting from line 25). Inside the PickPrice class, we introduce
a new attribute called Acceptable (used in place of the word “Important”). We define
the getAcceptable() method, which is called when the Ring language encounters the
word “Acceptable” within code, which uses braces to access an object created from the
PickPrice class. Essentially, it acts as a wrapper method, invoking the existing

getimportant() method from the parent class (DSL) to reuse its functionality.

1 new PickPrice {
Name
Computerl Acceptable
Computer2 Acceptable
Computer3
¥

.5 Acceptable Prices

class PickPrice from DSL
Acceptable func getAcceptable() getImportant() %%
func braceEnd
load "guilib.ring"
import System.GUI
app = new App {
win = new Window() {
setWindowTitle("Acceptable Prices")
resize(400,200) setWinIcon(self,"bestprice.png")
list = new ListWidget(win) { addlList(Sort(this.almportant)) }
setlLayout(new VBoxLayout() { addwWidget(list) })
show()

exec()

}

func braceError

25class DSL

Figure 4.5 Extending our DSL using inheritance and the GUI library.

At line 10, we override the braceEnd() method implementation. Instead of the
command-based user interface, we replace it with a GUI. The GUI code leverages the
GUILib library provided by the Ring programming language, utilizing the popular Qt

framework. In line 17, we sort the numbers in our list (almportant) using the Sort()
38

function and then add the items to a ListWidget. Line 23 introduces the braceError()
method, designed to prevent errors when typing words like “Name”, “Price”,

“Computerl”, etc.

While we are inside class methods, using braces to access objects changes the
current object. Consequently, we need different variables to reference the opened
object or the object instance created from the current class. That is why we have (self)
and (this). In line 16, while we are inside the window object, we pass this object to the
setWinlcon() function using the (self) variable. In line 17, to access the almportant
attribute (inherited from the DSL class), we use the (this) variable to refer to the object

instance that will be created from the PickPrice class.

4.6 Batteries Included

The language ships with numerous extensions that wrap up popular C/C++ libraries
such as Allegro, LibSDL, OpenGL, Qt, and SQLite. These extensions provide convenient
bridges between Ring and these well-established libraries, making it easier for

developers to harness their capabilities.

Ring libraries add another layer of abstraction on top of Ring extensions. One
standout example is the Game Engine for two-dimensional (2D) Games. This engine
consists of a set of classes built around the Allegro and LibSDL game programming
libraries [136,137]. What is interesting is that the engine encourages a declarative coding
style reminiscent of CSS or QML. So, when working with it, we can express the game logic

in a way that feels quite intuitive and expressive.

The language comes with an extension called RingPico, which supports Raspberry Pi
Pico SDK [138]. In Figure 4.6, we see an example of using this extension. We can employ
procedural programming and directly call the functions provided by the extension, much
like we would when coding in a language such as C. Additionally, we have the option to
build classes around these functions or leverage the features of the Ring language for

more declarative code as demonstrated in the Figure.

In this example, we load the file circuit.ring, which contains the classes Circuit, LED,
and LEDSwitch. Inside this file, an object called Circuit is created from the Circuit class as

a global variable. We can access this object directly using braces, as shown in Line 8.

39

Once we are inside the object, using words like LED or LEDSwitch is equivalent to

accessing attributes defined in the Circuit class.

load "circuit.ring”

SWITCH_PIN 14
LED_PIN 15

func main

Circuit {
LED
Pin = PICO_DEFAULT_LED_PIN
Blink = True
Delay = 0.1

LEDSwitch |
Pin = SWITCH_PIN
LED

Pin = LED_PIN
Blink True
Delay 3

Figure 4.6 Using Declarative Style in Ring for Raspberry Pi Pico programming.

Using these attributes will call the getLED() and getLEDSwitch() methods. Invoking
these methods creates new objects from the LED and LEDSwitch classes, which are then
added to a list of objects defined inside the Circuit class. Additionally, the getLED() and
getLEDSwitch() methods return these newly created objects. We can access these
objects using braces, just as we did in lines 9, 14, and 16. Once we have access to an
object, we can set its attributes. The additional magic related to the execution loop and
responding to attribute values (such as Pin, Blink, and Delay) is handled through the
braceEnd() method. This method initiates the execution loop and calls other methods

that check the defined objects and their attributes.

4.7 The IDE and the Form Designer
We developed GUI-based tools (Demonstrated in Figure 4.7) like the Ring Notepad,

which serves as our code editor, and the Form Designer, which is used for designing
application user interfaces and generating code following the MVC design pattern [134].
Furthermore, Ring includes an application for searching text in multiple files—a common
feature required for large projects. All these tools are written using the Ring
programming language itself, totaling around 15,000 lines of Ring code. Developing
these tools based on the Qt framework requires knowledge of GUI development, object-

oriented programming, and how to organize large programs in the Ring language.
40

4 Ring Notepad - a X
Fle Edit View Progam Browser Tools Distbute Help

=l =328 AR e g O & B imne: Y
Form Designer @@ Source Code BE

Fle Edit View Help
ToolBox

ng/applications/chessendgameprediclionControlier fing B web Browser

predetancontrollerring X friviewring X | predctomiewing X statscontrolerring X webste: fles/mirmg/documen] | Go sack

-] 1 load "libcurl.ring"
- 2 load "predictionView.ring" # | Getting Started - Third Style
ject
3
- Latel TR :
=Rl 4 import System.GUI : :
= - el Getting Started - Third
| s ekt —— 6 if IsMainSourceFile() { Style
o — (— 7 new App { Hello World
[enget 8 StyleFusion()
o 9 openiindow(:predictionController) rid
a = I 10 exec()
ﬁ = Imnge 11 . .
o= 12}
e rograssaar 13 Run the program
B spiraue e 14 class predictionController from windowsController Bl
E o 15
= 16 oView = new predictionView
DataTimeEdi: 2
17 ovView {
18 txtWKF.setText("a")
Presict {Garme Resull 19 EXWKR. setText("1")
20 txtWRF.setText("b")
21 txtWRR.setText("3")
22 txtBKF.setText("c")
23 txtBKR.setText("2")
24 listAlgorithm.setCurrentRow(1,QItemSelect
,,,,, 25 }

Web Browser Functions (7). Ouput | ProjectFlies

Line : 16 Column : 28 Total Lines : 107

Figure 4.7 Ring IDE (Code Editor, Form Designer, etc.) is developed using Ring itself.

4.8 The Implementation (Using Visual Programming)

Ring Visual Implementation is developed using Programming Without Coding
Technology (PWCT) software (version 1.9) [34,66]. This software offers various visual
programming languages, including HarbourPWCT, PythonPWCT, SupernovaPWCT,
CHPWCT, and CPWCT [12,120].

Each visual language corresponds to a specific textual programming language used
in the code generation process. In our case, we utilized CPWCT to design different
components, such as the General Library, Loader, Compiler, and Virtual Machine,
through visual programming. Subsequently, we obtained the source code in the C

programming language.

PWCT is designed to provide precise control, like what we experience with textual
code editors, while also offering visual programming advantages such as reducing errors
and the ability to work with multiple dimensions and a rich user interface. Notably, PWCT
includes a powerful feature called the Time Dimension during visual programming. With
this feature, each step or block generated in the program stores information about
development time. Programmers can watch the program evolve step by step, revise the

order of the construction process, and even run the program at specific points in time.

The General library plays a crucial role in successfully implementing the Ring

language as a lightweight programming language. Other components extensively reuse

41

the library functions to implement many language features using lists and hash tables
instead of specific C structures. The list implementation (demonstrated in Figure 4.8)
uses a Doubly Linked List, Deque (Double-Ended Queue), and Singleton Cache to store
the pointer of the last visited item and the index of the next item. This allows for quick

traversal of the list through a function that receives the item index as a parameter.

o Typedef struct List

Define Structure

= = Members —
= struct Items * pFirst =
=@ struct ltems * pLast @ Typecel
=@ unsigned int nSize
@ unsigned int nNextltem Singleton Cache
= struct Items * pLastitem =2Ingieton Lacne
=@ struct ltem ** pltemsArray
= struct HashTable * pHashTable
= struct ListBlocks * pBlocks
=—& Garbage Collector Data

= ListGCData vGC
= End of struct (List)

Figure 4.8 Using PWCT to define the List structure which uses a singleton cache.

Additionally, there is an optional array of pointers that can be used in specific
situations to quickly find an item (through the item index) and use it without the need
for the traverse process or using the singleton cache. Furthermore, if the size of the list
items is known when creating new lists, memory could be allocated as a continuous
block to be cache-friendly and minimize cache misses. Using this data structure to
implement language features enables us to create a lightweight language with numerous
capabilities while also contributing to stability and reducing memory management
errors. It is like writing High-Level code like dynamic language code. However, it is
essential to acknowledge one clear disadvantage of this approach: lower performance
and increased memory usage compared to using specific C structures or arrays when

implementing features.

To strike a balance, during language development, we identified performance
bottlenecks—such as function call implementations—and replaced them with specific
low-level implementations based on a pre-allocated array of structures. Such
optimizations became necessary once we started supporting the Raspberry Pi Pico

microcontroller.

42

While the Singleton Cache consumes less memory compared to the array of
pointers, it introduces a challenge: every read operation from the list items could
potentially trigger a write operation if the cache is updated. Such behavior is undesirable,
especially when sharing lists among threads. In this scenario, we opt for the array of

pointers to avoid relying on the singleton cache.

In Figure 4.9, we observe how the language grammar rules are implemented using
PWCT. For each group of grammar rules, we define a specific function. We had a step
that described each rule, allowing us to focus easily on specific rules using features like
collapsing and expanding in the steps tree. Each group of steps associated with the same
component can have an interaction page (a data entry form) that receives component
parameters and controls the steps’ generation and update processes. Notably, all
components, including the “Call Function” component, are created within the PWCT
environment itself. We have the flexibility to create new visual components or update
existing ones. During the development of the Ring Compiler/VM, we exclusively used the
standard components provided by PWCT. No new components were necessary because
the available ones sufficed for implementing the required features. In the toolbar, there
is a combobox for selecting the visual programming language. PWCT initially started with
“HarbourPWCT” as the default visual language, but we specifically chose “CPWCT” to

develop our project based on the C language.

B ring_stmssf - PWCT - o
File Edt DomeinTree Goal Tansporter Package Tools Help

D@ | & | o veulPogrammigLanguage cPweT News: GetProgramming Without Coding Technology 2.0

Goal Designer

Active Goal . Main Syntax Directed Editor Steps Colors VPL Compiler

SlepsTree | StepCode & £ By [=3 A The Time Machine

Goal

z &3 intring_parser_class (Parser *pParser)
é: 5 - o/ Start Here Interaction Using Transporter
E & . = Declare Variables FILE{ C1PWCT19\SSBUILDICPWCTICOMPONENTSUDFICALL FUNCTION IDF)
4 Statement Class Identifier [From dentifier] r
) - =8 |F ring_parser_iskeyword(pParser,K_CLASS) Function Name fing_parser_nexttoken
s . 7 @ Start Here Pasnetes
= - = ring_parser_nexttoken (pParser) pPRarser ;|
! @ RING_PARSER_IGNORENEWLINE St
= «—3 |F ring_parser_isidentifier(pParser) -l
« @ Else e — —
* = End of IF Statement = =
® Statement Function|Func|Def Identifier [PARALIST]

dentifier { dentifie

i

i St

b St te

© Return ring_parser_stmt(pParser)
= End of Function ring_parser_class

=8 int ring_parser_stmt (Parser *pParser)

@ B intring parser paralist (Parser *pParser)

Component | Call Function Domain CPWCT \ Fundiions £ Close

Resty o

ement P

Figure 4.9 Implementing the Ring language grammar using PWCT.

43

Figure 4.9 shows a button labeled “The Time Machine.” Clicking this button provides
a menu of options that allow us to play the program like a movie, revealing the
construction steps. Another crucial button is the “VPL Compiler.” By using this button,
we can examine the composition of different visual components, as demonstrated in
Figure 4.10. An interesting feature in the results is the count of interactions (visual
components) and the number of steps within the steps tree. These metrics provide
insight into the abstraction level offered by the interaction pages of the visual

components.

B vpL compiler x

P ale ime (Seconds): 2
Nu teractions : 909

3 Stateme
= Return ring_parser_stmt(pParser) Number of Steps - 1599
= End of Function ring_parser_class pumsercrEmore o
int ring_parser_stmt (Parser *pParser)
int ring_parser_paralist (Parser *pParser) Emors
int ring_parser_list (Parser *pParser)
int ring_parser_epsilon (Parser *pParser)
int ring_parser_passepsilon (Parser *pParser)
int ring_parser_namedotname (Parser *pParser)
int ring_parser_step (Parser *pParser,int *nMark1)
int ring_parser_csexpr (Parser *pParser) S EiClose |
int ring_parser_csbhraceend (Parser *pParser)
int ring_parser_bracesandend (Parser *pParser,int IClass, SCANNER_KEYWORD nKeyword)
= int ring_parser_ringvmsee (Parser *pParser)
= End of File

Ooo0oDoODoDoooDooDao

Figure 4.10 Using the VPL Compiler to get statistics about the visual representation.

An interesting question arises: why do we need a Visual Programming Language
(VPL) Compiler if the visual language itself is designed to prevent errors? The answer lies
in our ability to disable the Syntax Directed Editor, allowing us to manually arrange the
generated steps for visual components to do quick organization and refactoring.
However, this flexibility can sometimes lead to mistakes. Imagine a scenario where a
component is inadvertently placed in the wrong location, and the programmer does not
immediately notice the error. In such cases, the VPL compiler becomes invaluable—it

can catch these composition errors and help ensure the program is correct.

The Ring compiler generates bytecode, where each instruction must contain an
operation code and can include zero, one, or two arguments. This bytecode is stored by
the Ring compiler as a Ring List, allowing the compiler to easily insert instructions during
code generation. However, when this bytecode is passed to Ring VM, it undergoes a

conversion process to a more suitable representation for execution.

44

This representation is stored as a single continuous block in memory (rather than
multiple byte-code chunks). Notably, it includes extra space that can be utilized for new
instructions produced at runtime by the Eval() function. By having this additional space,

the need for frequent memory reallocation is reduced.

Within the Virtual Machine (VM), the bytecode representation employs fixed-size
instructions. Specifically, the size of each instruction is 16 bytes for 32-bit
microcontrollers (such as the Raspberry Pi Pico) and 24 bytes for 64-bit desktop
environments. This bytecode is writable, allowing the VM to update instructions during
runtime—caching certain values and even replacing instructions with faster alternatives

that utilize pointers for variables, thus avoiding costly search processes.

In Figure 4.11, we observe the structure of the bytecode on the left side. On the
right side, we find the VM instructions that have been added to enhance performance.
Opting for a writable long-byte code format is somewhat unconventional; for instance,
Python uses 2 bytes per instruction, while Lua uses 4 bytes [139,140]. However, our

deliberate choice of a long-byte code format serves two key purposes:

e Simplicity of Implementation: Despite supporting a language with a substantial
number of features (128 instructions), we aimed for a compact implementation. The
writable long-byte code format allows us to achieve this without unnecessary

complexity.

e Performance Optimization: By using a longer bytecode format, we gain flexibility. We
can improve the performance of specific instructions without resorting to a just-in-
time compilation of machine code or significantly increasing the overall

implementation size.

When considering the disadvantages of using a writable long-byte code format, it is
essential to address a few key points. First, this approach results in larger memory
requirements, which increases the likelihood of cache misses—a factor that directly
impacts performance. Additionally, storing the byte code in writable memory can be
costlier, especially on microcontrollers like the Raspberry Pi Pico [141,142]. However, to
mitigate the drawbacks associated with the larger bytecode size, the Virtual Machine
(VM) incorporates a clever strategy: some instructions serve multiple purposes.

45

This technique is well-known and proves useful in common scenarios. By identifying
instructions that are frequently used together, we can optimize their representation. In
doing so, we avoid allocating unnecessary space for instructions that do not require the

full extent of the provided memory [143].

=@ Typedef union Register 4 For Better Performance
=@ Typedef struct ByteCode +—@ Case ICO_PUSHP
= Members =3 Case ICO_INCP
= unsigned int nOPCode: 8 =3 Case |ICO_PUSHPV
© unsigned int IFlagReg: 1 =3 Case ICO_INCJUMP
= unsigned int IFlagReg2: 1 a3 Case ICO_INCPJUMP
© unsigned int ILiteral: 1 =3 Case ICO_LOADFUNCP
= unsigned int IlUnused: 1 =@ Case |ICO_PUSHPLOCAL
= unsigned int nReg1Type: 2 s @ Case ICO_PUSHARG
S unsigned int nReg2Type: 2 @ 3 Case ICO_INCLPJUMP
= unsigned int nNSmallintReg: 16 ¢ @ Case ICO_INCPJUMPSTEP1
= unsigned int nintReg: 32 +—3 Case ICO_INCLPJUMPSTEP1
= Register aReg[RING_VM_BC_ITEMS_COUNT] 22 Case|CO_LEN
= End of struct (Instances : ByteCode) s @ Case ICO_SETOPCODE
=8 Typedef struct CFunction @ 3 Case |ICO_CHECKBRACEMETHOD
=2 Typedef struct FuncCall =& Try-Catch-Done
= B8 Typedef struct VM a—4& Duplicate and Range

Figure 4.11 Ring Virtual Machine implementation using PWCT.

The Virtual Machine (VM) implements several useful features when embedded
within projects. For instance, during program execution, we can suspend or resume the
VM [144], allowing a running program to request VM suspension while preserving its
state. Additionally, the VM supports having multiple language states—meaning that

more than one instance of the Ring VM can coexist within the same application.

These features are of practical use in the “Try Ring Online” application. Within this
application, when we write and run a program, it creates a new language state specific
to our program. If the program requires input from the console, it halts the sub-virtual
machine, signaling to the main VM that the console application is awaiting input. Users
then type their input in a GUI provided by the main VM and click “Send”. These data are
copied to a variable associated with Sub VM, and a resume operation follows. As a result,
the console application in Sub VM can receive the input. This approach enables us to
create a playground for the Ring language as a WebAssembly application without the

need for threads.

In summary, all the modules related to the General Library, Loader, Compiler, and
Virtual Machine are designed using visual programming through PWCT. We have 43
visual source files that generate 44 C source files and 28 C header files. Each visual source

file could generate one or more textual files.

46

The Ring language keywords, standard functions, context-free grammar, compiler

and runtime errors, and virtual machine instructions are published online on the Ring

website (ring-lang.github.io/doc1.22/reference.html). To achieve a lightweight

implementation while retaining a programming language with rich features and ensuring

performance comparable to scripting languages, we made the following design decisions

that address the third research question (RQ3) [139-144]:

10.

Applying principles such as “Don’t Repeat Yourself” (DRY) and the “Keep it simple
and stupid” (KISS) principle.

Using a single-pass compiler where the parsing and code generation are interleaved.
The ability to separate the compiler and the virtual machine and use any of them
alone.

All the built-in functions are grouped in optional modules through preprocessor
directives.

Ring Lists vs. C Structures: In most cases, we opted for Ring Lists over C structures.
Selective Use of C Structures: However, in specific features where performance
impact matters significantly, we chose to use C structures. These targeted
optimizations enhance critical parts of the language.

Flexible List Implementation: Our list implementation combines various data
structures and optimization techniques, including Doubly Linked Lists, Deques
(Double-Ended Queues), Singleton Caches, arrays of pointers, Hash Tables, and
continuous memory blocks. This flexibility accommodates diverse use cases.

One block for Bytecode Storage: The bytecode resides in a single continuous
memory block, avoiding fragmentation. Moreover, we intentionally allocate extra
space within this block. This foresight reduces the need for frequent memory
reallocation during runtime, especially when using the Eval() function.

Writable Long-Byte Code Format: The bytecode format uses a longer
representation, which allows for performance improvements. During runtime,
instructions can be dynamically replaced with faster alternatives, all without
resorting to just-in-time compilation to machine code or bloating the
implementation size.

The Virtual Machine does not use a global interpreter lock (GIL), which results in

better performance when utilizing threads for CPU-bound tasks.

47

4.9 Chapter Summary

In this chapter, we presented the design and implementation of the Ring dynamic
programming language. We explored its most important features and contributions,
highlighting the advancements it brings to the field of dynamic programming languages.
We presented Ring features related to syntax customization and extending object-
oriented programming support with novel features that enable creating internal
domain-specific languages that resembling external domain-specific languages like CSS
and supernova. Also, we presented the visual implementation of the Ring Compiler/VM
based on the PWCT visual programming language and listed the design decisions that

are used to have a lightweight and multi-paradigm dynamic programming language.

In the next chapter, we will introduce the PWCT2 visual programming language.

We will delve into its design, key characteristics, and main contributions.

48

Chapter 5: The PWCT2 Visual Programming Language

5.1 Introduction

The primary aim of developing the PWCT2 visual programming language, as
demonstrated in Figure 5.1, is to use the Ring programming language to develop a
research prototype for the second generation of the PWCT visual programming
language. PWCT2 offers several enhanced features, including a more flexible
environment, time dimension and auto-run, rich colors and customization, rich
comments using text, lines, images, and HTML, an enhanced form designer for GUI
applications, support for importing Ring source code and interactive textual-to-visual
code conversion, self-hosting of the PWCT2 environment, and cross-platform
implementation that supports Windows, Linux, and macOS. These features aim to
improve the overall functionality, user experience, and performance of the PWCT2

environment. This chapter addresses the fifth research question (RQ5).

(1)
Implementation

(9) Using Ring
Cross-Platform

Language

and Faster
Implementation

(8)
Self-Hosting
the PWCT2

Environment pWCT2

(3)
Time Dimension
and Auto-Run

(4)
Rich Colors and
Customization

(6) (5)
Enhanced Rich Comments
Form Designer using Text,
for GUI Apps Lines, Images,
and HTML

Figure 5.1 The key features of the proposed visual programming language.

49

In this chapter, we describe our system design and implementation. We highlight
the important features of the proposed visual programming language, PWCT2, and

present the system architecture, which is implemented using the Ring language.

5.2 Implementation using the Ring language

The architecture of the proposed visual programming language (shown in Figure 5.2)
is divided into three main layers: Applications, PWCT Environment, and Ring Language.
Each layer contains specific components that contribute to the overall functionality of
the system. The bottommost layer, Ring Language, includes Development Tools,
Libraries, Compiler, and Virtual Machine (VM). Development Tools provide various tools
that assist in the development process, such as the package manager and Ring2EXE.
Libraries consist of pre-written code libraries that developers can use to add functionality
to their programs, saving time and effort by providing reusable code for common tasks.
The compiler processes Ring textual source code and generates bytecode for the Ring
Virtual Machine if the program is correct. If there are issues, it produces compile-time
errors. The Virtual Machine (VM) provides a runtime environment for the programs
written in Ring, executing the compiled code and managing the program’s execution

[91,145].

Use Applications
Cases ¢ 2D Games

 Visual Programming

PWCT ‘ « Ring to PWCT

Environment « File System

* Tools

) e Libraries
Ring Language ‘ * Virtual Machine
e Compiler

Figure 5.2 The proposed self-hosting visual programming language architecture.

The middle layer, PWCT Environment, consists of Visual Programming, the Ring to

PWCT converter, and the File System (Visual Source). Visual Programming allows

50

developers to create programs using visual elements rather than traditional text-based
code, providing a more user-friendly development experience. This is achieved through
tools such as the Steps Tree editor, time machine, components browser, interaction
pages (data-entry forms), and form designer. The Ring to PWCT converter assists in
importing the textual source code written in Ring and visualizing the structure and flow
of the program by offering graphical representations of the program’s logic. This enables
us to continue program development using visual programming instead of relying on the
textual source code. The File System (Visual Source) manages the visual source files
within the PWCT environment, organizing and storing information about the visual
elements used in the development process. PWCT can generate Ring source code from
these visual source files, enabling the execution of these programs using the Ring

compiler and virtual machine.

The topmost layer, Application Layer, has the various applications, including 2D
games, that can be developed using PWCT based on the Ring programming language,
ranging from simple utilities to complex software solutions. Overall, the architecture of
the proposed system is designed to provide a comprehensive and user-friendly
environment for visual programming based on the Ring programming language, making

it accessible to both novice and experienced Ring developers.

5.3 Flexible Visual Environment

In this section, we introduce the design differences between PWCT (the first
generation of Programming Without Coding Technology) and PWCT2 (the proposed new
generation). In PWCT, visual programming is achieved through four sub-systems: Goal
Designer, Components Browser, Interaction Pages, and Form Designer. The Goal
Designer is used for designing modules and provides the Steps Tree Editor and the Time
Machine. The Components Browser enables users to select specific components, each
offering one or more interaction pages (data-entry forms). Entering data into these

interaction pages generates or updates steps managed by the Goal Designer [34,66].

5.3.1 Single Main Window and Several Dockable Windows
In PWCT [66], the visual programming sub-systems are not designed to be used

simultaneously on one screen; each sub-system uses a separate window. For instance,

the Goal Designer and Components Browser, or the Components Browser and

51

Interaction Pages, cannot be viewed at the same time. In the proposed visual
programming language PWCT2, this design has been revised to use a single main window
for all sub-systems, as shown in Figure 5. Each sub-system now occupies a separate dock-
able window [146,147], allowing users to view all sub-systems simultaneously, which
avoids the complete redrawing of the screen when switching from one to another. We
also added two dock-able windows: one for Project Files, where users can quickly
navigate to specific folders and open visual source files, and another for the Output
window, where users can see the program output, send input to the running program,

or terminate it at any time.

The previous generation of PWCT did not provide these features (project
files/output window) and relied on operating system dialog boxes to open files and the
command prompt window to display program outputs [12]. Another feature added by
PWCT2, which does not exist in PWCT, is the ability to open multiple interaction pages
simultaneously. This simplifies the process of reading and updating programs. The Steps
Tree Editor provides a feature to open all the interaction pages at once through a

keyboard shortcut.

B Programming Without Coding Technolagy - a x
File Edit View Program Toals Distibute Games Help

=i

| e

v ww T v v
Components Browser 18 C/LeamPWCT/ntroduetion pwet @x
search
Components Tree 3 ,
Steps Tree .
@ RingPWCT D e Print Component
= General Text : [Hello, World!)
“opmens
iteral
& Header
@ New Line Expression
 Image Fper
v (0"““9‘" Print Hello, World! (New Line)
v Templates 0 n
© Basic Program Print \Welcome to PWCT2 (New Line) |
“ Quick Start |Functions v New Li
& Console - lc' ew Line
. ESSES © again ok Sclose
@ Get Input N
“ Get Character 2 Print Component
© Get Characters = Text : (Welcome to PWCT2)
e s
@ The If Statement “em .
v If Xpression
« Else
@ ElseIf Trpe :
@ The Switch Statement
« Switch
@ Case
© Else (Other) ¥ New Line
@ For Loop @ Again w Ok @ Close
« For In Loop
@ While Loop
ot a || D

Companerts Browser | Frojed Fies

File Saved and the source code is generated!

Farm Designer

C:fLeamPWCT/Intraduction pusct

Figure 5.3 PWCT2 uses a main window and dock-able windows.

The programi illustrated in Figure 5.3 is a simple example that prints two lines of text:

“Hello, World!” and “Welcome to PWCT2.”. The proposed visual programming language
makes it straightforward to create and modify the program visually. Users can add,

remove, or change steps by interacting with the Steps Tree and the Print Component.
52

For instance, to change the text being printed, users can simply edit the text in the Print
Component interaction page and click “Ok.” Additionally, new steps can be added by

selecting the desired components from the Components Browser.

The Components Browser (left panel) lists various visual components that can be
used in the program. These components belong to the RingPWCT visual programming
language. Categories include Comments, Templates, Console, Control Structures, and
more. Each category contains specific components, such as “Print Text”, “Get Input”,
“The If Statement”, and “For Loop”. We can find and select a component using the mouse

or through a search process by the component name or part of the name.

The Steps Tree (middle panel) displays the structure of the program in a hierarchical
tree format. The program starts with a “Start Point” and includes steps generated by the
Basic Program component, such as “The First Step”, “Load Files”, “Statements”,
“Functions”, and “Classes”. Using the Basic Program component is optional, and these
generated steps are just comments for organization. Additionally, there are steps
generated by the Print Text component, like “Print Hello, World! (New Line)” and “Print
Welcome to PWCT2 (New Line)”. In general, each step represents a specific action or
command in the program, or it could be just a comment to provide a better

understanding of what the program does or its structure.

5.3.2 Flexible Steps Tree Editor
The Steps Tree editor in PWCT2 is designed for flexibility and provides many features

that do not exist in PWCT, including drag-and-drop functionality to move steps from one
location to another instead of using cut and paste. This enhanced flexibility significantly
improves the user experience by simplifying the process of organizing and modifying
steps. In PWCT, when we add a step as a child to another step, the parent step must be
of a type that allows children, and the added step will be at the end of the children. This
is a limitation if we want to insert a new step between two other children, requiring the

steps to be added first and then moved to the desired location.

In PWCT2, the insertion process is supported, where selecting a step that does not
support children and then adding a new step inserts it after the selected step. This
change enhances the capability to modify the program’s structure on the fly, making

development more intuitive.
53

The Steps Tree editor provides common features expected from editors, such as Find
and Replace, Go-To, and Print to PDF, ensuring that users have access to essential editing
tools. In Figure 5.4, we demonstrate how to insert steps between other steps by inserting
the “Print TWO (New Line)” step between the steps that print the “ONE” and “THREE”
messages on the screen. In the second section of the figure, we show how to use the
Find and Replace window to find steps that contain specific text. These improvements

collectively contribute to a more user-friendly development environment.

C/LearnPWCT2/InsertStep.pwct o®
0 The Time Machine | [¥] -
#? | | [steps Tree :

® | The First Step ' =

Y Expression

6 Type :

7%

= v/ New Line

. & Again w Ok §Close

E\

=Y

md
C/LearnPWCT2/InsertStep.pwet CE
O The Time Machine | [&] -
D/ Steps Tree

& Start Point Find/Replace

T . Replace with

'!’ - Case Sensitive

Print ONE (New Line) Start Point
P, Load Files
Print TWO (New Line) N eionemewtng i

= print THREE (New Line)]

- |Functions

: [Classes

Y

= Search Replace Replace Al Close

il

Figure 5.4 Inserting steps in the Steps Tree and using the Find and Replace window.

54

5.3.3 RingPWCT Components in the Components Browser
In PWCT [66], the environment includes multiple visual programming languages,

such as HarbourPWCT, CPWCT, PythonPWCT, and SupernovaPWCT. Each visual language
comes with a group of components classified into different domains, generating textual
source code in specific textual programming languages like Harbour, C, Python, and

Supernova.

In our research prototype of PWCT2, we focus on supporting the Ring programming
language through the RingPWCT visual programming language, which provides visual

components that generate textual source code in the Ring programming language.

Table 5.1 provides an overview of the 394 visual components available in the

RingPWCT visual programming language within PWCT2.

The table categorizes the components into different domains, specifying the
number of components in each domain and providing an example for each domain. For
instance, the General domain includes six components, with “Quick Start” as an
example, while the Console domain comprises four components, with “Print Text” being
one of them. Other notable domains include Control Structures, with 13 components
like “For-In Loop”, and GUI, which has the highest count of 88 components, exemplified

by the “Window Class”.

The table also highlights various other domains such as Functions, Program
Structure, Lists, Strings, Date and Time, and Math, among others. Each domain contains
a specific number of components tailored to different programming tasks. For example,
the Date and Time domain includes seven components like “Add Days”, while the
Database domain, one of the most extensive, contains 34 components such as “ODBC
Connect”. This comprehensive categorization helps users navigate and utilize the diverse
set of tools available in RingPWCT to enhance their programming experience within

PWCT2.

55

Table 5.1 The RingPW(CT visual programming language components.

ID Domain Components Count Example

1 General 6 Quick Start

2 Console 4 Print Text

3 Control Structures 13 For-In Loop

4 Variables and Operators 17 Assignment

5 Functions 3 Define Function
6 Program Structure 2 Load Source File
7 Lists 15 New Empty List
8 Strings 16 Get String Length
9 Date and Time 7 Add Days

10 Check Data Type 3 Check Character
11 Math 1 Math Functions
12 Files 29 Read File to String
13 System 12 Get System Variable
14 Dynamic Code 3 Eval

15 Database 34 ODBC Connect
16 Security and Internet Functions 11 Download

17 Object-Oriented Programming 10 Define Class

18 Functional Programming 3 Anonymous Function
19 Reflection 29 Globals Info

20 Standard Library 71 Stack Class

21 Web Library 12 WL WebPage Class
22 LibCurl Library 5 LibCurl Easy Init
23 GUI 88 Window Class

5.3.4 Advanced Visual Components and Templates

In PWCT [12], visual components are based on a specific scripting language designed

for the PWCT environment. This scripting language is intended to be easy to use and

increase productivity by providing specific commands that guide the steps generation

process based on data entered in the interaction pages. However, this scripting language

is very limited and provides simple concepts related to variables, if-statements,

steps/code generation, and rules for relationships among components. It does not have

56

loops, functions, or the ability to be extended without modifying its interpreter [148].
These limitations prevent the development of rich and powerful components that could
perform advanced tasks during steps generation. Components are designed under the
assumption that the component generating the steps will also be responsible for
updating these steps. In other words, a component cannot generate steps that belong
to other components. For example, to create a template of steps that belong to different
components, a specific visual source file with these generated steps must be created.
The user can then start a new visual source file from these templates. This means that
these templates must be used at the start of creating new visual source files, and
multiple templates cannot be used in the same visual source file without creating a new

template that integrates them.

PWCT uses two different programming languages: Visual FoxPro for developing the
PWCT environment and a scripting language called RPWI designed for developing visual
components. In the proposed visual programming language (PWCT2), the Ring textual
programming language is used for developing both the PWCT2 environment and the
visual components. Using Ring for developing the environment components enables us
to create advanced components and avoids the known limitations of RPWI. For example,
we have the Quick Start component, which can be used to generate steps that belong to

multiple components, as shown in Figure 5.5.

C/LeamPWCT2/AdvancedComponents.pwct B Output Window E®

0 The Time Machine | [5]

one
two
three

(|| mtae
. Quick Start Component v
. - Start Point '
* aLiSt = 1 5' Loop and Condition
¥ | -|Forxin aList step 1 Template Main Menu
& Dynamic Loop
Exit from two loops -
v No Comments
@ Again w Ok S Close
- Case 2
N
N Variable :)
£ Case 3} I:r'laLaljst &)
7 Case 4 '
Step: 1
' Case 5 @ Again w Ok & Close
End of Switch -
End of For Loo|)
- - Variable : (x]
Pnnt aLIS!I W Again W Ok & Close
Value: 1)
@ Again w0k S Close

. , Input : Send
Form Designer C:/LearnPWCT2/AdvancedComponents.pwct B — o

Figure 5.5 A component that generates steps that belong to other components.

57

The Quick Start component contains many templates that we can use. One of these
templates is the Modify Lists Using Loop template. Selecting this template generates
multiple steps that belong to different visual components, such as the For In component,
Switch component, Case component, etc. The Quick Start component can also generate
comments and provides a No Comments checkbox to avoid generating comments if

desired.

5.4 Time Dimension and Auto-Run

In PWCT, users can use the Time Machine to change the time position and go
backward in time to see the program at a specific point in the past and check the order
of steps added to the program. We also have the option to play the program as a movie
and see how the visual components are used step by step to create the program.
Additionally, we can run the program at a specific point in the past and see the program
output at that point. In PWCT2, we support the Auto-Run feature as shown in Figure 5.6,
where changing the time position or adding new steps to the program will directly

execute the program and display the output in the output window.

The Time Machine | [E]

Steps Tree

- Start Point

-IForx=1to 10 step 1

End of IF Statement]

End of For Loogl

The Time Machine | [E] Three

Steps Tree

- Start Point

-|Forx = 1to 10 step 1

Print Three (New Line)
|End of IF Statement]

End of For Lood

e Time Machne |[E]

Steps Tree

- Start Point

-|Forx =110 10 step 1

End of IF Statement

Print x (New Line)
End of For Loop

Figure 5.6 Using the Time Machine and the Auto-Run feature.

58

The program contains a for-loop and a conditional statement. The first position in
the figure shows the initial state with a For loop running from x = 1 to 10 with a step of
1 and an If statement checking if x equals 3. The second position captures the execution
of the If statement when x equals 3, printing “Three” on a new line. The third position
demonstrates the continuation of the loop, printing the value of x on a new line for each
iteration. The output on the right side of the third screenshot lists the numbers 1 to 10,
with “Three” replacing the number 3, highlighting the effect of the conditional

statement.

5.5 Rich Colors and Customization
Unlike PWCT, which provides one style for the environment (White Style), PWCT2

enables us to select the PWCT environment style (White, Dark, Blue, etc.). Like in PWCT,
we have a Customization window to determine the colors used in the Steps Tree editor
based on the step type (see Table 5.2). Each visual component can generate one or more
steps in the Steps Tree after entering the required data on the interaction page. These
generated steps might belong to the same component or be related to other
components if the original component is a template. We can use the same component

again by clicking the ‘Again’ button on the interaction page.

Table 5.2 Different types of Steps inside the Steps Tree.

ID Step Type Description

1 Start Point The program root (one for each visual source file)
2 Comment Just a comment and does nothing during runtime
3 First The first step generated by the component

4 Allows Interaction The step could include sub steps

5 Leaf The step cannot include sub steps

PWCT2 can use multiple colors in each step to highlight the data entered by the user
from the text generated by the visual component, whereas PWCT uses one text color
and one background color per step. This improvement is inspired by Scratch [149].
Additionally, we can show or hide the dock-able windows as needed. As shown in Figure
5.7, we focus on the Steps Tree editor and interaction pages after setting the style to

Dark and customizing the Steps Tree colors using the Customization window.

59

:1 New Object Component

Point
Object Name : oView
Class : predictView

-

Parameters :

import package System. GUI o) Access Object using Braces
8 | IsMainSourceFile(= o Geler bt Call Init() Method
® pgain oo Sciosn
B 0/pp = New Object App)
Access Component
= =
StyleFusion(o Object Name :
openWindow(:predictController . ® Again 0k Closa
Call Method Component
! pol
End of IF Statement] Object :
i Class predictController from windowsControllerParent] N -
o Attributes B C 752
oView = New Object predictVie Parameters :
B tethods Output :
@ function closeApp

win

— - ® Again
& function predict

) function select
@ function clear

Figure 5.7 Using the Customization window to select the Steps Tree colors.

Additionally, the Customization window enables us to set the Steps Tree background
color and adjust the indentation level in the Steps Tree. In the Options tab, we also have
advanced options that can enable the Auto-Run feature and control the environment’s
behavior in different situations, such as opening the interaction pages in the Steps Tree

dock-able window or in separate windows.

In PWCT [12], users can open only one visual source file at a time for each instance
of PWCT. Opening multiple visual source files simultaneously requires running multiple
instances of PWCT. In PWCT2, we have the Project Files dock-able window, as shown in
Figure 5.8, where we can easily select and open any visual source file or form file.
Additionally, using the options in the Customization window, we can choose to open files
in new tabs, allowing us to work with and view multiple files simultaneously. This
improvement is inspired by popular editors and IDEs like Visual Studio and NetBeans
[150,151]. The Customization window is open in the center, displaying two tabs: “Colors”
and “Options”. The “Options” tab is selected, showing a list of customization options with
checkboxes. The options listed in the Customization Window include Auto Run, Open
files in new tabs, Show the Time Machine options, Steps Tree—Hide Step Code Tab, Show
Steps Tree Lines, Light Tree Lines, Steps Tree—Show Nodes Icon, Open interaction pages
in new windows, Allow Syntax Errors in Interaction Pages, Avoid Components Browser,
Avoid Components Browser Auto-Complete, Components Browser—Always Show
Search Window, Reflect changes in font size to other windows, and Borders around steps

(in supported styles).
60

File Edit View Program Tools Distribute Games Help

M = @ @ W vone: cimogen e) = .mg Vv
Project Files BE gamebasepwct g
B | ! Fitter (apolications Foder) 0 The Time Mechine [E]
GoldMagic800 =
K Demt:rgm (& seostee = Define Function Companent
\ ~Start Point Name: Run |
» H i
r;": . 9¢ " [Class GameBasd] . ———
9) IAttrihutes Customization Window Parameter’s. —_
levels ¥ Output ; [)
» 58 sound I M Methods = o || oo
< " @ %)
»| function Run
gamecamera,pwct = » [function Setup If Statement Component

7 gamedata.pwct
" gamedraw.pwct

Y| gameengine pwct

» [function EventsLoop
+| function AfterPro(essmgKeys]

Condition : (|FULLSCREEN

© Again @Ok S Ciose

]

. - _
L gameerror.pwct Z » |function FrameOperatlonSl Assi t Cor t
- i s ssignmen mponen
- Jametlesput 3 » | function Destroy e - ‘—],FU,_LSCRE
] te wet = : ide
| gamenouiap Ay pue x »|function Set2DMode] T
L1 gamelevel.pwet =) = True
7 gamelogo.pwct » [function Start2DScreen Right Sid
y a ight Side :
gamemainmenu pwct » [function End2DScreen
| gamemouse pwct + | function Position2D_Y Y| A * || &
= - @ Again ose
| gameplayer.pwct »[function Position2D_X X| .
gameresources.pwct = -
7] gamescreen.puct » [function ExitFromMainloop l Uass Component

gameselectlevel pwct
" gamesound.pwct

7 gamestory.pwct

7 galdmagic800.pwet
KnightTour

» |function LoadResources
»|function DrawScene
+ [function PlaySound

» [function BeforeEventsLoop]

Name : [GameBase

Parent : [
¥! Private Attributes/Mathods
@ Again w0k @ Close

|
]

Froject Fiss | Components Beowser Output Window Form Designer

@ | gamecamerapwt gamedampwt gomedawpwct gameengnepwet gameflespwet gamehowtoplaypwct gamelevelpwer | gamelogo pwer

Figure 5.8 Opening multiple visual source files.

For projects with many files, we have the option of a Main File (available in the
toolbar), which we can run at any time to start the project, even if we are focusing on
another sub-file within the project. Switching between files is easy using tabs that
include the file name and are located at the bottom of the window. We can also view
two files side by side in the PWCT2 environment by moving the dock-able window of the
file. On the left side, there is a “Project Files” dock-able window displaying a list of files
and folders related to a project named “GoldMagic800”, which is a puzzle game that

contains 44 levels [152].

The highlighted file is “gamebase.pwct”. In the center, there is a “Steps Tree” dock-
able window showing a hierarchical list of methods under the “Class GameBase”. On the
right side, there are interaction pages for defining function components, if-statement
components, assignment components, and class components. The user can determine
which interaction pages to open simultaneously and use them to generate new steps

and create programs without having to switch back to the components browser window.

5.6 Rich Comments using Text, Lines, Images and HTML

PWCT [12] enables adding comments to our Steps Tree, referred to as “user steps”,
which use text to describe something or add information about the program. In PWCT2,
we use different types of comments, not just text. We can add lines, images, and headers
with specific fonts and colors. In Figure 5.9, we have a program that uses a Raspberry Pi

Pico to control an LED, making it blink, with the ability to interact using a switch [153].

61

Using rich comments, we added a header that represents the sample title, followed
by a horizontal line, and then an image of the circuit. Comments could include HTML, as
demonstrated in Figure 5.10. This feature could be used for adding tables from both local
and online web pages to our program. This improvement is inspired by the Envision

visual programming system [154].

Q| e B
[# sepsiree
-~

Comment (Header) Component

Text : (Using Raspberry Pi Pico

Size: (1]
T Color : [purple)
&+ Back Color : []
S Left
Align: Righ:
B ign: Right
-
&, & Again w Ok §Close
e Comment (Image) Component
7 e
L Image File: [pico.jpg]
Width: [J
Height: [)
Left
Align: Right
@ Again Ok & Close
P = PICOiDEFAULTiLEDiplN Assignment Component
Left Side - [Blink)
|Delay = 0.1 True
]
* |LEDSwitch {] Right Side :
I
[End of Function]
@ Again W Ok @ Close
Figure 5.9 Using rich comments (Lines, Images, and Headers).
C/LearnPWCT2/UsingHTMLinComments.pwet @® Output Window 2z
o The Time Machine [2] 2-4
3-9
(%} | ez L Comment eader) comporent
. Comment (Header) Component
- Start Point : =
= < = Text : [Usmg HTML in Comments]
® Using HTML in Comments Size: 3)
k| Color : (purple]
& Number Square Back Color : []
Y 2 4 Left
- 3 9 Right
LB 4 16 Align:
L
o~
=
=Y @ Again WOk S Close
A
- . <center> <table border="1">
| Print t*t (New Line) | <tr> <th>Number </th>
E e <th>Square </th> </tr>
nd of For Loop] To <tr <td> 2 </td> <td>4 </td> </tr>
<tr> <td> 3 </td> <td>9 </td> </tr>
<tr> <td> 4 </td> <td>16 </td> </tr>
</[table> </center>
! Support HTML
@ Again WOk @ Closa
Form Designer | C:/LearPWCT2/USINGHT MUNCOMMENts. et Input 2 Send o

Figure 5.10 Using HTML in comments.

62

5.7 Enhanced Form Designer for GUI Apps

The Form Designer is a tool that simplifies the process of creating user interfaces by
allowing users to easily add Ul controls to the form, adjust properties, and define events
such as click actions for buttons. In PWCT, the Form Designer, used for GUI applications,
differs from popular form designers like those in Visual Studio. Instead of using a Toolbox
and Properties window, the PWCT Form Designer utilizes the Components Browser and
Interaction Pages, making it tightly integrated with the Goal Designer and not suitable
for use as an external tool [155]. In PWCT2, we revised this design and provided a
reusable Form Designer, which is successfully used in both PWCT2 and Ring Notepad
(the IDE provided by the Ring programming language). In PWCT2, the Form Designer
uses the Model-View-Controller (MVC) design pattern [132,156,157]. The Form
Designer, as shown in Figure 5.11, allows users to visually design the user interface of
their application. It includes the Toolbox, Form Layout, and Properties Panel. The Toolbox
contains various Ul elements, like labels, buttons, text edits, checkboxes, etc., that can
be added to the form. The Form Layout is the main area where Ul elements are placed.
For example, in the figure, we notice it includes Ul controls such as Title, Author,
Abstract, and Output. This layout is related to an application that predicts the citation
count of research papers in the field of Otology. The Properties Panel shows the
properties of the selected object (e.g., a button named btnSelect). Properties include
Name, Position (X and Y), Size (Width and Height), Text Color, Background Color, Font,

Text, Image, and Click Event.

[H Programming Without Coding Technolagy o X
Fle Edit View Program Tools Diswibute Games Help

M B G % W menre: o 0%
predictcontrollerpwet BE Form Desi =13
File Hel)
Q| T Time achne 5] e E"‘ renlicl
b (4]
[# | [stepsiree - - =
import package System.GU New Object Component ToolBox =4 Research Pape- Citarions - Prediction el :
System.G B
S | -[iflsMainSourceFie(] Object Name : IM i ua
THe baTite =
x - Class : [pred\ct\f\ew i Select Property Value
Auth s 1 Name btnSelect
i | Parameters : | U Lobal e DtAuthers
2 X s
L 4 Access Object using Braces O utor Abstract
i 3 v a0
b4 StyleFusion(Call Init() Method B unece
openWindow(predictControlier @agan || @0k |[®ciose — 4 |Width nr
= exec(== bahbsiact 5 Height 3
H nige
Access Object Component 6 |Text Color
L4 End of IF Statement Object N : ovi) chedkbax
& - [Biass prediciCantrollr from windowsControllerP areni] e eoview - 7 [Back Color
v - GhAgain | WOk | @Cese = P
=9 - Shder
Output 9 Text Select
7 Call Method Component @ Frogresséar pe
5 —_— 10/Image
Object : [win) SpinBox baOutput <
SetClickEvent select
Name : [close [ComboBax 1

Parameters : | ® oaarimecn
Output ¢ T Tablewidget

Ghagan | WOk | ®cise & meawdst

W wiebview
@ oelsider
B Videowidget

predictcontrallecpwet | Components Browser Froject flss Ready!

Figure 5.11 Using the PWCT2 Form Designer.

63

The Steps Tree (left panel) displays a hierarchical view of the steps involved in the
Controller visual source file, including importing the System.GUI package, checking if the
file is the main source file, creating and accessing objects, defining the class, and more.
The New Object Component (top middle panel) allows users to create a new object from
a specific class. The Access Object Component (middle panel) is used to access an
existing object within the program and allows us to use the object’s attributes and
methods. The Call Method Component (bottom middle panel) is used to call a specific

method supported by a specific object.

5.8 Interactive Textual-to-Visual Code Conversion

PWCT2 comes with a feature called interactive Textual-to-Visual code conversion,
as demonstrated in Figure 5.12. The first section of the image illustrates the user writing
Ring code, showcasing the textual input of programming constructs. In this section, the
code creates an object from the point class, sets the object’s attributes, and defines the

point class using the Ring programming language.

In the second section, this Ring code is automatically converted into a visual
representation using Ring2PWCT. The visual interface displays the code elements as
graphical components, arranged in a logical flow that mirrors the structure of the original
Ring code. This conversion allows users to interact with and manipulate the program
visually, making it easier to understand, modify, and debug without delving into textual
syntax. The transition from text to visual representation bridges the gap between textual
programming and visual programming, enhancing the user’s experience and

productivity.

To start using this feature, it is sufficient for the keyboard Focus to be active at the
Steps Tree at any step. Once the user starts typing, the components browser will be
activated, where PWCT2 expects that the user is searching for a visual component to
use. If the visual component does not exist, PWCT2 expects that the user will type Ring
source code and highlight this code. If the user presses ENTER, PWCT2 will then use
Ring2PW(CT to generate the visual representation. The generated steps will be inserted
into the selected location in the Steps Tree, enabling us to use this feature at any location

in our program.

64

Components Browser #@® Goal Designer : noname.pwct 2%

Search [new point { x=10y=20 z=30 7 sef } dlass point x y z | 0 The Time Machine [E]

Components Tree 1
Steps Tree
® RingPWCT D .
& General 2 Start Point
@ Comments b4
« Header
& New Line L]
© Image [new point { x=10 y=20 z=30 ? self } class point x y zl
& Comment
« Templates i
& Basic Program
& Quick Start I
Goal Designer : naname.pwct 2% Output Window =
0 The Time Mechine | [£] % 10
[# [stepsm y: 20
et =30
|| Start Point Obicct N — = \
N B ame
® ~|New Object poinf| d
Class : |point J
| Parameters : |)
10 ! Access Object using Braces
A X = Call Init{) Method
V= 20 & Again W Ok & Close
- z = 30
3 Print s (New Line) |
Name : [point)
_\ -|Class poin Parent :)
e B A bute V' Private Attributes/Methods
i & Again W Ok & Close
Z]
- Od
- | Private
A D es
etnod
End of class

Tnput : Send
Form Designer Goal Designer : noname.pwct ? - o

Figure 5.12 Interactive Textual-to-Visual code conversion (Ring2PWCT).

This feature can be used to mix textual programming (for writability) and visual
programming (for readability) in the same project [158,159]. Additionally, the code
could be generated using large language models (LLMs) such as Copilot [160] as
demonstrated in Table 5.3. Furthermore, this feature enables us to import current

projects written in Ring so that we can continue developing them using PWCT2.

The implementation of Ring2PWCT involves some of the same phases as compiling,
such as scanning and parsing [24,47]. Instead of low-level code generation, we generate
a visual source file. Alternatively, it can update the current file if Ring2PWCT is used to
insert steps into the existing visual source file instead of creating a new one. Ring2PWCT
is generally considered a form of translation, specifically source-to-source translation,
because it converts source code from one high-level language to another (in this case,

from Ring code to PWCT visual code) [161].

65

Table 5.3 Using Copilot and PWCT2.

Step Description Image

Use Copilot Al to generate textual source code in
the Ring programming language. The task is toﬁ
write a method in Ring code to be added to a class
called Point, which has three attributes: x, y, and z.

The method should ask the user for the values of

these attributes using the getNumber() function

and print a message asking the user to enter the =+ - o

value before using getNumber().

In this step, we switch to PWCT2, select the parent
step in the Steps Tree Editor, and finally paste the

generated source code. The parent step is called ...
e Otz

“Methods”, which exists in the Point class. Once

func ask_values
print{*Enter the value for x: *)

we paste the textual source code, PWCT will /= oreCEte o ik o :)

Class | y = getumber()
2 T print("Enter the value for z: ")

display the pasted code in a popup rectangle to i

end

indicate that this is a textual-to-visual code
End of class |

conversion operation (not a search operation by

the visual component name). Pressing ENTER will

start the conversion process.

After the textual-to-visual code conversion process

-AEJIEH Point
New Cbject poin]

using Ring2PWCT, we will see the generated steps e

Attributes

in the Steps Tree. We can continue development
3 =
using the visual programming features provided by e

print(Enter the value f 1

PWCT2, such as the Steps Tree Editor and Time . 1 !

+ [Private

Machine.

Ring2PW(CT is designed to pass errors when possible. For example, using the Ring
code (forx =1to 10 if x =3 ? “Three”) as input can be converted to visual code (similar

to the first section in Figure 8), even if keywords such as EndFor and EndIf are missing.

66

5.9 Self-hosting the PWCT2 environment

The PWCT visual programming language is developed using Visual FoxPro, where
enhancing the development environment requires using VFP textual code. Although the
environment includes a domain-specific language (RPWI) for visual component
development, it remains textual code, and using visual programming to improve PWCT
itself is not supported. Therefore, self-hosting PWCT2 could be an attractive feature
because it allows the development and customization of the PWCT2 environment using

its own visual programming tools.

This approach enables us to improve and refine PWCT2 through visual programming
instead of traditional textual coding, making the process more user-friendly and
accessible, as shown in Table 5.4, which demonstrates converting a class from textual

code to visual code.

While PWCT2 is designed to support interactive textual-to-visual code conversion,
this feature is intended to be used within the PWCT environment inside the Steps Tree
Editor. Based on this feature, we developed a command-line tool that can take a Ring

source file as input and produce a visual source file as output.

Since PWCT2 and its visual components are written in Ring, we used this tool
(Ring2PWCT) to convert the PWCT2 source code files from Ring to visual source files,
allowing us to use PWCT2 to continue developing itself, addressing the sixth research
guestion (RQ6). In Table 5.4, we present an example of using Ring2PWCT to convert one

of the source code files related to the PWCT2 implementation using the Ring language.

This file contains the View class for the (Print Text) visual component. This class
inherits from the ComponentViewParent class, which contains common attributes and

methods useful for developing new visual components inside PWCT2.

67

Table 5.4 Using Ring2PW(CT to convert the PrintComponentView class.

Attribute Value
Class Name PrintComponentView
Parent Class ComponentViewParent

ss PrintComponentView from ComponentViewParent

"Print Component™
Title(T_CT_PRINT_IP TITLE)

*Text, il
x(T_CT_PRINT_IP_TEXT , :text)
& "Literal”, "Expression”
Textual Source bl oiis T

TYPE, :type , T_CT_PRINT_IP_TYPELIST)
(R|ng) 1 Method(: TypeChangeAction))

St Pomt (Class Component
=|Class PrintComponentView from Componel |L“\‘|u';t3,='r;\"l ::W:; IZ'"KWW:MV:“ .
o e
- Print Component .
Title(T_CT_PRINT_IP_TITLE, 8 ok ek i)
- Text © Call Function Componen
\n';Ts-:i = TextBox(T_CT_PRINT_IP_TEXT, \(-‘xll Name : [Titie
- Type : Literal/Expression ¥ Parameters : [T_CT_PRINT IP_TITLE
Visual Source ~[myList = ListBox(T_CT_PRINT_IP_TYPE ype,T_CT_PRINT_IP_TYPELIST){| mmiw — —
BStart Here
SetCurrentitemChangedEvent(iviethod(TypeChangeAction]
(PWCTZ) !I Meme : [DissbleListBoxSort
- New Line Parameters :
+[CheckBox(T_CT_PRINT_IP_NEWLINE newline) {| Outpat :

la
SelCheckState(?

Call Function Component

Name : [SetCheckState

[PageButtons(] e (3
ethods o
* [Private: @ Again T ©dose

5.10 Cross-platform and Faster Implementation

PWCT was developed as a Microsoft Windows product, with no native support for
other operating systems like Linux and macOS. Additionally, PWCT is 32-bit software.
Since PWCT2 is developed using the Ring programming language, which is a lightweight,
versatile, and cross-platform language, it was possible to create a cross-platform and 64-
bit version of PWCT2 based on Ring and the Qt framework, supported by the RingQt
extension. In Table 5.5, we present the modules, along with the count of files and lines
of code. Figure 5.13 demonstrates using PWCT2 on macOS to develop the Tetris game
using the Ring game engine for 2D games, which is based on the Allegro game
programming library [162,163]. The game engine provides classes that can be used to
quickly prototype simple 2D games. These classes include Game, Text, Sprite, Animate,

Mabp, etc.

68

Table 5.5 PWCT2 modules.

ID Module Files LOC Comment
1 Environment 5 2649 300
2 General Functions 9 524 122
3 Translation 3 584 20
4 Goal Designer 27 4908 1473
5 Components Browser 5 8876 70
6 VPL Components 1185 57,612 7167
7 Component Parent Classes 3 739 283
8 Form Designer 52 9487 312
9 File System (Visual Source Files) 6 368 415
10 Tools 59 6484 546

% @ ring Window

M @ @ W MainFile:

Project Fies B tetispact

a Q 2 ThulsJum. |l 11:49 AM

v v

B Output Window EL)

| v/ Fier (applieatiens Folder)

G T Time Mochine | [

.
l|Start Here
Set the Window width & height
GE_SCREEN_W = 300]
GE_SCREEN_H = 650
-[oGame = New Object Game
-
lStart Here
Set the Window title & icon
title = “Telris“l
{lcon = "images/block4 png"l
Display the score!

e X HOR

HW0 AN

onant
Lot Side : [ie

“Tatris*

Right Side

e o @ ciomm

animate = False
text = "Score : "+nScorej
—

Form Designer | tetris.puct Ingut sed O
File Saved and code is generated!

B -20.:C78 oecoosa /om N

Figure 5.13 PWCT2 for macOS.

The PWCT2 project is one of the early advanced projects developed using Ring (see
Figure 5.14). The Environment module provides the main window and creates the
different dock-able widgets. The General Functions module encompasses general
functions required by the software. The Translation module handles various translation
functions. The Goal Designer modules contain the Steps Tree Editor and the Time
Machine. The Components Browser allows users to navigate through available

components and select a component to use.

69

The VPL Components module, being the largest, includes all the RingPWCT visual
programming language components necessary for creating and managing programs. The
Component module provides the foundational elements required for the different visual
components, including interaction pages and generating visual steps. The Form Designer
module provides functionality for designing forms within the environment. The File
System module manages the visual source files. Finally, the Tools module contains

various utilities, including the textual-to-visual code converter (Ring2PWCT).

Figure 5.14 The PWCT2 system developed using the Ring programming language.

During the development of PWCT2, we made specific design decisions that resulted
in improved performance compared to PWCT. These design decisions helped enhance
various aspects of PWCT2, with notable improvements in code generation time and

storage requirements for the visual source files.

These design decisions are as follows:

e The Steps Tree is stored in the visual source files in the correct order of control flow,
with PWCT2 adding steps at the end of the file or inserting them based on their
actual position. In contrast, PWCT always adds new steps at the end of the file,
requiring the Steps Tree to be ordered during the code generation process.

e Storing the visual source in memory through Ring Lists during development and

saving to storage only when needed, instead of using database files and storage on

70

the hard disk during development as in PWCT. It is known that accessing computer
memory is faster than accessing the hard disk drive.

e Using the Ring programming language instead of Visual FoxPro. Since Ring
development is active, the latest versions of the Ring Compiler/VM are produced
using the latest versions of C/C++ compilers, which also benefit from the
performance improvements in these tools.

e Using the Qt framework for the GUI environment through RingQt. The framework is
written in C++ and provides better performance with each update and direct

support for the TreeView control instead of using ActiveX control as in PWCT.

5.11 Arabic PWCT2

Since the PWCT2 visual programming language is designed to support translation,
besides the default English version, we provide a complete Arabic version, as
demonstrated in Figure 5.15. In this figure, we see a program that prints numbers from
one to ten. We print a text message before printing the numbers and another one after
printing half of the numbers. The translation covers various components in the system,
such as the main window and sub-windows. Additionally, each of the 394 components
in the RingPWCT visual programming language is translated, including the interaction
pages' user interface and the generated steps inside the steps tree. Furthermore, the
form designer is translated to use Arabic names for all user interface elements, including

the toolbox and properties window.

X La] - 298 g oyl aya [
Baclus mijei Olgal galy yos i wils
w v ot MR |
il 5asliEee NoName.pwet | woaall acuco @13 DligSall oy @ X
11 on el e o (] ooman oy
= = Olighall 8y
s acl weso - =t 285 Uady @iy @
& L)l wsS I ; E
,éu,wwm S 10T o o b e by gl =~ - wladlsill @
. S 200 AU B e W0 v loic @
: x ¢
s> §lic A b @
L] s g0 @
* GuloT @
H I
esi llsill @
pladl Jspgll @
oy o Byl &
dubod pihiuse da>le &
EVECSN-ILY m
-
Suel s ;5 6yn Jaol @
@
. 5> JUda| @
=\ iyl o sse ol &
[M wate a) 1 jaill J‘ﬁi‘\;ﬂﬁ-“—’ﬂjw @
- - J -
ol ganr 31 @
e olls e ©
(MR
tesdl cliaall &
siall gliaell @
Al s @
ey pé @
iz kb ¥ e dils @
Suel [rowes S5 b0 b o dils @
Lallbs dil> @

Figure 5.15 Arabic translation for the PWCT2 visual programming language.

71

5.12 Chapter Summary

In this chapter, we introduced the PWCT2 visual programming language, outlining
its design and key features. We examined how PWCT2 builds upon existing visual
programming languages like PWCT and addressed the unique contributions it brings to
the field. Through this exploration, we have highlighted the strengths of PWCT2,
demonstrating its potential to enhance visual programming and software development

based on the Ring programming language.

In the next chapter, we will present the experiments and results that evaluate the
effectiveness and performance of both the Ring dynamic programming language and
PWCT2 visual programming language. This analysis will provide empirical evidence to

support the claims and contributions discussed in the preceding chapters.

72

Chapter 6: Experiments and Results

6.1 Introduction

In this chapter, we present the various results related to our study. First, we
introduce results related to the Ring programming language then we introduce the
results related to the PWCT2 visual programming language. The results include different

aspects like use-cases, users feedback, performance evaluation, etc.

6.2 Results related to Ring

In this section we introduce results related to the Ring programming language. At
first, we provide information about the early users, followed by download statistics.
Next, we discuss multiple use cases. Additionally, we delve into our findings concerning
Ring’s visual implementation using the PWCT visual programming language. Then, we
present the results related to Ring’s lightweight implementation, followed by the

performance benchmarks.

6.2.1 Early Users and the Programming Language Used Prior to Ring
Once we launched the Ring website in 2016, we posted a message in the Ring Group

seeking users interested in trying or testing the language and contributing by reporting
bugs. In the public group, interested users shared their age, gender, country (location),
and the programming languages they used prior to Ring. We noticed 43 messages, with
42 males and 1 female. Most of the users are between the ages of 20 and 35, and 81%
reported that they were using C++, PHP, C#, Java, or Python, as demonstrated in Figure
6.1. We noticed that 28 users (65%) were using statically typed languages, while 15 users
(35%) were using dynamically typed languages. This diverse usage background reflects
the rich experience of our users with different programming languages, leading to
various feature requests in different directions. Developers who used C# requested the
development and addition of the Form Designer to our code editor (Ring Notepad),
which was developed and added to Ring in version 1.3. Developers with a C/C++
background asked for features related to C/C++ extensions, leading to the revision and
improvement of the Ring APl and the addition of tutorials on using it. Additionally,
developers who used PHP for web development requested better support for web
development, which led to the addition of the Apache web server to Ring Notepad in

Ring 1.6. Those users helped us discover and fix many issues. They also improved the

73

Ring documentation by adding the Frequently Asked Questions (FAQ) chapter. Over time,

they contributed over 800 samples of the Ring language to the RosettaCode website.

C++ PHP C# Java Python Visual Basic JavaScript Smalltalk Delphi Swift

Figure 6.1 Early users and the language used prior to Ring.

6.2.2 Feedback from Online Course

We presented a free online course consisting of 18 videos in Arabic that introduced
the Ring programming language (covering input/output, control structures, procedural
programming, and object-oriented programming). The course is available on YouTube
(youtube.com/playlist?list=PLpQiqgjcu7CuFc027iGHaBLPCZHuzCHkBC). We then invited
interested learners to watch the course and submit the samples they wrote during their
learning through GitHub so we could track their progress. We received samples from 76

participants.

In Table 6.1, we present the course content, while in Table 6.2, we introduce the
statistics about the course. Twenty participants (26.3%) were not interested and finished
fewer than two lessons, while 56 participants (73.7%) were interested and finished two
or more lessons. Of those 56 participants, 23 (30% of the total) finished the course. We
noticed that two participants became active contributors to Ring language samples and
applications. The contributors help us test, report bugs, and add samples, applications,
and tutorials. As of 2024, Ring is distributed with hundreds of samples and over 70
applications/games, each ranging from a few hundred to a few thousand lines of Ring
code. With respect to the female participants, four of them completed the course, one

completed just one lesson, and the last one completed three lessons.

74

Table 6.1 Course Content.

Lesson Description Duration (H:M:S)
1 Installing Ring and writing the Hello World program 0:30:43
2 Input/output, data types, strings, and numbers 0:36:33
3 Arithmetic/Logical operators and the if Statement 0:58:20
4 Lists, nested lists, and loops 1:01:71
5 While Loop 0:48:34
6 Defining and using Functions 0:45:30
7 Standard functions 0:28:39
8 Using Eval() 0:23:01
9 Internet Library 0:38:47
10 Database and SQL 0:33:13
11 Classes and Objects 0:47:07
12 Declarative Programming 0:52:29
13 Domain-Specific Languages 0:19:46
14 Domain-Specific Languages (Part 2) 0:46:33
15 Functional Programming 0:42:37
16 Reflection and Meta-Programming 0:27:57
17 Memory Management and variables scope 0:58:28
18 Interactive Debugger 0:22:08

Table 6.2 Statistics from Online Course.

Variable Value
Male 70
Female 6
Completed less than two lessons 20
Completed more than one lesson 56
Completed the course 23
Contributors 2

6.2.3 Feedback After a One-Hour Lecture
We presented a one-hour lecture about the Ring language to third-year students at

the College of Computer and Information Sciences at King Saud University in Saudi

Arabia. The lecture was presented twice: the first time to 35 students and the second

75

time to 25 students. All 60 students were male. They had studied multiple courses
related to programming, including Introduction to Programming and Object-Oriented
Programming. They used Java during these programming courses. After the one-hour
lecture, we told them, “If you are interested in the Ring language, try to download and
install it, write some simple programs, and see if you become more interested in learning
about the language”. As shown in Figure 6.2, out of the 60 students, 44 were interested,
and all of them successfully installed the language and tried writing some programs using
it. One of the students said, “Why don’t we learn Ring instead of Java? It seems easier”.

Another student said, “This language looks like Python”.

Not Interested to try Ring _

10 15 20 25 30 35 40 45 50

o
(9]

Figure 6.2 Feedback from students about Ring language after a one-hour lecture.
6.2.4 Downloads Statistics and Users Group
Ring, as an open-source programming language, is hosted on GitHub. Users have
two options to get the language: they can clone the source code or download a

precompiled binary release for Windows, Linux, or macOS.

The project has garnered more than 1200 stars from developers worldwide. To
foster discussions about the language, Ring maintains an official Google Group (over 450
members). The group contains conversations covering various aspects of the language

across more than 2800 topics [164].

External services tracking GitHub downloads indicate that the project has been
downloaded over 18,000 times. Furthermore, a mirror exists for the project files hosted
on Sourceforge. This mirror tracks download counts and their associated countries.

Impressively, the downloads from this mirror have surpassed 62,500.

In Figure 6.3, we present the operating systems used during downloads, while in

Figure 6.4, we present the countries that have the most downloads [165]. We expect

76

that each programming language could be more popular in specific countries due to

marketing reasons and the availability of educational resources.

Many YouTube videos about the Ring language are presented in Arabic by Egyptian
developers and YouTubers. This could also be one of the reasons Egypt has more users

than other countries.

60,000
50,000 47,779
40,000
30,000
20,000

10,000 6599 6892

I

Downloads

B Windows M Linux B Macintosh Other

Figure 6.3 Ring downloads statistics grouped by the Operating System.

Egypt

Saudi Arabia
Algeria
China
Germany
India

Italy
Morocco

Canada

Figure 6.4 Ring downloads statistics grouped by the Country.
6.2.5 Use Cases and Printed Books
In Table 6.3, we present some of the use-cases of the proposed programming
language and environment. These uses-cases are related to different domains like Front-
end applications for Machine Learning models, Games development, Text/Data

processing, and Web development. We selected just one or two use-cases for each

77

domain to avoid unnecessary duplication. For more applications, the Ring language is

distributed with over 80 applications/games/tools.

Table 6.3 Some use cases for the Ring programming language and environment.

Ref. Type Domain Description

[166] Research Paper Front-end apps for ML Models Predicting citations count

[167] Research Paper Front-end apps for ML Models Predicting game result

[91] Printed Book (USA) Games Development Shooter Game
[152] Steam Game Games Development Puzzle Game
[168] Research Paper Text/Data Processing apps Predicting impedance

[169] Printed Book (Egypt) Text/Data Processing apps Arabic Poetry Analysis
[170] YouTube Videos Desktop/Web development Free course
[171] Research Paper LLMs Training Dataset preparation

The first two use-cases involve utilizing the form designer and the standard libraries
such as GUILib, InternetLib, and JSONLib, to develop front-end applications for machine
learning models [166,167]. These applications could offer a user-friendly interface that
receives input from users. The input is then transmitted to the machine learning model
over the internet, and the resulting prediction is returned in JSON format. Afterward, the
application processes this data and displays the outcome. Additionally, the GUI
(Graphical User Interface) could include features such as data visualization, statistics, or

a display for the dataset using the grid control, as demonstrated in Figure 6.5.

WhiteKingFle | WhiteKingRank WhilRookFle WhiteRookRank Blickingfe GlckngRank GameResult

226 0.86%

a1 020%

6 tour

707%

Pradict (GamaResul) | | Closs

Figure 6.5 A GUI application developed using the Ring language.

78

The third use-case is about using the Ring programming language for 2D game
development. This is explained through a printed English book (In the USA). The book
contains nine chapters and is over 600 pages. The source code is available online through

a GitHub project [91].

Figure 6.6 shows a puzzle game available on the Steam platform, written in Ring
code and utilizing the Allegro and OpenGL libraries. The game, titled “Gold Magic 800",
comprises 44 levels [152]. These levels have been meticulously designed by a specific
level designer, which was also developed using Ring. Notably, the Level editor employs
the Qt library. This game serves as an excellent example of how different libraries

provided by the Ring language can be seamlessly mixed within the same project.

In [168], the Ring language is used to prepare a dataset before using it to train a
machine learning model. Another use-case is developing a Ring program that analyzes
Arabic poetry. The application contains over 3000 lines of Ring source code and is

explained in detail in a printed Arabic book (In Egypt) [169].

In [170], A YouTube channel with over 350 K subscribers provided over 500 videos
about the Ring programming language. These videos start by explaining the language
fundamentals and how to apply the different programming paradigms using it. The
videos cover desktop and web development, too. In [171], the authors used Ring

language samples and documentation to train LLMs how to write Ring programs.

Gold Magic 800 Level : 27 NextDoor:1, Gold: 420 (Lc;w)

PR A R B R TR B B mﬁw SR S g
LA AR AP NP NP N TR T RN S N X X R

v/ s wip i sin i -
ﬂ’i’u?} F AR R R e R R R TN

Figure 6.6 The GoldMagic800 game—A puzzle game developed using RingAllegro.
79

6.2.6 Visual Implementation

In Table 6.4, we present the results of our visual implementation. The Table includes

details for each visual source file: the amount of storage used on the hard disk, the

memory used by PWCT after loading the file, the number of visual components, the

count of steps within the steps tree, the lines of code in the generated source files (.c),

and the lines of code in the generated header files (.h) if the visual source also generates

such files. Finally, we provide the total lines of source code (without comments/blank

lines) generated by the visual source file.

Table 6.4 Results of using PWCT to implement Ring compiler and virtual machine.

Storage Mem. Visible
Modules File Name Components Steps Comment LOC
(MB) (MB) Steps
ring 2.07 215 211 320 287 35 236
Loader
state 7.7 32 513 841 720 77 640
general 432 246 211 388 321 18 287
hashtable 2.27 35 189 322 268 16 251
item 404 243 231 440 356 54 301
General
items 0.54 193 52 87 74 3 63
Library
list 10.85 40.1 969 1798 1432 118 1378
string 3.94 26.6 271 497 399 18 383
hashlib 1.72 255 54 81 70 3 59
codegen 5.74 28.4 425 700 588 68 543
expr 1452 46.8 705 1263 1059 155 918
objfile 598 29.1 524 934 757 85 606
Compiler
parser 3.61 239 327 460 415 49 372
scanner 10.18 37.9 790 1318 1097 75 1006
stmt 11.59 41.2 913 1603 1376 278 1132
vm 14.18 48.1 1498 2285 1992 278 1655
vmapi 7.23 316 522 874 744 103 673
Virtual vmduprange 0.8 21.2 70 127 104 6 94
Machine vmerror 1.5 20.7 139 265 220 37 186
vmeval 2.48 21.8 233 428 371 81 295
vmexit 1.82 21.1 83 167 132 15 119

80

vmexpr 12.28 43.8 986 1817 1445 57 1383

vmext 10.5 36.2 34 72 59 9 43
vmfuncs 7.78 32.7 498 1000 838 206 675
vmgc 11.64 41.9 922 1746 1422 240 1264
vmjump 197 213 119 231 183 11 170
vmlists 7.21 30.7 379 674 549 36 513
vmoop 11.13 39.9 820 1497 1268 215 1081
vmperformance 3.45 25.6 192 332 273 24 255
vmstackvars 6.85 304 487 997 770 81 697
vmstate 5.5 27.2 385 619 578 146 435
vmstrindex 0.69 19.6 49 78 67 2 61
vmthread 159 444 148 262 219 32 191
vmtrycatch 0.76 19.7 20 38 33 5 25
vmvars 8.51 3338 362 685 569 91 497
vminfo_ext 6.06 28.1 289 443 389 24 360
dll_ext 10.74 37.1 89 147 123 4 112
file_ext 9.57 36.9 688 1235 991 26 961
Built-in genlib_ext 22.75 66.6 1732 2965 2438 169 2308
Functions list_ext 5.65 285 531 982 782 35 740
math_ext 393 25.2 336 649 489 3 497
0s_ext 525 26.8 313 572 464 23 427
refmeta_ext 8.05 335 636 1075 886 26 851

Each visual source file belongs to one of the modules, such as Loader, General
Library, Compiler, Virtual Machine, or the built-in functions. PWCT stores each visual
source file in two files: *.SSF and *.FPT. The storage size listed in the table represents the
summation of the file sizes of both files. The “components” column includes the total
number of components used within the visual source file, even accounting for repeated
usage of the same components. Each component corresponds to an interaction page

(data-entry form) and may generate one or more steps.

81

We present a summary of the results in Table 6.5. Also, we highlight the results for
each module in Figure 6.7. In this Figure, we notice that the Virtual Machine is the largest

module while the optional “built-in functions” is the second largest module.

o - = N -

-
Figure 6.7 Visual implementation size for each module.

Table 6.5 Summary of visual implementation size.

Criteria Total
Modules 5
Visual Source Files 43
Storage Size (MB) 278.95
Memory (MB) 1350.6
Visual Components 18,945
Steps 33,314
Steps (Visible) 27,617
Lines of Code (LOC) 24,743
Comments 3037
LOC including comments 27,780

In Figure 6.8, we present the loading time required to display the visual
representation and the code generation time for each visual source file. These values
were measured 10 times for each file. The cell colors visually represent the performance
metrics, where larger numerical values correspond to longer time durations, indicating
lower performance. In Figure 6.9, we present the code generation time for large visual
source files. The time is measured in seconds, and tests are performed using a Victus

Laptop [13th Gen Intel(R) Core(TM) i7-13700H, Windows 11, PWCT 1.9].

82

File Name
ring

state
general
hashtable
item

items

list

string
hashlib
codegen
expr
obijfile
parser
scanner
stmt

vm

vmapi
vmduprange
vmerror
vmeval
wvmexit
vmexpr
vmext
vmfuncs
vmge
vmjump
vmlists
vmoop
vmperformance
vmstackvars
vmstate
vmstrindex
vmthread
vmtrycatch
vmvars
vminfo_ext
dll_ext
file_ext
genlib_ext
list_ext
math_ext
os_ext
refmeta ext

i
0141
0518
022
0173
0236
0.031
1.002
0.252
0.063
0377
0999
0.451
0.202
0846
0356
1102
0.471
0.063
0.092
0157
0.079
1098
0.106
0565
0977
0126
0442
0.898
0.162
0551
0.283
0.047
011
0.032
0.487
0282
0205 0042 0188 0.047

081 2702 075 2669

2545|1466 24201458
0439 1728 0456 1759
0314 079 0283 0816

033 0642 0329 0647
0611 201 0595 2015

CGT1
0208
1.307
0315
0211
0.385
0.017
5.564
0.457
0.015
0.865
2.864
1.668
0394
2575
4468
8629
1377
0.041

0.16
0327
0.063
5.743
0.026

1.34
5.235
0112
0815
3.888
0215
1.804
0725
0.007
0127
0.016
0911
0371

L2
0.126
0.505
0.202
0.142

022
0.037
0.959
0.236
0.062
0.345
1.043
0.439
0.204
0.737
0942
1.082
0.472
0.047

011

0.15
0.078
1.161

011
0549
1.084

011
0.471
0925

0.16
0.534
0.282
0.047
0.094
0.032
0.503
0.283

CGT2
0.204
1.288
0.283
0.205
0.346
0.015
5.646
0.472
0.016

091
2.818
1.675

0.393
3.011
4.402
B8.681
1321
0.032
0.141
0.362
0.062
5.725
0.016
1.818
5.252
0.111
0734
3923

022
1777

0.738
0.016
0.142
0.016
0.894
0.378

I3 ceT3
0126 0213
0518 1228

022 0299
0157 0214
0218 0375
0032 0016
0958 5633
0252 0489
0041 0015
0345 0834

1024 2825
0441 1528
0185 0393
0726 3028

095 aa4a

1095 8573
0471 1401
0047 0032

011 o014
0137 0357
0094 0048

1144 5842
0094 0015
0565 1748
1034 5243

011 0109
0455 0849
0879 3937
0173 0226
0533 1819
0283 066
0032 0015
0095 0142
0031 0006
0526 0.863
0283 0362
0171 0048
0802 2666

2431 [Ji4751
0445 173
0295 0829

033 0629
059 2062

LTa
013
0.5

015
0.22
0.05
096
0.25
0.05
0.35
1.04
0.44
0.19
0.75
0.86

11

0.05
0.11
0.16
0.08

1.2
0.09
055
1.04
0.11
044
093
0.16
0.55
0.27
0.05
0.09
0.03
0.49

0.3
0.19
077

2031866

0.44
031
031
0.62

CGT4
0.201
1.318
0.298
0.205
0.377
0.016
5.627
0.489
0.016
0.896
2.854
1725
0.401
3.026

45
8561
134
0.04
0.14
0.366
0.063
5.805
0.031
1.868
5.266
0.103
0.866
3922
0.196
1.851
0.676
0.016
0.141
0.016
0.867
0.36
0.047
2713

1762
0.816
0.598
2.055

LT3

013
051
021
013
022
0.05
096
024
0.05
035
104
044

072
093
1.13
0.49
0.06
011
0.16
0.08
114

0.1
057
1.05
011
0.45
097
0.17
053
0.28
0.05
011
0.04

0.5
0.28
0.19
0.82
2.47
0.44
0.29

0.3
0.59

CGTS
0213
1.321
0.299
0.205
0.377
0.016
5.632
0.471
0.016
0928

2.84
1.555
0.401
2981
4453
8.625
1371
0.045
0.141
0.363
0.069

57
0.015
1811
5.237
0.127
0.879
3.862

0.22
1772
0.723
0.016
0.142

0.01
0.898
0.366
0.047
2656

1778
0.769
0.597
2038

LTe
0119
0.486
0.204
0141
0.221
0.032
0.989
0.252
0.047
0.346
1.034
0.452
0.188
0.731
0943
1.184

0.47
0.063

011
0.157
0.079
1.163
0.094
0.582
1.067

011
0.458
0.926
0.161
0.534
0.283
0.031
0.094
0.017
0.511
0.277
0.172
0.747

0.44
0.289
0.314
0.5%6

CGTo
0.205
1.255
0.313

022
0.393
0.016
5.605
0.486
0.016
0.871

277
1.654
0.408
2.986

444
8525
1.385
0.039
0.155
0.362
0.063
5.772
0.016
1.815
5.269

011
0.343
3.873
0.229
1.819
0.733
0.016
0.143
0.004

0.2
0.362
0.047
2661

[73878 2.526 157058

1761
0.756
0.598
2.047

L7
012
0.49
0.22
014
022
0.03
098
0.24
0.05
0.35
1.04
0.44
0.19
074
0.99
117
0.47
0.06
011
0.16
0.08
118
01
057
1.05
0.09
0.44
093
0.17
0.55
0.28
0.05
01
0.03
05
0.28
0.19
0.76

2.03 (3515

0.44
0.28
0.31

06

CGT7
0.206
1241
0.298
0.203
0.383
0.031
5.641
0.485
0.015
0.881
2798
1557
0.393
3.006
4505
B.587
1.358
0.045
0.142
0.345
0.048
5722
0.016

183
5.413

0.11
0.879

393
0.236
1.806
0.662
0.016
0.149
0.015
0.891
0.363
0.039
2675

171
0.815
0.597
2014

LT3

013
0.49
0.22
014
0.22
0.05

0.24
0.05
0.35
106
0.44
0.19
0.74
0.88
115

0.06
011
0.14
0.08
116
011
0.58
1.06
011
0.45
0.86
0.17
0.54
0.28
0.05

01
0.03
0.49

03
0.19

08

CGT8
0.188
1.286
0.299
0.205
0.365
0.031
5936
0.488
0.016
0.906
2.854
1718
0.382
24982
4439
8629
1.403
0.048
0.141
0.347
0.062
5754
0.016
185
5.305
0.11
0.882
395
0.206
1.8
0.674
0.007
0.142
0.015
0.839
0.348
0.043
2661

2043877

0.45
03
0.33
06

1717

038
0643
2.043

Lo

011
0.505
0.204
0.125
0.219
0.047
0982
0.236
0.047
0.346
1.035
0.441
0.189

074
0.897
1.135

0.47
0.063

0.11
0.157
0.079
1.165
0.094
0549
1.067

0.11
0.443
0911
0.172
0534

0.28
0.047
0.094
0.031
0.488
0.282

CGT9
0.192
1.227
0.289
0.204
0.394
0.006
5.554
0.481
0.016
0.853
2.843
1551
0.377

3.01
4661
8.547
1.395
0.047
0.141
0.362
0.063
5728
0.015
1.826
5.213
0.109
0.878
3.899
0.204
1757
0.724
0.015
0.142
0.004
0.879
0.388

T10 CGT10
011 0207
0531 1259
0208 0314
0142 0204
0204 0371
0047 0016
0975 5612
0236 0487
0047 0015
0363 0878
1039 2778
0455 1671
0188 0377
0736 3.025
0972 4437
1102| 8576
0488 1338
047 048
011 01m1
0157 0361
0087 0058
1161 1754
0091 0016
055 1838
1086 5255
0126 0122
0465 0817
0879 3968
0173 022
0549 1775
0268 0707
0047 0022
0094 0142
0016 0016
0502 03835
0267 0376
0178 0047 0174 0047
08 2651 0754 2732
23304481 24151484
0439 1735 0456 1683
0283 0786 0314 0774
0298 0603 0314 0.646
0628 1993 0698 2013

18

Figure 6.8 The loading time (LT) and code generation time (CGT).

Q-2 m2-4

H4-6 Me-8 ME-10 W10-12

o 2
£ a{.@
P
&
12-14 14-16

16-18

€, o%

\@_‘_(‘

CGT10
CGT9
CGT8
cGr7
CGT6
CGT5

CGT4

CGr2
CGT1

Figure 6.9 Code generation time (CGT) for large visual source files.

6.2.7 Lightweight Implementation

Developing a lightweight programming language is not just about providing a

language with a small implementation. It is merely the beginning, and we must pay

attention to the growth in the language size over time. In Table 6.6, we present the

growth percentage in implementation size for the Ring programming language and other

83

known lightweight programming languages. The table presents the LOC of the first
release and the LOC of the latest release. The LOC includes the compiler, VM, and the
built-in functions. The growth in code size can be attributed to several factors, including
fixing bugs, adding new features, performance improvements, the expansion of libraries

and built-in capabilities, and enhancements in compatibility and interoperability.

Table 6.6 Growth in implementation size.

Language Period Implementation LOC (FR) LOC (LR) Growth
Ring 20162024 C 16,402 24,743 51%
mRuby 2014-2024 C 18,134 23,742 31%
Squirrel 2004-2022 C++ 9311 13,991 50%
Lua 1993-2024 C 5603 20,081 258%

Since Ring is designed to be a lightweight language, we have monitored the growth
of the implementation size over the years. From 2016 to 2024, the implementation size
has increased from 16 KLOC in Ring 1.0.0 to 24.7 KLOC in Ring 1.21.2, as demonstrated
in Figure 6.10. The growth percentage in the implementation size is 51%. In Figure 6.11,
we present the code size for the Lua Compiler/VM. The source code was written from
1993 to 2024, and the implementation size increased from 5.6 KLOC in Lua 1.0.0 to 20

KLOC in Lua 5.4.7. The growth percentage in implementation size is 258%.

Ring Compiler/VM LOC
30,000

25,000

20,000

15,000

10,000

5000

0
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 6.10 Generated code size for Ring Compiler/VM from 2016 to 2024.

84

Lua Compiler/VM LOC

25,000

20,000 <&

15,000 &

10,000

5000 &

1990 1995 2000 2005 2010 2015 2020 2025 2030

Figure 6.11 Code size for Lua Compiler/VM from 1993 to 2024.

In Figure 6.12, we present the generated code size for the Ring Compiler/VM for
different Ring releases. The textual source code is generated in ANSI C and can be used
by traditional programmers who may prefer text-based coding. This approach also

enables adoption in settings where visual programming tools are less practical.

Ring 1.0.0
Ring 1.21.2 25000 Ring 1.1.0

Ring 1.20.0 Ring 1.2.0

Ring 1.19.0 Ring 1.3.0
Ring 1.18.0 Ring 1.4.1
Ring 1.17.0 Ring 1.5.4
Ring 1.16.0 Ring 1.6.0
Ring 1.15.0 Ring 1.7.0
Ring 1.14.0 Ring 1.8.0
Ring 1.13.0 Ring 1.9.0
Ring 1.12.0 Ring 1.10.0
Ring 1.11.0
== (Code (Source) ====Code (Header) Code (Total) Comment (Source) ====Comment (Header) ====Comment (Total)

Figure 6.12 Generated code size from Ring 1.0.0 to Ring 1.21.2.

85

6.2.8 Performance Benchmarks
In Table 6.7, we provide a benchmark comparison of various versions of the Ring

programming language (Ring 1.17, Ring 1.19, and Ring 1.21), including its WebAssembly
implementations on Edge and Chrome browsers, against VFP 9.0 and Python 3.13. Tests
are performed using a Victus Laptop [13th Gen Intel(R) Core(TM) i7-13700H, Windows
11]. The benchmarks cover a range of computational tasks, including looping (Loop),
mathematical calculations (MathMax), function calls (FuncCall), dynamic programming
Fibonacci calculations (FibDP), recursive Fibonacci calculations (FibRec), and list filling
(ListFill), with varying input sizes. These benchmarks are designed to reflect features that
are very common in many programs, ensuring their relevance and applicability across
different use cases. VFP was selected for this comparison because it is a multiparadigm,
dynamic language used in the development of PWCT. Python 3.13 was selected due to
its popularity and versatility as a dynamic language that supports multiple programming
paradigms. The performance, measured in milliseconds, indicates substantial
improvements in the newer versions of Ring, particularly in Ring 1.21. For instance, the
execution time for FuncCall (100 M) decreased dramatically from 113,142 ms in Ring

1.17 to 4058 ms in Ring 1.21. Figure 6.13 presents the performance of this benchmark.

WebAssembly implementations show a slight increase in time compared to native
executions. Overall, the data highlights significant performance enhancements in newer
versions of Ring and offers a comparison of the efficiency of different programming
environments. With respect to Ring support for microcontrollers, which is relatively new
(first support started with Ring 1.21, released in September 2024), the performance
results for Ring 1.21 running on the Raspberry Pi Pico reveal some interesting insights
when compared to Ring 1.21 on a desktop. The Loop (500 k) benchmark was completed
in 3.35 s, while MathMax (100 k) and FuncCall (100 k) took 3.54 s and 3.32 s, respectively.
The Fibonacci Recursive (FibRec) at 25 iterations took 5.81 s, and the Dynamic
Programming Fibonacci (FibDP) at 500 iterations was notably fast at 0.89 s. However, the
ListFill (100 k) benchmark resulted in an “OUT OF MEMORY” error, which is expected
given that the Raspberry Pi Pico has only 264 KB of SRAM. A dynamically typed language
like Ring may encounter challenges on resource-constrained devices such as the

Raspberry Pi Pico due to its limited memory and processing power.

86

Table 6.7 Performance benchmarks (Time in Milliseconds).

Ring Ring Ring Ring1.21 Ring1.21

VFP Python
Benchmark 1.17 119 1.21 WebAsm WebAsm
9.0 3.13
(2022) (2023) (2024) Edge Chrome
Loop (500 K) 9 5 4 7 7 8 7
Loop (1 M) 18 11 9 13 13 15 14
Loop (10 M) 185 113 91 133 132 47 149
Loop (100 M) 1896 1154 954 1362 1332 595 1534
MathMax (100 K) 136 25 7 11 12 16 7
MathMax (1 M) 1384 245 69 117 119 94 66
MathMax (10 M) 13,847 2474 708 1161 1204 909 776
MathMax (100 M) 139,373 24,868 7178 11,833 11,935 8968 7315
FuncCall (100 K) 111 19 4 10 9 16 3
FuncCall (1 M) 1134 194 39 97 94 110 32
FuncCall (10 M) 11,337 1943 398 1001 962 1102 444
FuncCall (100 M) 113,142 19,542 4058 10,164 9563 11,214 3297
FibDP (500) 6 5 3 3 4 6 0.1
FibDP (700) 11 10 5 5 6 13 0.3
FibDP (1000) 21 19 10 10 11 15 0.4
FibDP (1200) 29 27 15 15 17 16 0.4
FibDP (500) 6 5 3 3 4 6 0.1
FibRec (20) 22 6 1 2 3 16 0.3
FibRec (25) 244 65 13 22 23 31 3
FibRec (30) 2887 763 148 252 254 377 39
FibRec (35) 33,847 8660 1691 2795 2810 4357 431
ListFill (100 K) 10 10 6 11 12 14 5
ListFill (500 K) 54 50 31 56 56 30 19
ListFill (1 M) 108 99 62 112 113 63 35
ListFill (10 M) 1085 1007 643 1143 1145 565 376

87

Time (ms)

12000

10000
8000
6000
4000 4"III||
2000

Ring 1.21 (2024) Ring 1.21 Ring 1.21 VFP 9.0 Python 3.13
(WebAsm/Edge) (WebAsm/Chrome)

Figure 6.13 Function call (100 M) benchmark for Ring, VFP, and Python.

Ring is distributed with support for game programming libraries, which enable us to
create benchmarks for graphics and animations. In Figure 6.14, we demonstrate different

frames from the Waving Cubes sample provided by the RayLib open-source library.

This sample presents an animation of 3375 cubes by changing their position, color,
and size. In Table 6.8, we present the performance results for this sample in Ring, C, and
Python. C demonstrates the highest efficiency with 480 frames per second (FPS). Ring
1.21 significantly improves upon its predecessor, achieving 170 FPS compared to Ring

1.19s 40 FPS, showcasing notable advancements in performance. Python 3.13 provides

85 FPS.

Table 6.8 The Waving Cubes benchmark.

Language FPS (Min) FPS (Max)
C 470 480
Ring 1.21 161 170
Python 3.13 80 85
Ring 1.20 33 40

88

4 ﬁ T
%ﬁ..‘-,..

Figure 6.14 Different frames from the waving cubes animation.

The Binding Generator for Ring extensions is the first significant program written in
the Ring language itself and serves as an example and benchmark for file and text
processing. The generator comprises 1407 lines of Ring code. It operates very efficiently
by processing configuration files and generating the C/C++ code required for the
extensions. The largest extension we have with the Ring language is RingQt, which
generates over 211,000 lines of C/C++ code in just 3.42 s, as demonstrated in Table 6.9.
Other extensions are smaller, and their code-generation process is completed in less

than a second.

Table 6.9 Using the Code Generator to generate RingQt source code.

Variable Value
Extension RingQt
Configuration Files (Input) 439
Input Size 478 KB
Generated Files 197
Generated Lines of Code 211,174
Output Size 6.27 MB
Processing Time 3420 ms

The Ring IDE is designed as a project that includes a Code Editor, Form Designer,
Web Browser, and a “Find in Files” application. Over the past eight years, it has proven

to be a robust and reliable tool, supporting the development of all Ring samples and
89

applications distributed with the language. The IDE’s performance has consistently been
impressive, with no notable issues encountered during regular use. To ensure its
reliability, a stress test was conducted by opening all Ring applications and samples
distributed with the language. Memory usage was observed to be 348 MB at startup,
slightly increasing to 365 MB after opening 78 applications (253 files, totaling 76,924
lines of code) and further to 439 MB after opening each file in the samples (1302 files,
totaling 65,563 lines of code). This increase is attributed to the autocomplete feature,
which caches all the words in each opened file. Tests are performed using a Victus Laptop

[13th Gen Intel(R) Core(TM) i7-13700H, Windows 11, and Ring 1.21.2].

Additionally, the performance of opening and displaying a source code file was less
than 250 ms for most files, as shown in Table 6.10. This performance depends on the file
size. This demonstrates the Ring IDE’s capability to handle extensive development tasks
without compromising performance. However, we continue to state in the Ring Group
that the Ring IDE is just an example of Ring usage. Ring, as a language, can be used with
different code editors based on programmer preference, which makes sense if the
programmer is using multiple languages in a project. The Ring IDE only supports Ring
source code files, which is a limitation in situations requiring a mix of programming
languages. To load and display files, Ring Notepad uses functions written in C/C++,

ensuring high performance.

Table 6.10 Loading and displaying files in Ring IDE.

Application/Sample Size (LOC) Loading Time (ms)
Analog Clock 256 36
Image Pixel 548 66
Knight Tour 646 67
Othello 780 78
Visualize Sort 817 81
Game Of Life 903 90
Laser 1051 94
Checkers 1354 124
Get Quotes History 3401 117
Discrete Fourier Transform 6417 203

90

6.3 Results related to PWCT2

PWCT2 was released on the Steam platform in March 2023, based on Ring 1.17,
and has received continuous updates based on community feedback [172]. We also keep
updating the Ring version included in the software after each Ring release. The current
version of the software is PWCT 2.0 Rev. 2025.01.20, which is based on Ring 1.22. In this
section, we present the various results related to our study. First, we explore a variety
of use cases. Subsequently, we examine our observations regarding the implementation
of PWCT2 using the Ring language. Furthermore, we discuss the performance metrics of
PWCT2. Finally, we provide details about download numbers, usage time, and user

feedback.

6.3.1 Use Cases
The primary use case for the PWCT2 software is as an alternative to the Ring Code

Editor, allowing users to create new projects based on Ring or to import and
update/execute Ring programs instead of using Ring Notepad. Ring2PWCT plays a
significant role in this process, while the Time Machine feature enables users to read the
program step by step and run it from a previous point in time. This functionality
facilitates the continued development and maintenance of numerous Ring samples and

applications.

In Figure 6.15, we introduce the SuperMan game, which is distributed with the Ring
language. Using PWCT2, it was possible to import the game implementation and check
it step by step. The game is based on the Ring game engine, which is designed for
developing simple 2D games. PWCT2 comes with many samples related to game
programming libraries like Allegro, RayLib, and Tilengine. These samples are converted
from the Ring programming language project to PWCT2 through the Ring2PWCT tool,

which converts Ring textual code to a PWCT2 visual source file.

Since PWCT2 comes with a Form Designer and the required visual components to
build GUI applications, it was possible to use it in developing multiple GUI applications,
including an application to predict citation counts in the Otology field using the research
paper title, author, and abstract [166]. In the Citations Prediction application, the user
interface is designed using the PWCT2 Form Designer (the same designer provided by

the Ring language), and the application logic is designed using PWCT2 before generating

91

Ring code. The application receives input from the user and submits it to the machine

learning model through the internet using the LibCurl library. The models are developed

using Microsoft Azure Machine Learning. The 394 visual components provided by

RingPWCT and introduced in Table 3 offer sufficient features to develop such

applications.

superman.pwet

® Output Window 26

(5| T \E\

Steps Tree

~{function main
M Start Here

M Start Here
oGameState = New Object GameStateI
~loGame {

title = "Super Man"
icon = "images/superman.jpg"l
sprite {]

4

Loy O <ew O

ile = "images/superman.jpg'|

x = 0f
y =0
width = 800
height = 600
|scaled = true
animate = false

Ll

keypress = Function ogame,oself,nKe:

While Loop Component
Condition :

| QAgan | WOk | ®Close

B super Man

ENERGY : 33

Form Designer ‘ superman.pwet ‘

Figure 6.15 Using PWCT2 to visualize and execute Ring language projects.

Project Files ® azurepwct

\E\ \i\ | Filter (Applications Folder) o The Time Machine \E\ 8
» “7 analogclock = -
» © asciitable D/ e e Class Component
- <] Class azure]
» °" bmicaleulator Attribut Name : (azure)
» =2 calculator * fibttes Parent : []
' calendar T V! Private Attributes/Methods
o
- cards & | @agan || wok || ®doese |
b == checkers
= P
' o chess Define Function Component
» == chessendgame = I K [P]
~ " citationsprediction rJ ame : (process
» B images P MIMethods ¥ Parameters ;
& nction setPaperTitle cTitle| ouput: ()
Q dataset.form N » [function setPaperAbstract cAbstrac] | ©agin | WOk || S |
[datasetController.pwct N Ifu i P Auth AUt I
. »
19 predict.rform o ne !on Setrapernu .ors CAUONS Define Function Component
[predictController.pwet ' Ifunctlon process cString Name : (setPaperAuthors)
[sysdata pwet ’ Ifunction predictUsingTitle 7 .
» 28 customers - - - Parameters : [cAuthors
’ |funct|on predictUsingAbstract i
» 7 desktopscreenshot Ifu T i ET T Output : [:]
»
» = DiscreteFourierTransform netion predictusingAutnors | QAgain || WOk || ®Ckse |
= dotsandboxes
» ©= eightqueens ~|Private
t S"I‘P'OZ:S | Attributes
» = erlangbformula
5 escape Methods
» T fifteenpuzzle - E

Figure 6.16 Using PWCT2 to develop the Citations Prediction application.

In Figure 6.16, we demonstrate the Azure class used by the Citations Prediction

application to connect to the Machine Learning model. This class could submit the

research paper title, authors, or abstract as input to the model and receives the

92

predicted citation count as output. Different machine learning models are utilized based
on the selected input. The class contains the web service URL and the API key as
attributes. Within the same project, in addition to the azure.pwct file, there are other
files, such as sysdata.pwct, which includes some research paper samples. There are two
form designer files: dataset.rform and predict.rform. The first file provides a table to
select a research paper from the available samples. The second form is the main form of
our application and allows users to enter the paper information to be used as input for
the model and includes a button to open the other form in the dataset.rform file. These
forms respond to GUI events that are handled by the files datasetController.pwct and
predictController.pwct. When we open a form file using the project files window, PWCT2

will automatically open the corresponding visual source file for the controller class.

Another known application in the Ring language community that is developed using
PWCT?2 is the Find in Files application, which is distributed with Ring Notepad [145]. The
application is shown in Figure 6.17. The application’s user interface is developed using

the form designer and utilizes Qt layouts to automatically resize the controls.

& Find in files = (m] X
Find Citations €, Search
In Folder B:/Ring/Applications « Browse

Files Extension ring

Match Case
File Line Text =
1 | B:/Ring/Applications/citationsprediction/azure.ring 2 # Citations Prediction Application
2 | B:/Ring/Applications/citationsprediction/azure.ring 39 return "Can't connect to the Model to predict Total Citations using Title"
3 | Bi/Ring/Applications/citationsprediction/azure.ring a3 return "Can't connect to the Model to predict Total Citations using Abstract”
4 | B:/Ring/Applications/citationsprediction/azure ring &7 return "Can't connect to the Model to predict Total Citations using Authors"
o 5 |B:/Ring/Applications/citationsprediction/datasetController.ring 2 # Citations Prediction Application
e 6 | B:/Ring/Applications/citationsprediction/datasetView.ring 65 setHorizontalHeaderltem(4, new QTableWidgetitem("Total Citations"))
7 | B:/Ring/Applications/citationsprediction/predictController ring 2 # Citations Prediction Application
8 | B:/Ring/Applications/citationsprediction/predictController.ring 48 cOutput += "Prediction using title : " + setPaperTitle(c Title) + " citations " + nl
9 | B:/Ring/Applications/citationsprediction/predictController.ring a3 cOutput += "Prediction using Authors : " + setPaperAuthors(cAuthors) + " citations " +nl
10| B:/Ring/Applications/citationsprediction/predictController.ring 58 cOutput += "Prediction using Abstract : " + setPaperAbstract(cAbstract) + " citations " + nl
L] »
Replace With Replace Replace All
OCInse

. 13 matches across 6 files

Figure 6.17 Find in Files application developed using PWCT2.

The Find in Files application supports search, replace, and replace all operations on
one or more files. During a search operation, the user can enable the (Match Case)

checkbox to perform a case-sensitive search. Using the (Browse) button, the user can

93

select a specific folder to be used when searching for files. The application utilizes visual

components related to file and text processing, as shown in Figure 6.18.

findinfilescontroller.pwct @x
0 The Time Machine E
D’ Steps Tree = "
~ |For cFile in aFiles step 1 ESREIE HE AT N
= - File : [cFile]
3@ cFileText = Read File cFilg Output : [cFileText
¥ alist = Convert String to List, String : cFiIeTextI @ Again WOk & Close
nMax = Get List Size aLisi]
i ~|For x = 1 to nMax step 1
String To List Component
LA . . -
cLine = aListix] String : |cFileText
- nPos = Find Sub String Position cText In String cLine] Qutput (List) :
cLine = Trim String cLine] @Again || @ok || ®cose
> ~ [If nPos|
&, v Get List Size Component
= [Rows List : [aList)
-~ TabIeOutput.setRowCount(nRow)] ISt o lats
7 - Add File Output :
oltem = New Object TableWidgetItem(cFile)_I © Again w0k & Close
TableOutput.setltem(nRow, 1 .oltem)l
- Add Line i i Trim Component
oltem = New Object TablerdgetItem("“+x)| 3 :
TabIeOutput.setltem(nRow.Z.oltem}l String :
~ Add Text Output :
oltem = New Object TabIeWidgetItem(cLine)] @ Again w0k & Close
TabIeOutput.setltem(nRow.S.oltem)j

E dl E;“: OfII_F Sptlatementl If Statement Component
nd of For Looj
End of For Loop Condition :
~|lIf nRow =0 @ Again w Ok & Close
M Start Here -

Figure 6.18 Using PWCT2 to develop the Find in Files application.

The (Read File) component receives two parameters: the (File) variable, which
contains the file name to read, and the (Output) variable, which contains the file content
as a string. The (String to List) component converts a Ring string to a Ring list that can be
processed using list functions. Each list item will contain one line of text and can be
processed using string processing components. For more efficient and high-performance
implementation, it is recommended to avoid converting the string to a list since the

string can be processed directly.

6.3.2 Implementation of PWCT2 with the Ring Language
The implementation of PWCT2 using Ring involves using the language compiler,

virtual machine, libraries, and tools. Ring 1.17 was sufficient to release the PWCT2
software on the Steam platform in 2023, but we found the language features and
stability more satisfactory starting from Ring 1.19, where Ring 1.18 improved support for

references and Ring 1.19 improved performance. Later versions released in 2024, such

94

as Ring 1.20, Ring 1.21, and Ring 1.22, provided additional features, stability, and
performance improvements. In Table 6.11, we list information about the project size,

including dependencies such as the standard library and the GUI library from Ring 1.22.

Table 6.11 PWCT2 project size including dependencies.

Attribute Value

Source code files 1354
Lines of Code 92 KLOC
Dependencies 27 KLOC
Total Lines of Code 119 KLOC

In Table 6.12, we present the compile-time using different versions of the Ring
language, the size of the generated Ring VM byte-code instructions, and the size of the
generated Ring object file (default size and compressed size). The tests are done using a

Victus Laptop [13th Gen Intel(R) Core (TM) i7-13700H, Windows 11].

Table 6.12 Using Ring to build the PWCT2 project.

Ring 1.17 Ring 1.19 Ring 1.22
Attribute
(2022) (2023) (2024)
Compile-time (ms) 1480 1152 871
Byte-code Instructions 900,113 899,984 724,382
Ring Object File Size (KB) 22,184 22,825 18,952
Object File Compressed (KB) 2463 2483 2322

The data show a substantial reduction in compile-time from 1480 milliseconds in
Ring 1.17 to 871 milliseconds in Ring 1.22 (see Figure 6.19), highlighting significant
enhancements in the compilation process. There is a notable decrease in the number of
byte-code instructions from 900,113 in Ring 1.17 to 724,382 in Ring 1.22 (see Figure

6.20), indicating more efficient bytecode generation.

We can compile the PWCT2 project to a Ring object file, which can be run directly
using the Ring Virtual Machine without the need to compile the project again using the
Ring compiler. The size of the Ring object file initially increased slightly but then
decreased significantly (see Figure 6.21) to 18,952 KB in Ring 1.22, reflecting
optimization improvements.

95

Compile-time (ms)

1600

1400

1200
1000
800
600
400
200
0

Ring 1.17 Ring 1.18 Ring 1.19 Ring 1.20 Ring 1.21 Ring 1.22

Figure 6.19 Ring compile-time for PWCT2 from Ring 1.17 to Ring 1.22.

Byte-code Instructions

1,200,000
1,000,000
800,000
600,000
400,000
200,000

Ring 1.17 Ring 1.18 Ring 1.19 Ring 1.20 Ring 1.21 Ring 1.22

Figure 6.20 Generated bytecode instructions for PWCT2 from Ring 1.17 to Ring 1.22.

The compressed object file size remained relatively stable. Compressing the object
file and reducing the required storage could be useful when distributing the project over
the internet. However, the real size of the object file (without compression) matters
because the Ring Virtual Machine processes and loads this file into memory when
running the project. These results collectively illustrate the progress achieved with the

subsequent versions of the Ring language.

96

Ring Object File (KB) Object File Compressed (KB)

Ring 1.17
30,000

25,000

20,000
Ring 1.22 15,000 Ring 1.18

10,000
5000

0

Ring 1.21 Ring 1.19

Ring 1.20
Figure 6.21 Ring Object File Size for PWCT2 from Ring 1.17 to Ring 1.22.
6.3.3 PWCT2 Performance
Table 6.13 presents performance results related to the PWCT2 environment,
showcasing various visual source files and their corresponding metrics. These files
represent games and utilities such as StopWatch, Snake, Matching, Sokoban, Escape,

Tessera, FlappyBird3000, and others.

Each sample is evaluated based on several criteria: file storage in kilobytes (KB), the
number of visual components, steps involved, generated lines of code (LOC), loading
time (LT) in milliseconds required to display the visual representation, and code
generation time (CGT) in milliseconds. The data demonstrates a range of sample
complexities, with file storage sizes varying from 41 KB to over 1000 KB, and visual

components ranging from 40 to 1269.

The number of steps and lines of code also vary significantly, highlighting the diverse
nature of these visual source files. Loading and code generation times provide insights
into the performance efficiency of PWCT2 across different applications. The
measurements are done using a Victus Laptop [13th Gen Intel(R) Core(TM) i7-13700H,
Windows 11, PWCT 2.0].

97

Table 6.13 Measuring performance of PWCT2 (Time in Milliseconds).

LT CGT
ID File Storage (KB) Components Steps LOC
(ms) (ms)

1 StopWatch 41 40 74 54 73 3
2 Snake 138 149 234 185 199 9
3 Matching 218 215 330 275 287 13
4 Sokoban 217 235 330 269 269 13
5 Escape 250 277 401 329 330 14
6 Tessera 268 269 418 337 370 17
7 FlappyBird3000 260 263 429 341 358 17
8 Pairs 283 287 432 362 374 17
9 Cards 298 305 457 399 363 15
10 SquaresPuzzle 299 327 513 378 429 20
11 StarsFighter 321 329 530 423 449 21
12 KnightTour 347 386 549 465 448 21
13 Tetris 351 402 586 483 459 20
14 Game2048 371 356 588 461 499 22
15 Othello 427 422 653 536 562 25
16 DFT 787 538 677 603 784 22
17 MagicBalls 438 510 700 602 567 24
18 Minesweeper 449 509 701 611 559 24
19 SuperMan 465 480 757 607 622 30
20 Laser 707 825 1139 955 918 39
21 GameOfLife 773 870 1253 1066 1068 43
22 Checkers 845 968 1307 1128 1077 43
23 GoGame 946 1089 1453 1271 1166 47
24 GetQuotesHistory 1021 1269 1555 1407 1228 51
25 Chess 1012 1166 1560 1340 1270 52

In Figure 6.22, we present the relationship between the number of steps and the
required storage. The figure is a stacked bar chart comparing the storage (in KB) and
steps for various applications or games developed using PWCT2. The x-axis lists the

names of the applications/games, while the y-axis represents the values for storage and

98

steps. The blue segments of the bars represent storage, and the orange segments

represent the number of steps in the visual source file.

= Storage (KB) = Steps

2500

2000

1500

1000

500

T
N O

IR

. =
X S & @ £ & ¥ g &
& & R & & A &) &
& & F W F L F Y P g & &
R A @ & e’%‘k
o di\ R o
@ & RS

Figure 6.22 The relationship between the number of steps and the required storage.

In Figure 6.23, we present the relationship between the number of visual

components and the generated source code, showing that using visual components

increases the abstraction level. In Figure 6.24, we demonstrate the relationship between

both the loading time/code generation time and the step count in the visual source file.

1600
1400
1200

1000

600

-_anntitdiid iy

=]

(3 ® & 2 > O Y & A & & (+] A o A 3 & (3 A -
Ry R s & a3 € @ 3 g NS £ & 2 2 & & of &
9 ‘9(@ \5'5\\ \{5"@ & & S”G o & "é“ & <& & & o & & & o e 3 \ﬁ@ (‘5&
? & Y F & & & O I & & & F
o® QQ&" & o @ & W& A 5%
“\’b o ‘t‘\ .@>
o

[l Components ELOC

Figure 6.23 Using visual components increases the abstraction level.

99

We notice from Figure 6.24 that the loading time increases significantly as the file
size and complexity grow, with a noticeable spike around the 600 ms mark, indicating
that more complex files require more time to load. The orange line represents the code
generation time, which remains relatively low throughout the different samples, with
only minor fluctuations. The code generation time is more critical for developers because
they may need to run the program multiple times during development and updating the
visual code, making it essential to keep this time low for a smoother and more efficient
development cycle. On the other hand, the loading time, while important, is typically
incurred only once per file. By maintaining consistently low code generation time,
PWCT2 enhances the development experience, making it more efficient and less time-

consuming for developers.

1400

1000
800

600

200

0 200 400 600 800 1000 1200 1400 1600

Loading Time (ms) Code Generation Time (ms)

Figure 6.24 The relationship between the LT/CGT and the step count.

Table 6.14 demonstrates the performance and storage requirements of PWCT2 and
PWCT [145] when using visual source files that contain at least 1000 steps by evaluating
various metrics: file storage in kilobytes (KB), the number of steps, loading time (LT) in
milliseconds (ms), and code generation time (CGT) in milliseconds (ms). These visual
source files pertain to different visual programming languages (CPWCT vs. RingPWCT)
and various programs. However, the step counts fall within the same range, representing
the size of the visual programs, which influences the code generation performance and

storage requirements.

100

PWCT2 shows significant improvements in file storage efficiency and code
generation time, with much smaller file sizes (773 KB to 1012 KB) and faster code
generation (43 ms to 52 ms) compared to PWCT, which has larger file sizes (7966 KB to
11,397 KB) and much longer code generation times (1748 ms to 3862 ms). Although
PWCT2 has higher loading times for the visual source files (1068 ms to 1270 ms) than
PWCT (549 ms to 860 ms), this difference is not substantial and is due to new optional
features in PWCT2, such as rich colors where the same steps can use more than one
color. The faster code generation time in PWCT2 is crucial for developers who need to
run the program multiple times during development, making it more efficient and less

time-consuming.

Table 6.14 Some large visual source files.

Generation VPL File Storage (KB) Steps LT (ms) CGT (ms)
PWCT2 RingPWCT GameOfLife 773 1253 1068 43
PWCT2 RingPWCT Checkers 845 1307 1077 43
PWCT2 RingPWCT GoGame 946 1453 1166 47
PWCT2 RingPWCT Chess 1012 1560 1270 52

PWCT CPWCT Vmfuncs 7966 1000 549 1748
PWCT CPWCT Refmeta_ext 8243 1075 593 1993
PWCT CPWCT File_ext 9799 1235 747 2651
PWCT CPWCT Vm_oop 11397 1497 862 3862

In Table 6.15, we present a summary of the key statistical metrics derived from
analyzing the relationship between the number of steps, storage requirements, and code
generation time (CGT). The analysis for PWCT2 is done for 25 visual source files
presented in Table 11 which used RingPWCT. The analysis for PWCT is done for 43 visual
source files related to CPWCT and introduced in the literature with storage size and code
generation time [145]. We used the same hardware for all experiments. Also, to ensure
the reliability and validity of our findings, we calculated the p-values for both Pearson
and Spearman correlation coefficients across storage vs. steps and code generation time
vs. steps. This statistical analysis allowed us to determine the significance of the
observed relationships. By verifying that the p-values were well below the accepted

threshold of 0.05.

101

Table 6.15 Statistical Analysis of RingPWCT and CPWCT samples.

Attribute PWCT PWCT2

Visual Programming Language CPWCT RingPWCT

Visual Source Files Count (Sample Size) 43 25

Pearson Correlation (Storage vs. Steps) 0.8693 0.9662
Pearson Correlation (CGT vs. Steps) 0.9105 0.9947
Spearman Correlation (Storage vs. Steps) 0.8198 0.9867
Spearman Correlation (CGT vs. Steps) 0.9914 0.9855
Average Storage per Step (KB/step) 13.6751 0.6543
Average CGT per Step (ms/step) 1.2956 0.0353
RMSE for Storage 23.4063 0.1082
RMSE for CGT 1.0539 0.0032

For PWCT2, our analysis revealed a very strong positive correlation between the
number of steps and both storage and code generation time. This indicates that as the
number of steps increases, both storage and CGT also increase in a nearly linear fashion.
The average storage required per step was found to be 0.6543 KB, while the average CGT
per step was 0.0353 milliseconds. Furthermore, the Root Mean Square Error (RMSE)
values for storage per step (0.1082) and CGT per step (0.0032) were low, suggesting that
the average values are reliable and well represented by the data. These findings
demonstrate the efficiency and scalability of code generation in PWCT2, particularly in

handling visual source files with a high number of steps.

For PWCT, the average storage required per step was found to be 13.6751 KB, while
the average CGT per step was 1.2956 milliseconds. Furthermore, the Root Mean Square
Error (RMSE) values for storage per step (23.4063) and CGT per step (1.0539) were
calculated, indicating some variability around the averages. Despite this variability, the
correlations remain strong and statistically significant, underscoring the reliability of the
data and the performance characteristics of PWCT. These findings highlight the
substantial resource demands of code generation in PWCT, particularly as the number of
steps increases. PWCT2 improves upon PWCT by storing the Steps Tree directly in visual
source files according to the actual control flow, either appending or inserting steps as
needed, whereas PWCT appends all steps to the end and reorders them only during code

generation.
102

The statistically significant data and strong performance metrics allow us to
generalize the findings when discussing the performance improvements of PWCT2 over
PWCT. On average, PWCT2 is approximately 36.7 times faster in code generation time
(CGT) per step and uses approximately 20.9 times less storage per step compared to
PWCT. This significant improvement is evidenced by the lower average CGT and storage
per step for PWCT2, as well as the low RMSE values, indicating high efficiency and
consistency. These results highlight the advancements and effectiveness of PWCT2,

making it a more efficient tool for visual programming tasks.

6.3.4 User Feedback
Once we started distributing the software and describing it as a visual programming

tool and a replacement for the Ring Code Editor, users began joining the community
group, which now has over 750 members, more than 100 discussion topics, and over 50
announcements about software updates. In early 2023, most discussion topics were
questions about using the software, its capabilities, and a few bug reports. We fixed the
reported bugs and provided educational videos (see Table 6.16) to help users learn about
the software and how to use it [173]. Then, we guided them to the PWCT2 samples and
Ring language documentation to learn more about the software. Many of the recent
topics in 2024 are questions about future directions and requests to support other

textual programming languages like Lua, Python, and C#.

Table 6.16 Statistics about educational videos introducing PWCT2.

Attribute Value
Total Videos Count 39
Average Duration (M:S) 8:47
Total Duration (H:M:S) 5:42:27

Based on statistics from the Steam platform regarding PWCT2 web page visits from
March 2023 to December 2024, the platform displayed the project title, logo, and short
description over 1.73 million times to users through various lists. The software web page
received over 159 K visits (a 9.2% clickthrough rate), including over 72 K visits from the
United States, over 33 K visits from the Russian Federation, and over 11 K visits from
Saudi Arabia. Over 20,000 users own the software and have added it to their Steam

library, enabling them to download and use it at any time.

103

In Table 6.17, we present the minimum usage time and the percentage of users as

reported by the Steam platform.

Table 6.17 Usage time as reported by the Steam platform.

Minimum Usage Time Percentage of Users
30 min 27%
1 h 0 min 19%
2 h0min 13%
5h 0 min 8%
10 h 0 min 5%

Steam reported that 1772 users have downloaded and launched the software
through Steam, with an average usage time of 9 h and 40 min. This means the software

has been used for over 17,000 h as shown in Table 6.18.

Table 6.18 Statistics about the PWCT2 from 1 March 2023 to 21 December 2024.

Attribute Value
Impressions 1.72 M
Web page visits 159 K
Software owners 20,623
Users launched the software 1772
Average usage time 9 h and 40 min
Total usage time Over 17,000 h

In Figure 6.25, we present a horizontal bar chart that shows the download statistics
of the PWCT2 software across different regions, listing only the top regions, such as

North America and Western Europe.

104

MNorth America

Western Europe

Latin America

Central Asia

Asia

Eastern Europe

Figure 6.25 Download statistics of the PWCT2 software across top regions.

The regions and their corresponding percentages are as follows: North America at
36.20%, Western Europe at 25.70%, Latin America at 6.20%, Central Asia at 6.10%, Asia
at 5.90%, and Eastern Europe at 5.20%. The chart highlights the significant differences in
the distribution of downloads across these regions, with North America having the
highest percentage and Eastern Europe having the lowest. In Figure 6.26, we present the
downloads across the top countries, showing that the United States has the highest

number of downloads (31%), followed by Germany (10%) and Canada (5%).

Total Downloads

| 549

o |

Figure 6.26 PWCT2 Software downloads across top countries.

We conducted an analysis for the user reviews for the PWCT2 software on the Steam
platform, while noticing important details such as review type, language used to write
the review, and usage time in hours. The reviews are written in various languages,
indicating a diverse user base. Out of the thirty-one reviews, twenty-eight users

recommended the software, while three users did not.

105

The languages used in the reviews include Arabic, Chinese, English, Italian, Polish,
Portuguese, Russian, Thai, and Turkish. Usage varies significantly, from as little as 0.1 h
to an extensive 560.1 h. Notably, a user who used the software for 560.1 h recommended
it, showing a high level of engagement. Other notable usage times (in their respective
review languages) include 93.4 h (Thai), 61.4 h (English), and 56 h (Portuguese), all with
positive recommendations. Figure 6.27 illustrates the proportion of positive and

negative reviews for the PWCT2 software on the Steam platform.

Positive

®m Negative

90%

Figure 6.27 User satisfaction according to steam statistics.

The user reviews provide a mix of positive and critical feedback. Users appreciate
the software’s educational value, especially for beginners. The visual and organized
approach to programming is praised, with some comparisons to Scratch. Users find it
helpful for those with little coding knowledge and believe it has great potential for

learning programming.

With respect to negative feedback, we noticed that it was based on various reasons,
including encountering bugs, requiring more educational resources, and seeking
additional features to enhance usability. During 2023 and 2024, we worked on resolving
all reported bugs, introduced more educational resources (videos and documentation),
and added requested features such as Drag-and-Drop support in the Goal Designer, an
expression builder in the interaction pages, as well as preventing composition errors in
the Steps Tree. However, we believe there is room for further improvement in the

educational resources and the features provided.

106

The software’s interface is described as smooth, with many features to learn. Some
users highlight the convenience of having the entire programming interface visible and
the ability to keep necessary interaction pages open. Some users also express
satisfaction with features like Ring2PWCT and the Time Machine, which enhance their

programming experience.

There are positive remarks about the potential for serious projects. Many users
express satisfaction with the software’s development and updates. On the other hand, a
few users feel the software is not beginner-friendly and recommend it only for those

with prior programming knowledge.

Continued development and support are encouraged, with some users
acknowledging our responsiveness in fixing issues. Overall, the reviews highlight both
the strengths and areas for improvement in PWCT2, reflecting diverse user experiences

and perspectives.

6.4 Chapter Summary

In this chapter, we presented the results and experiments that evaluated the
effectiveness and performance of both the Ring dynamic programming language and
the PWCT2 visual programming language. Additionally, we examined storage usage for
visual source files in PWCT2, highlighting its impact on resource efficiency. Furthermore,
we discussed the portability of Ring, which supports deployment across Desktop,
WebAssembly, and Microcontroller environments, showcasing its versatility. Ring also
features automatic memory management, equipped with a built-in garbage collector,
ensuring efficient handling of memory allocation and deallocation. the results also
incorporated user feedback, providing valuable insights into the usability and practical

experiences with both languages.

In the next chapter, we will engage in a discussion of our findings, delving into the

implications and limitations discovered during our research.

107

Chapter 7: Discussion

7.1 Introduction

In this chapter, we will provide a comprehensive summary of the experiments and
results presented in the previous chapter. We will analyse the findings in detail,
discussing their implications and how they support the objectives of this thesis.
Additionally, we will address the limitations encountered during our research, providing
a critical evaluation of the potential challenges and areas for improvement. By
examining these aspects, we aim to offer a thorough understanding of the strengths and
weaknesses of the Ring dynamic programming language and the PWCT2 visual

programming language.

7.2 Ring dynamic programming language

From Table 6.2, we notice that dozens of users learned the language through the
available resources (documentation, samples, applications, and videos), and their
feedback helped us grow the educational resources distributed with the language. For
example, chapters such as FAQ, Scope Rules, Performance Tips, and General Information
were added and enhanced based on this feedback. Also, many graphics programming
samples (OpenGL Camera and background, Collision detection, Chess 3D, etc.) are
developed by one of those users. Another important lesson learned from being close to
users and responding to their feedback is that this not only encourages more people to
get involved and report issues but also motivates users to become active contributors to
the open-source project. However, we acknowledge the limitations and potential biases,
especially regarding the demographic homogeneity (predominantly male participants)
and the regional limitations of early feedback, which could affect the generalizability of

the results.

From the statistics in Figures 6.3 and 6.4, we can conclude that Ring, as a
programming language and research prototype, has been tried by thousands of users
[83,84]. Based on the use cases demonstrated in Table 6.3, the Ring programming
language has proven to be versatile. It has been effectively utilized in a variety of
domains, including desktop development (Ring IDE and Chess End Game application),
game development (Shooter Game and Gold Magic 800 puzzle game), and data analysis

(Arabic poetry analysis application). The language’s lightweight and embeddable nature,

108

combined with its support for many programming paradigms, allows for rapid
development [91,152,166—171]. However, this versatility still needs to benefit more
from the language’s ability to create domain-specific languages and localization

packages.

The remainder of this section addresses the second research question (RQ2).
Abstraction is a known dimension in the Cognitive Dimensions Framework (CDF), which
is utilized in many research studies for the usability analysis of visual programming
languages [10]. Abstraction involves grouping elements or entities into a single entity to
either reduce viscosity (making it less difficult to modify) or align the notation with the
user’s conceptual structure. Abstractions are useful for modification and transcription
tasks (copying content from one structure to another). They play a crucial role in visual
implementation, as they significantly influence ease of use and can also increase

protection against errors [174,175].

From the results in Table 6.5, we observe that Ring visual implementation comprises
18,945 visual components, which in turn generated 24,743 lines of code. This finding
highlights the significant advantage of visual implementation: it increases the
abstraction level by 23.5% while concealing unnecessary details. Specifically, this
advantage becomes apparent when specifying component data through interaction
pages (data-entry forms). These interaction pages generate and update the steps tree
based on the provided data. However, a different scenario emerges when considering
the generated steps tree. The steps tree aims to provide additional information about
the program structure and related details, resulting in a total number of steps that
exceed the lines of code, as demonstrated in the “Steps” column. On the other hand,
PWOCT offers a “Read Mode” that allows users to hide many of these implementation
details. In this mode, the “Visible Steps” column shows a count slightly less than the total
lines of code. Despite this difference, the Steps Tree has a clear advantage: it facilitates
easy interaction with groups of steps. Its tree structure directly provides two dimensions
of interaction—siblings and children—which enhances usability and navigation within
the visual implementation. This higher level of abstraction translates into a more
productive development process by allowing developers to focus on the overall structure
and functionality of the program rather than getting bogged down in the minutiae of

code syntax.
109

The visual components provide a more intuitive and accessible interface, making it
easier for developers to understand and modify the codebase. Additionally, this
approach improves usability by reducing the likelihood of syntax errors and simplifying

the debugging process. [34,66,120].

However, we have observed certain disadvantages while using PWCT:

e Large Storage Size: Visual implementations tend to occupy more storage space
compared to their textual counterparts. This is an important consideration,
especially when dealing with large projects.

e Memory Requirements for Multiple Instances: The PWCT environment is designed
to open one visual source file at a time. To work with multiple files simultaneously,
you need to run multiple instances of PWCT. Unfortunately, this approach comes
with a memory cost. Opening all the visual source files related to the Ring compiler
and virtual machine implementation (43 files) requires approximately 1.3 GB of
memory. This could become an issue for larger projects that contain more visual
source files, where opening these files simultaneously for quick navigation could be
problematic. This might be required when searching in multiple files. We also
noticed that PWCT supports search/replace in a single visual source file, which is not
practical for large projects. To work around this issue, we used external tools to
search in the generated textual source code.

e Limitations of the Steps Tree Editor: The Steps Tree editor lacks support for drag-
and-drop functionality. Moving steps within the tree is possible only through cut-
and-paste operations. While this may not be a critical issue, it is worth noting for
usability purposes because it forces us to use the keyboard to move steps faster
from one location to another.

e Performance Challenges with Large Visual Source Files: When dealing with visual
source files containing thousands of components, performance can become an
issue. Loading such files or generating source code may exhibit slower behavior. For
example, our largest file (genlib_ext) contains 1732 components and 2965 steps.
Loading the file and displaying the visual representation takes over two seconds,
while generating the source code takes over 14 s, as demonstrated in Figures 6.8
and 6.9. This results in slow development and iteration when tasks involve updating

many visual source files.

110

No support for importing textual source code. This missing feature introduces many
limitations. If a programmer submits a GitHub pull request by modifying the textual
source code of the Ring Compiler/VM, we cannot simply import these changes.
Additionally, this is a barrier to integrating with Al tools that generate textual code.
While in visual implementation, we could use external libraries provided through
textual code (without visual implementation), the problem occurs when the
generated source code (from visual implementation) is modified directly by other
contributors in the project without making the change through visual programming
first and then generating the textual source code. This leads to effort duplication.
This demonstrates a limitation on collaborative development efforts. For users who
might wish to integrate Ring with existing workflows or tools and are looking to
modify the language implementation, we recommend making a choice and sticking
to it: either use the visual implementation and make any changes through it first or
use the generated textual source code and continue development based on it.

PWCT is designed to work only under Microsoft Windows. The support for other

operating systems is not native and requires extra tools (Like Wine for Linux).

Despite these challenges, our successful use of PWCT to develop and maintain the

Ring programming language compiler and virtual machine demonstrates its value.

However, addressing these scalability issues will be crucial if PWCT is to be adopted in

larger projects in the future.

Suggestions to mitigate these challenges:

Separate the visual source into many files with clear names and purposes.

Keep each visual source file to fewer than a few thousand steps.

Open related visual source files according to the current task while closing unrelated
visual source files (or not opening them) to provide easy navigation between PWCT
instances through the operating system features.

External tools are needed when searching multiple generated source code files.

From Table 6.6 and Figures 6.10 and 6.12, we demonstrated the growth of the Ring

language over eight years; while being a lightweight language, we noticed a growth in

the implementation size from 16 KLOC in 2016 to 24 KLOC in 2024. This percentage of

growth (51%) requires attention, and we could focus in the next years on reducing the

implementation size since the core features have been implemented and the

111

implementation is stable and usable. With respect to adding new features, we will try to
keep most of these new features in the libraries and the new domain-specific languages.
From Tables 6.7, 6.8 & 6.9, we notice that the performance of the Ring programming
language has improved over time, and it is now fast enough for many use cases as a
scripting language. However, improving Ring’s performance remains a challenge, and we

aim to provide optimizations and enhancements with each new release.

7.3 PWCT2 visual programming language

The diverse use cases of PWCT2 demonstrate its adaptability and utility in various
programming scenarios. The primary use case for PWCT2 is as an alternative to the Ring
Code Editor, which allows users to create new projects based on Ring, as well as visualize
and execute Ring programs. This flexibility is further enhanced by the Time Machine
feature, which enables users to read programs step by step and run them from a previous
point in time, facilitating the continued development and maintenance of numerous
Ring samples and applications. Additionally, PWCT2 supports the development of GUI
applications through its Form Designer, which has been utilized to create applications for
predicting citation counts in the Otology field and for finding files distributed with Ring
Notepad. These applications showcase PWCT2's capability to handle different tasks, such
as integrating machine learning models developed using Microsoft Azure Machine
Learning and providing user-friendly interfaces. Moreover, PWCT2’s ability to convert
Ring textual code into visual code and vice versa using the Ring2PWCT tool underscores
its potential as a flexible tool in both educational and professional settings. The practical
use cases of PWCT2 highlight its contributions to simplifying programming and

enhancing the overall development process based on the Ring programming language.

The results presented in Tables 6.11 and 6.12 highlight the excellent compilation
performance achieved during the development of PWCT2 using various versions of the
Ring language. Furthermore, the number of byte-code instructions decreased in Ring
1.22, indicating more efficient byte-code generation. However, despite these
improvements, the size of the generated Ring object file remains relatively large, even
though there was a reduction from 22,825 KB in Ring 1.19 to 18,952 KB in Ring 1.22.
Addressing the large object file size could reduce the storage and memory requirements
of the PWCT2 project. Tables 6.14 and 6.15 present an insightful comparison of PWCT2's

performance and its improvements over PWCT [145]. PWCT2 demonstrates significant
112

enhancements in file storage efficiency and code generation time. The results show that
PWCT2 has much smaller file sizes, and a notably faster code generation compared to

PWCT, which is crucial during multiple programs runs and updates.

User feedback has played a crucial role in the development and refinement of
PWCT2. Since its distribution as a visual programming tool and a replacement for the
Ring Code Editor, the community group has grown significantly, now boasting over 750
members. Notably, over 20,000 users have added the software to their Steam libraries,
enabling them to download and use it anytime. Steam reported that 1772 users have
launched the software, with an average usage time of 9 h and 40 min, cumulatively
amounting to over 17,000 h of usage (Table 6.18). Regional and country-specific
download data highlight that North America and the United States lead in downloads
(Figures 6.25 and 6.26). User reviews on Steam (Figure 6.27) also present a mix of
positive and critical feedback, with notable appreciation for the educational value,

smooth interface, and unique features like Ring2PWCT and the Time Machine.

Since PWCT2 currently supports the Ring programming language through RingPWCT
visual components, these visual components follow the Ring language approach for
representing different data structures, where Ring lists are used instead of arrays, linked
lists, trees, hash tables, etc. However, by using classes and operator overloading, we can
create custom types. The Ring Standard Library comes with specific classes for lists,
trees, hash tables, etc., and the RingPWCT includes visual components that enable the
use of these classes. With respect to scalability and creating large projects, the PWCT2
approach is based on organizing large projects into folders, subfolders, and different
visual source files, where a visual source file can load other files and use the functionality
provided by them, such as functions and classes. However, more improvements are
required in this area to provide visualizations that highlight information from different

visual source files.

The development and evaluation of PWCT2, the proposed research prototype and
successor to PWCT, bring several noteworthy limitations to light. First and foremost,
PWCT2 supports only the Ring programming language, whereas PWCT provided visual
components for various textual programming languages, including Harbour, C,

Supernova, Python, and C# [66]. This limitation restricts the versatility of PWCT2 and

113

may reduce its appeal to users who require support for multiple programming
languages. Secondly, PWCT2 is not compatible with PWCT in terms of visual component
design or visual source file formats. This incompatibility necessitates the development
of tools to convert projects from PWCT to PWCT2, which could pose challenges for users
looking to transition their existing projects. Additionally, PWCT2 is currently distributed
as a desktop tool rather than a web-based application. The lack of a web-based version
limits accessibility and convenience, highlighting a potential area for future development

to enhance user experience and broaden the tool’s reach.

Since PWCT?2 is based on the Qt framework, which supports WebAssembly, and the
Ring language also supports the WebAssembly platform, we plan to develop PWCT2 for
WebAssembly in the future. At this stage, we have an online version of the Form
Designer, and other components will be ported as well. While PWCT2 includes the
Ring2PWCT feature, which allows it to accept Ring code generated by large language
models, the process currently requires a copy-and-paste operation (e.g., from Copilot to
PWCT2) [160]. A fully integrated solution, where writing a natural language prompt
directly generates a visual representation without needing manual transfer, would be
more efficient and user-friendly. This enhancement could significantly streamline the

workflow and improve usability.

Moreover, despite providing 39 instructional videos to explain PWCT2 features,
using PWCT2 still demands a general understanding of programming and specific
knowledge of the Ring language [173]. To achieve broader adoption, it may be necessary
to expand educational resources, including tutorials and documentation, to support

users with varying levels of expertise.

In summary, while PWCT2 advances the capabilities of its predecessor and offers a
robust platform for developing Ring-based applications, addressing the limitations
identified could enhance its functionality, user experience, and appeal to a broader
audience. Future work should focus on expanding language support, ensuring
compatibility with PWCT, developing a web-based version, improving integration with
natural language processing tools, and enhancing educational resources to support a

diverse user base.

114

7.4 Chapter Summary

In this chapter, we have thoroughly discussed the experiments and results,
providing a comprehensive analysis of the strengths and limitations of the Ring dynamic

programming language and the PWCT2 visual programming language.

In the next chapter, we will present our overall conclusions and outline potential
future work. We will summarize the key findings of this thesis and propose directions
for further research and development, aiming to build upon the foundations laid by the

Ring and PWCT2 languages.

115

Chapter 8: Conclusion and Future Work

In this chapter, we present the conclusion of this thesis, along with the planned

future work.

8.1 Conclusion

In this thesis we introduced the design, implementation and evaluation of the Ring
textual programming language and the PWCT2 self-hosting visual programming
language. Ring is a dynamically typed language developed and maintained for over eight
years using visual programming through the PWCT visual programming language, where

the generated code is based on ANSI C.

The visual implementation is composed of 18,945 components that generate 24,743
lines of ANSI C code, which increases the abstraction level and hides unnecessary details.
Using PWCT to develop Ring allowed us to realize several issues in PWCT like large
storage size and performance challenges with large visual source files. We addressed
these issues through the development of the PWCT2 visual programming language using

the Ring textual programming language.

Ring combines a lightweight implementation with several advantages, such as a rich
and versatile standard library, along with direct support for classes and object-oriented
programming. Ring is adaptable across diverse platforms. Rather than creating separate
language implementations for specific contexts, the same Ring implementation serves a
wide range of environments. From desktop systems to WebAssembly and even 32-bit
microcontrollers like the Raspberry Pi Pico, Ring addresses the problem of missing

language features that exist in other implementations.

To achieve this, we applied specific design decisions such as using a single-pass
compiler, grouping built-in functions in optional modules through preprocessor
directives, opting for Ring Lists over C structures, selectively using C structures for critical
features, implementing flexible lists using various data structures and optimization
techniques, storing bytecode in a single continuous memory block, using a writable long-
byte code format for performance improvements, and avoiding the use of a global

interpreter lock for better thread performance.

116

Customization is a key feature of Ring, allowing developers to easily modify the
language syntax multiple times. Moreover, Ring empowers the creation of domain-
specific languages through novel features that extend object-oriented programming.
Beyond its language design, the underlying idea relies on using braces to access objects,
granting us the ability to utilize the attributes and methods provided by those objects.
Ring does not require semicolons or new lines between statements. We can type
different statements on the same line without any fuss. Additionally, in Ring, every
expression is an acceptable statement, giving us the freedom to write various values, all
of which will be accepted by the compiler. Ring classes also support properties. Typing a
property name can invoke the getter method and execute the associated code.
Moreover, Ring goes a step further by allowing us to define methods like braceStart()
and braceEnd(). These methods are automatically called when we access an object using
braces. Furthermore, the language automatically invokes a method called
braceExprEval() when we write an expression inside braces. With these features, coupled
with the ability to customize language keywords and operators, we can construct
domain-specific languages that resemble external DSLs such as CSS, QML, SQL, and
Supernova. Also, Ring provides a practical development environment and facilitates

rapid GUI application development.

In summary, Ring emerges as a lightweight, versatile, and customizable dynamic
language developed using visual programming, adapting seamlessly to the ever-evolving
landscape of software development. The implementation based on visual programming
increases the abstraction level, hides unnecessary details and provides a more user-
friendly implementation through visual programming advantages, such as avoiding

syntax errors.

Visual programming languages are helpful in making programming easier and faster
to learn. This study introduces some useful improvements. We have developed the
second generation of the PWCT visual programming language that includes enhanced
features, works on different systems, performs code generation more efficiently than
before, and reduces storage requirements. PWCT2 is a self-hosting visual programming
language developed and maintained for over eight years using the Ring programming

language. PWCT2 consists of approximately 92,000 lines of Ring code.

117

We also created the first visual programming language (RingPWCT) that generates
code in the Ring programming language. RingPWCT contains 394 visual components that
enable the development of a wide range of applications and tools, including PWCT2
itself. This helps combine the ease of visual programming with the flexibility of Ring.
Additionally, we tested how well the Ring programming language Compiler/VM works
for developing an advanced project like PWCT2. We also designed a tool called
Ring2PW(CT to convert textual Ring code into visual code in PWCT2, making it easier to

use.

PWCT2 has been widely distributed to users via the Steam platform, receiving
positive feedback. On Steam, the software has been launched by 1,772 users, with a total
recorded usage time exceeding 17,000 hours. These improvements show that there is
potential for making visual programming languages more accessible and effective for

Ring developers. Our work provides a foundation for further development in this area.

8.2 Future Work

In the future, we plan to build multiple projects on top of the Ring programming
language, such as a localization package for many human languages, various domain-
specific languages for different fields, and a modern framework that includes many
templates for database applications. Our priority is to provide a complete translation of
all language syntax and libraries into Arabic. Following this, we aim to develop a domain-
specific language for GUI development, like the Supernova language, but based on Ring’s
features that extend object-oriented programming to support the creation of internal
domain-specific languages. After that, we will focus on creating the framework and

templates for database applications.

In the future, we aim to enhance the PWCT2 visual programming language by
supporting additional textual programming languages such as C, Java, C# and Python.
We also plan to improve the environment by offering translations in various human
languages, to make it more accessible to a global audience. Moreover, we intend to add
more components that provide better support for Ring libraries, further enriching the
functionality and usability of PWCT2. These enhancements will continue to build on the

progress made and open new possibilities for users and developers.

118

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Sahinaslan, Ender, Onder Sahinaslan, and Mehmet Sabancioglu. "Low-code
application platform in meeting increasing software demands quickly:
SetXRM." In AIP Conference Proceedings, vol. 2334, no. 1. AIP Publishing,
2021.

Shimomura, Takao. "Visual design and programming for Web applications."
Journal of Visual Languages & Computing 16, no. 3 (2005): 213-230.
Krasnovidov, A. V., and A. D. Khomonenko. "Integration of MatLab and R with
high-level languages using C# and Microsoft Visual Studio as an example." In
Journal of Physics: Conference Series, vol. 2131, no. 2, p. 022096. 0P
Publishing, 2021.

Li, Hongting, Liping Wang, Jiajun Qin, and Baonan Yang. "Bank management
system based on gt." In 2021 International Wireless Communications and
Mobile Computing (IWCMC), pp. 1184-1188. IEEE, 2021.

Salleh, Syahanim Mohd, Zarina Shukur, and Hairulliza Mohamad Judi.
"Analysis of research in programming teaching tools: An initial review."
Procedia-Social and Behavioral Sciences 103 (2013): 127-135.

Asenov, Dimitar. "Design and implementation of Envision-a visual
programming system." Master's thesis, Eidgenodssische Technische
Hochschule Ziirich, Department of Computer Science, Chair of Programming
Methodology, 2011.

Costagliola, Gennaro, Andrea De Lucia, Filomena Ferrucci, Carmine Gravino,
and Giuseppe Scanniello. "Assessing the usability of a visual tool for the
definition of e-learning processes." Journal of Visual Languages & Computing
19, no. 6 (2008): 721-737.

T. Software, Tiobe programming community index, URL:
https://www.tiobe.com/tiobe-index/, Last Accessed 16 February 2025
Bottoni, Paolo, S-K. Chang, Maria Francesca Costabile, Stefano Levialdi, and
Piero Mussio. "Dimensions of visual interaction design." In Proceedings 1999

IEEE Symposium on Visual Languages, pp. 48-55. IEEE, 1999.

119

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Green, Thomas R. G., and Marian Petre. "Usability analysis of visual
programming environments: a ‘cognitive dimensions’ framework." Journal of
Visual Languages & Computing 7, no. 2 (1996): 131-174.

Green, T. R. G. "Noddy's guide to visual programming. Interfaces, The British
Computer Society." Human-Computer Interaction Group (1995).

Fayed, Mahmoud Samir. "General-purpose visual language and information
system with case-studies in developing business applications." arXiv preprint
arXiv:1712.10281 (2017).

Burnett, Margaret. "Visual programming. Encyclopedia of electrical and
electronics engineering." John G. Webster, ed (1999): 275-283.

Burnett, Margaret M., and Marla J. Baker. "A classification system for visual
programming languages." Journal of Visual Languages and Computing 5, no.
3 (1994): 287-300.

Kuhail, Mohammad Amin, Shahbano Farooq, Rawad Hammad, and
Mohammed Bahja. "Characterizing visual programming approaches for end-
user developers: A systematic review." IEEE Access 9 (2021): 14181-14202.
Costagliola, Gennaro, Vincenzo Deufemia, Giuseppe Polese, and Michele Risi.
"Building syntax-aware editors for visual languages." Journal of Visual
Languages & Computing 16, no. 6 (2005): 508-540.

Ortiz, Luis A. Ortiz. A framework for visual programming languages.
University of Puerto Rico, Mayaguez (Puerto Rico), 1997.

Bentrad, Sassi, and Djamel Meslati. "Visual programming and program
visualization towards an ideal visual software engineering system." ACEEE
International Journal on Information Technology 1, no. 3 (2011): 43-49.
Burnett, Margaret M., Marla J. Baker, Carisa Bohus, Paul Carlson, Sherry
Yang, and Pieter Van Zee. "Scaling wup visual programming
languages." Computer 28, no. 3 (1995): 45-54.

Whitley, Kirsten N. "Visual programming languages and the empirical
evidence for and against." Journal of Visual Languages & Computing 8, no. 1
(1997): 109-142.

Edwards, Alistair DN. "Visual programming languages: the next

generation." ACM SIGPLAN Notices 23, no. 4 (1988): 43-50.

120

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

O. Vanilla, J. Yu, and H. B. Abdalla, "Cesno: The Initial Design of a New
Programming Language," in Proceedings of the International Conference on
Computing, Control and Industrial Engineering, Wuhan, China, 21-22 June
2024 (Singapore: Springer Nature, 2024), 128-146.

M. Noone and A. Mooney, "Visual and Textual Programming Languages: A
Systematic Review of the Literature," Journal of Computing in Higher
Education 5 (2018): 149-174.

R. Wilhelm and H. Seidl, Compiler Design: Virtual Machines
(Berlin/Heidelberg: Springer, 2010).

J. C. Mitchell, Concepts in Programming Languages (Cambridge: Cambridge
University Press, 2003).

F. Ortin, M. Garcia, B. G. Perez-Schofield, and J. Quiroga, "The StaDyn
Programming Language," SoftwareX 20 (2022): 101211.

K. Gao et al., "Julia Language in Machine Learning: Algorithms, Applications,
and Open Issues," Computer Science Review 37 (2020): 100254.

A. Pang, C. Anslow, and J. Noble, "What Programming Languages Do
Developers Use? A Theory of Static vs Dynamic Language Choice," in
Proceedings of the 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), Lisbon, Portugal, 1-4 October 2018, 239-247.
O. Callau et al., "How Developers Use the Dynamic Features of Programming
Languages: The Case of Smalltalk," in Proceedings of the 8th Working
Conference on Mining Software Repositories, Honolulu, HI, USA, 21-22 May
2011, 23-32.

J. Armstrong, "A History of Erlang," in Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, San Diego, CA, USA, 9-10
June 2007, 6-1-6-26.

L. D. Paulson, "Developers Shift to Dynamic Programming Languages,"
Computer 40 (2007): 12—-15.

A. C. Kay, "The Early History of Smalltalk," in History of Programming
Languages—II (New York: Association for Computing Machinery, 1996), 511—
598.

121

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

J. McCarthy, "History of LISP," in History of Programming Languages (New
York: Association for Computing Machinery, 1978), 173—-185.

M. S. Fayed et al.,, "PWCT: Visual Language for loT and Cloud Computing
Applications and Systems," in Proceedings of the Second International
Conference on Internet of Things, Data and Cloud Computing, Cambridge,
UK, 22-23 March 2017, vol. 2017, 1-5.

S. Dasgupta and B. M. Hill, "Learning to Code in Localized Programming
Languages," in Proceedings of the Fourth (2017) ACM Conference on
Learning@ Scale, Cambridge, MA, USA, 20-21 April 2017, vol. 2017, 33—-39.
J. Maloney et al., "The Scratch Programming Language and Environment,"
ACM Transactions on Computing Education (TOCE) 10 (2010): 1-15.

Y. Bassil, "Phoenix—The Arabic Object-Oriented Programming Language,"
arXiv 2019, arXiv:1907.05871.

M. Hamid, "Design of an Arabic Programming Language (ARABLAN),"
Computer Languages 21 (1995): 191-201.

Gasolin, "Zhpy Python Package," 2020, accessed October 11, 2024,
https://pypi.org/project/zhpy/.

G. de Mooij, "Citrine Programming Language," 2014, accessed October 11,
2024, https://citrine-lang.org/.

F. Mahmoud, "Supernova Programming Language," 2010, accessed October
11, 2024, https://supernova.sourceforge.net/.

R.Y.Lyu et al., "Machine Translation of English Identifiers in Python Programs
into Traditional Chinese," in Proceedings of the 2016 International Computer
Symposium (ICS), Chiayi, Taiwan, 15—-17 December 2016, 622—625.

M. Stanojevi¢ and B. Stanojevi¢, "Lua APIs for Mathematical Optimization,"
Procedia Computer Science 242 (2024): 460—-465.

R. lerusalimschy et al., "The Evolution of Lua," in Proceedings of the Third
ACM SIGPLAN Conference on History of Programming Languages, San Diego,
CA, USA, 9-10 June 2007, 2-1-2-26.

R. lerusalimschy, Programming in Lua (Rio de Janeiro: Roberto lerusalimschy,

2006).

122

[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

R. lerusalimschy, L. H. De Figueiredo, and W. C. Filho, "Lua—An Extensible
Extension Language," Software: Practice and Experience 26 (1996): 635—-652.
R. Nystrom, Crafting Interpreters (Mumbai: Genever Benning, 2021).

M. G. Apodaif et al., "Layout Automation of Variable Gain Amplifier Circuit
Based on TCL Language," Sohag Engineering Journal 4 (2024): 87-99.

J. Hammen, "Bipscript: A Domain-Specific Scripting Language for Interactive
Music," in Proceedings of the 17th Linux Audio Conference (LAC-19), CCRMA,
Stanford, CA, USA, 23—-26 March 2019.

B. B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl and Tk
(Hoboken, NJ: Prentice Hall Professional, 2003).

D. Wetherall and C. J. Lindblad, "Extending Tcl for Dynamic Object-Oriented
Programming," in Proceedings of the Tcl/Tk Workshop, Toronto, ON, Canada,
6—8 July 1995, vol. 670.

J. K. Ousterhout, Tcl: An Embeddable Command Language (Berkeley, CA:
University of California, Berkeley, Computer Science Division, 1989).

F. M. Giorgi, C. Ceraolo, and D. Mercatelli, "The R Language: An Engine for
Bioinformatics and Data Science," Life 12 (2022): 648.

C. Moler and J. Little, "A History of MATLAB," in Proceedings of the ACM on
Programming Languages (New York: Association for Computing Machinery,
2022), vol. 4, 1-67.

T. E. Granor et al., Hacker’s Guide to Visual FoxPro 7.0 (Milwaukee, WI:
Hentzenwerke, 2002).

A. D. Moore, Python GUI Programming with Tkinter: Design and Build
Functional and User-Friendly GUI Applications (Burmingham: Packt
Publishing, Ltd., 2021).

J. Hao and T. K. Ho, "Machine Learning Made Easy: A Review of Scikit-Learn
Package in Python Programming Language," Journal of Educational and
Behavioral Statistics 44 (2019): 348-361.

M. Summerfield, Rapid GUI Programming with Python and Qt: The Definitive
Guide to PyQt Programming (London: Pearson Education, 2007).

W. Ruys et al.,, "A Deep Dive into Task-Based Parallelism in Python," in

Proceedings of the 2024 IEEE International Parallel and Distributed

123

[60]

[61]

[62]

[63]
[64]

[65]

[66]

[67]

[68]

Processing Symposium Workshops (IPDPSW), San Francisco, CA, USA, 27-31
May 2024, 1147-1149.

R. Eggen and M. Eggen, "Thread and Process Efficiency in Python," in
Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las Vegas, NV, USA, 29
July—1 August 2019, 32-36.

S. Masini and P. Bientinesi, "High-Performance Parallel Computations Using
Python as High-Level Language," in Proceedings of the Euro-Par 2010 Parallel
Processing Workshops: HeteroPar, HPCC, HiBB, CoreGrid, UCHPC, HPCF,
PROPER, CCPI, VHPC, Ischia, Italy, 31 August—3 September 2010; Revised
Selected Papers (Berlin/Heidelberg: Springer, 2011), vol. 16, 541-548.

L. Rockoff, The Language of SQL (Boston, MA: Addison-Wesley Professional,
2021).

J. Attardi, Modern CSS (Berlin/Heidelberg: Springer, 2020).

S. Gunther and T. Cleenewerck, "Design Principles for Internal Domain-
Specific Languages: A Pattern Catalog lllustrated by Ruby," in Proceedings of
the 17th Conference on Pattern Languages of Programs, Irsee, Germany, 11—
15 July 2012, 1-35.

E. M. Maximilien et al.,, "A Domain-Specific Language for Web APIs and
Services Mashups," in Proceedings of the Fifth International Conference on
Service-Oriented Computing—ICSOC 2007, Vienna, Austria, 17-20 September
2007 (Berlin/Heidelberg: Springer, 2007), vol. 5, 13-26.

M. S. Fayed et al., "PWCT: A Novel General-Purpose Visual Programming
Language in Support of Pervasive Application Development," CCF
Transactions on Pervasive Computing and Interaction 2 (2020): 164-177.

P. Suresh et al., "A State of the Art Review on the Internet of Things (loT)
History, Technology and Fields of Deployment," in Proceedings of the 2014
International Conference on Science Engineering and Management Research
(ICSEMR), Chennai, India, 27-29 November 2014, 1-8.

Y. B. Zikria et al., "Next-Generation Internet of Things (loT): Opportunities,
Challenges, and Solutions," Sensors 21 (2021): 1174.

124

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

M. S. Fayed, "Network Generations and the Security Challenge in loT
Applications," arXiv 2022, arXiv:2201.01927.

H. Silangern and K. Tanaka, "Internet of Things Implemented with Mruby," in
Proceedings of the International Conference on Computational Science and
Its Applications, Hanoi, Vietnam, 1-4 July 2024 (Cham: Springer Nature,
2024), 165-181.

K. Tanaka et al., "Flexibility and Productivity in loT Programming: A Case
Study with Mruby," in Proceedings of the International Conference on
Advanced Research in Technologies, Information, Innovation and
Sustainability, Madrid, Spain, 18—20 October 2023 (Cham: Springer Nature,
2023), 17-27.

I. Plauska, A. Liutkevicius, and A. Janavicitté, "Performance Evaluation of
C/C++, MicroPython, Rust and TinyGo Programming Languages on ESP32
Microcontroller," Electronics 12 (2022): 143.

G. Halfacree and B. Everard, Get Started with MicroPython on Raspberry Pi
Pico: The Official Raspberry Pi Pico Guide (London: Raspberry Pi Press, 2021).
P. P. Ray, "An Overview of WebAssembly for loT: Background, Tools, State-
of-the-Art, Challenges, and Future Directions," Future Internet 15 (2023):
275.

Y. Yan et al, "Understanding the Performance of WebAssembly
Applications," in Proceedings of the 21st ACM Internet Measurement
Conference, Virtual Event, 2—4 November 2021, 533-549.

G. Gallant, WebAssembly in Action: With Examples Using C++ and Emscripten
(New York: Simon and Schuster, 2019).

A. Penev and M. Vassilev, "Visual Differential Debugging in the Domain-
Specific Visual Programming Languages," in Proceedings of the 2020
International Conference Automatics and Informatics (ICAl), Varna, Bulgaria,
1-3 October 2020, 1-6.

M. M. Burnett and D. W. Mclntyre, "Visual Programming," Computer-Los
Alamitos 28 (1995): 14-14.

W. R. Sutherland, "The On-Line Graphical Specification of Computer

Procedures" (Ph.D. diss., Massachusetts Institute of Technology, 1966).

125

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

D. C. Smith, Pygmalion: A Creative Programming Environment (Stanford, CA:
Stanford University, 1975).

P. T. Cox, F. R. Giles, and T. Pietrzykowski, "Prograph: A Step Towards
Liberating Programming from Textual Conditioning," in Proceedings of the
1989 IEEE Workshop on Visual Languages, Rome, ltaly, 4—6 October 1989,
150-151.

D. Singh et al., "Requirements of MATLAB/Simulink for Signals," in Signal
Processing Applications Using Multidimensional Polynomial Splines
(Dordrecht: Springer, 2019), 47-54.

J. Kodosky, "LabVIEW," Proceedings of the ACM on Programming Languages
4 (2020): 1-54.

J. Kalemkus and F. Kalemkus, "The Effects of Designing Scientific Experiments
with Visual Programming Language on Learning Outcomes," Science
Education (2024): 1-22, https://doi.org/10.1007/s11191-024-00546-8.

T. Hagino, Practical Node-RED Programming: Learn Powerful Visual
Programming Techniques and Best Practices for the Web and loT
(Birmingham: Packt Publishing Ltd., 2021).

D. Torres et al., "Real-Time Feedback in Node-RED for loT Development: An
Empirical Study," in Proceedings of the 2020 IEEE/ACM 24th International
Symposium on Distributed Simulation and Real-Time Applications (DS-RT),
Prague, Czech Republic, 14-16 September 2020, 1-8.

E. Chu and L. Zaman, "Exploring Alternatives with Unreal Engine’s Blueprints
Visual Scripting System," Entertainment Computing 36 (2021): 100388.

T. Turchi, "FlowPilot: A Generative Al-Driven Visual Language for
Computational Thinking Education," in Proceedings of the 2024 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC),
Liverpool, UK, 2—6 September 2024, 353-355.

P. Luthi, "Self-Hosting the Envision Visual Programming Environment" (MSc.
Thesis, ETH Zurich, 2015).

K. McNeish, NET for Visual FoxPro Developers (Milwaukee, WI:

Hentzenwerke, 2002).

126

[91]

[92]
[93]

[94]

[95]

[96]
[97]

[98]

[99]

[100]

[101]

[102]

M. Ayouni, Beginning Ring Programming (New York: Apress, 2020), vol. 978,
no. 1.

S. Juric, Elixir in Action (New York: Simon and Schuster, 2024).

L. F. D. M. Vegi and M. T. Valente, "Code Smells in Elixir: Early Results from a
Grey Literature Review," in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, Pittsburgh, PA, USA, 16—-17 May
2022, 580-584.

A. K. A. Deo et al., "Performance and Metrics Analysis Between Python3 via
Mojo," in Proceedings of the 2024 2nd International Conference on
Sustainable Computing and Smart Systems (ICSCSS), Virtual Event, 10—12 July
2024, 1291-1297.

M. Xurshid, "Differences Between Mojo and Python Programming
Languages," in Proceedings of the Conference on Digital Innovation: Modern
Problems and Solutions, Ho Chi Minh City, Vietnam, 21-22 June 2023.

M. Lutz, Programming Python (Sebastopol, CA: O’Reilly Media, Inc., 2001).
D. Thomas, C. Fowler, and A. Hunt, Programming Ruby—The Pragmatic
Programmer’s Guide (Raleigh, NC: Pragmatic Programmers, LLC, 2004), vol.
238.

O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, "Habits of Programming in
Scratch," in Proceedings of the 16th Annual Joint Conference on Innovation
and Technology in Computer Science Education, New York, NY, USA, 27-29
June 2011, 168-172.

A. Feng, M. Gardner, and W. Feng, "Parallel Programming with Pictures is a
Snap!" Journal of Parallel and Distributed Computing 105 (2017): 150-162.
K. Kahn et al., "Al Programming by Children Using Snap! Block Programming
in a Developing Country," in Thirteenth European Conference on Technology
Enhanced Learning, Berlin/Heidelberg: Springer, 2018, vol. 11082.

O. Brandes, "Tersus Visual Programming Platform," in Proceedings of the
2011 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Pittsburgh, PA, USA, 18-22 September 2011, 245-246.

N. Dieng, A Proposed Unified Visual Programming Language (Stillwater, OK:
Oklahoma State University, 2010).

127

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

M. C. Carlisle et al.,, "RAPTOR: A Visual Programming Environment for
Teaching Algorithmic Problem Solving," ACM SIGCSE Bulletin 37 (2005): 176—
180.

M. C. Carlisle, "Raptor: A Visual Programming Environment for Teaching
Object-Oriented Programming," Journal of Computing Sciences in Colleges 24
(2009): 275-281.

M. Hirakawa, M. Tanaka, and T. Ichikawa, "An Iconic Programming System,
HI-VISUAL," IEEE Transactions on Software Engineering 16 (1990): 1178-
1184.

D. W. McIntyre and E. P. Glinert, "Visual Tools for Generating Iconic
Programming Environments," in Proceedings of the IEEE Workshop on Visual
Languages, Seattle, DC, USA, 15-18 September 1992, 162—-168.

M. B. MaclLaurin, "The Design of Kodu: A Tiny Visual Programming Language
for Children on the Xbox 360," in Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Austin, TX, USA, 26-28 January 2011, 241-246.

M. Maclaurin, "Kodu: End-User Programming and Design for Games," in
Proceedings of the 4th International Conference on Foundations of Digital
Games, Orlando, FL, USA, 26—-30 April 2009, xviii—xix.

M. Burnett et al., "Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm," Journal of Functional
Programming 11 (2001): 155-206.

P. J. van Zee, "Exception Handling in the Visual Programming Language
Forms/3" (master's thesis, Oregon State University, 1995),
https://ir.library.oregonstate.edu/concern/graduate_projects/mw22vd90v.
M. Burnett, S. K. Chekka, and R. Pandey, "FAR: An End-User Language to
Support Cottage E-Services," in Proceedings of the IEEE Symposia on Human-
Centric Computing Languages and Environments (Cat. No. 01TH8587),
Auckland, New Zealand, 28-31 October 2001, 195-202.

M. Romero and B. Sewell, Blueprints Visual Scripting for Unreal Engine 5:
Unleash the True Power of Blueprints to Create Impressive Games and

Applications in UE5 (Birmingham: Packt Publishing Ltd., 2022).

128

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

A. Islam, K. Eng, and A. Hindle, "Opening the Valve on Pure-Data: Usage
Patterns and Programming Practices of a Data-Flow Based Visual
Programming Language," in Proceedings of the 2024 IEEE/ACM 21st
International Conference on Mining Software Repositories (MSR), Lisbon,
Portugal, 15-16 April 2024, 492-497.

PWCT Team, "PWCT Software," accessed December 24, 2024,
https://doublesvsoop.sourceforge.net.

Asenov, Dimitar, and Peter Miller. "Customizing the visualization and
interaction for embedded domain-specific languages in a structured editor."
In 2013 IEEE Symposium on Visual Languages and Human Centric Computing,
pp. 127-130. IEEE, 2013.

J. M. Sdez-Lopez et al., "Visual Programming Languages Integrated Across the
Curriculum in Elementary School: A Two-Year Case Study Using ‘Scratch’ in
Five Schools," Computers & Education 97 (2016): 129-141.

M. Burnett et al., "End-User Programming of Time as an ‘Ordinary’ Dimension
in Grid-Oriented Visual Programming Languages," Journal of Visual
Languages and Computing 13 (2002): 421-447.

D. Asenov, O. Hilliges, and P. Miiller, "The Effect of Richer Visualizations on
Code Comprehension," in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, San Jose, CA, USA, 7-12 May 2016, 5040-
5045.

K. D. Ginther and I. Glnther, "Lava—An Object-Oriented RAD Language
Designed for Ease of Learning, Use, and Program Comprehension," Institut
fur Informatik und Praktische Mathematik, Hannover, Germany, 2001.

J. M. Chin, M. H. Chin, and C. Van Landuyt, "A String Search Marketing
Application Using Visual Programming," e-Journal of Business Education &
Scholarship of Teaching 7 (2013): 46-58.

S. S. Chok and K. Marriott, "Automatic Generation of Intelligent Diagram
Editors," ACM Transactions on Computer-Human Interaction 10 (2003): 244—

276.

129

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

E. Pasternak, R. Fenichel, and A. N. Marshall, "Tips for Creating a Block
Language with Blockly," in Proceedings of the 2017 IEEE Blocks and Beyond
Workshop (B&B), Raleigh, NC, USA, 9-10 October 2017, 21-24.

J. Trower and J. Gray, "Blockly Language Creation and Applications: Visual
Programming for Media Computation and Bluetooth Robotics Control," in
Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, Kansas City, MO, USA, 4—7 March 2015, 5.

G. F. Hurlburt, "Low-Code, No-Code, What’'s Under the Hood?" IT
Professional 23 (2021): 4-7.

K. Rokis and M. Kirikova, "Challenges of Low-Code/No-Code Software
Development: A Literature Review," in International Conference on Business
Informatics Research (Cham: Springer International Publishing, 2022), 3—-17.
R. L. Marson and E. Jankowski, "Build Management with CMake," in
Introduction to Scientific and Technical Computing (Boca Raton, FL: CRC
Press, 2016), 119-132.

D. Spinellis, "Git," IEEE Software 29 (2012): 100-101.

N. Wirth, "The Programming Language Pascal," Acta Informatica 1 (1971):
35-63.

T. L. Cottom, "Using SWIG to Bind C++ to Python," Computing in Science &
Engineering 5 (2003): 88-97.

M. Franz, "Dynamic Linking of Software Components," Computer 30 (1997):
74-81.

G. Lazar and R. Penea, Mastering Qt 5: Create Stunning Cross-Platform
Applications Using C++ with Qt Widgets and QML with Qt Quick (Birmingham:
Packt Publishing, Ltd., 2018).

A. Leff and J. T. Rayfield, "Web-Application Development Using the
Model/View/Controller Design Pattern," in Proceedings of the Fifth IEEE
International Enterprise Distributed Object Computing Conference, Seattle,
WA, USA, 4-7 September 2001, 118-127.

R. Thau, "Design Considerations for the Apache Server API," Computer

Networks and ISDN Systems 28 (1996): 1113-1122.

130

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

E. Westra, Modular Programming with Python (Birmingham: Packt
Publishing, Ltd., 2016).

B. Stroustrup, "What is Object-Oriented Programming?" IEEE Software 5
(1988): 10-20.

A. le Clercq and K. AlImroth, Comparison of Rendering Performance Between
Multimedia Libraries Allegro, SDL and SFML (Stockholm: KTH Royal Institute
of Technology, School of Electrical Engineering and Computer Science, 2019).
R. Fahy and L. Krewer, "Using Open Source Libraries in Cross-Platform Games
Development," in Proceedings of the 2012 IEEE International Games
Innovation Conference, Rochester, NY, USA, 7-9 September 2012, 1-5.

S. Smith and S. Smith, "How to Connect Pico to loT," in RP2040 Assembly
Language Programming: ARM Cortex-M0O+ on the Raspberry Pi Pico
(Berkeley, CA: Apress, 2022), 265-289.

R. lerusalimschy, L. H. De Figueiredo, and W. Celes Filho, "The
Implementation of Lua 5.0," Journal of Universal Computer Science 11
(2005): 1159-1176.

O. lke-Nwosu, Inside the Python Virtual Machine (Victoria, BC: Leanpub,
2015).

T. Zagallo, "A New Bytecode Format for JavaScriptCore," 2019, accessed
October 12, 2024, https://webkit.org/blog/9329/a-new-bytecode-format-
for-javascriptcore/.

M. Dahm, "Byte Code Engineering," in JIT'99: Java-Informations-Tage 1999
(Berlin/Heidelberg: Springer, 1999), 267-277.

H. Nassén, M. Carlsson, and K. Sagonas, "Instruction Merging and
Specialization in the SICStus Prolog Virtual Machine," in Proceedings of the
3rd ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming, Florence, Italy, 5-7 September 2001, 49-60.

J. B. Pedersen and B. Kauke, "Resumable Java Bytecode—Process Mobility for
the JVM," in Communicating Process Architectures (Amsterdam: 10S Press,

2009), 159-172.

131

[145]

[146]

[147]

[148]

[149]

[150]
[151]

[152]

[153]

[154]

[155]

M. S. Fayed and Y. A. Alohali, "Ring: A Lightweight and Versatile Cross-
Platform Dynamic Programming Language Developed Using Visual
Programming," Electronics 13 (2024): 4627.

T. Rabuske, "Polymath: A Platform for Rapid Application Development of
Modular EDA Tools," in Proceedings of the 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), Virtual, 10-21 October 2020, 1-
5.

B. Heisen et al., "Karabo: An Integrated Software Framework Combining
Control, Data Management, and Scientific Computing Tasks," in Proceedings
of the 14th International Conference on Accelerator & Large Experimental
Physics Control Systems, ICALEPCS2013, San Francisco, CA, USA, 6-11
October 2013.

PWCT Team, "PWCT Features—Framework and Extension," accessed
December 24, 2024,
https://doublesvsoop.sourceforge.net/pwcthelp/features/frameworkandex
tension.htm.

Y.-J. Lee, "Scratch: Multimedia Programming Environment for Young Gifted
Learners," Gifted Child Today 34 (2011): 26-31.

P. Ritchie, Practical Microsoft Visual Studio 2015 (Berkeley, CA: Apress, 2016).
T. Boudreau et al., NetBeans: The Definitive Guide: Developing, Debugging,
and Deploying Java Code (Sebastopol, CA: O’Reilly Media, Inc., 2002).
Steamplatform, "GoldMagic800 Game," 2018, accessed December 24, 2024,
https://store.steampowered.com/app/939200/Gold_Magic_800/.

S. Smith and S. Smith, "How to Connect Pico to loT," in RP2040 Assembly
Language Programming: ARM Cortex-M0O+ on the Raspberry Pi Pico
(Berkeley, CA: Apress, 2022), 265-289.

D. Asenov, Envision: Reinventing the Integrated Development Environment
(Ph.D. diss., ETH Zurich, 2017).

PWCT Team, "PWCT Features—Visual Programming," accessed December
24, 2024,
https://doublesvsoop.sourceforge.net/pwcthelp/features/visualprogrammi

ng.htm.

132

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

J. Bucanek, "Model-View-Controller Pattern," Learning Objective-C and Java
Development 20 (2009): 353-402.

M. Bragge, Model-View-Controller Architectural Pattern and Its Evolution in
Graphical User Interface Frameworks (Bachelor’s thesis, Lappeenranta
University of Technology, 2013).

Z. Ahmed, F. J. Kinjol, and I. J. Ananya, "Comparative Analysis of Six
Programming Languages Based on Readability, Writability, and Reliability," in
Proceedings of the 2021 24th International Conference on Computer and
Information Technology (ICCIT), Dhaka, Bangladesh, 18-20 December 2021,
1-6.

J. des Rivieres and H. Spencer, "Readability and Writability in Euclid," ACM
SIGPLAN Notices 13 (1978): 49-56.

P. Vaithilingam, T. Zhang, and E. L. Glassman, "Expectation vs. Experience:
Evaluating the Usability of Code Generation Tools Powered by Large
Language Models," in Proceedings of the CHI Conference on Human Factors
in Computing Systems Extended Abstracts, New Orleans, LA, USA, 29 April-5
May 2022, 1-7.

D. A. Plaisted, "Source-to-Source Translation and Software Engineering,"
Journal of Software Engineering and Applications 6 (2013): 30—40.

G. Lazar and R. Penea, Mastering Qt 5: Create Stunning Cross-Platform
Applications Using C++ with Qt Widgets and QML with Qt Quick (Birmingham:
Packt Publishing, Ltd., 2018).

A. le Clercq and K. Almroth, Comparison of Rendering Performance Between
Multimedia Libraries Allegro, SDL and SFML (Stockholm: KTH Royal Institute
of Technology, School of Electrical Engineering and Computer Science, 2019).
Ring Team, "Ring Programming Language Website," accessed October 13,
2024, http://ring-lang.github.io.

"Downloads Statistics from the Ring Programming Language Mirror Hosted
on SourceForge," accessed November 11, 2024,
https://sourceforge.net/projects/ring-lang/files/stats/timeline?dates=2016-
01-21+to+2024-10-01.

133

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

Y. A. Alohali et al., "A Machine Learning Model to Predict Citation Counts of
Scientific Papers in Otology Field," BioMed Research International 2022
(2022): 2239152.

M. S. Fayed, "Classification of the Chess Endgame Problem Using Logistic
Regression, Decision Trees, and Neural Networks," arXiv 2021,
arXiv:2111.05976.

Y. A. Alohali et al., "Machine Learning and Cochlear Implantation: Predicting
the Post-Operative Electrode Impedances," Electronics 12 (2023): 2720.

M. Ghanem, Developing Poet Software Using Ring Language (Mansoura,
Egypt: MetaBook, 2021), ISBN 978-977-6928-38-1, accessed October 11,
2024, https://ring-lang.github.io/ref/GhanemBookUsingRing.pdf.(In Arabic)
A. Hassouna, "Over 500 Videos to Learn the Ring Language," accessed
October 11, 2024,
https://www.youtube.com/playlist?list=PLHIfW1KZRIfl6KzfLziFI650MmThn
QOjT.

H. Su et al., "ARKS: Active Retrieval in Knowledge Soup for Code Generation,"
arXiv 2024, arXiv:2402.12317.

Steamplatform, "PWCT2 Software," 2023, accessed December 24, 2024,
https://store.steampowered.com/app/1953110/Programming_Without_Co
ding_Technology_20/.

M. Fayed, "Over 30 Videos to Learn PWCT," accessed December 24, 2024,
https://www.youtube.com/watch?v=zd2jUEIlIr8Y&list=PLpQigjcu7CuFFulJW
01dG8xmAXaDC20C(7.

T. Green and A. Blackwell, "Cognitive Dimensions of Information Artefacts: A
Tutorial," in Proceedings of the BCS HCI Conference, Sheffield, UK, 1-4
August 1998, 1-75.

T. R. Green et al., "Cognitive Dimensions: Achievements, New Directions, and
Open Questions," Journal of Visual Languages and Computing 17 (2006):
328-365.7

134

