
Foundations of Object-Oriented Languages�Workshop ReportAndrew Blacky Jens Palsbergz1 IntroductionThis paper reports on the workshop on foundations of object-oriented languages that was held17{18 October 1993 at Stanford University, California, USA. The workshop was organized byKim Bruce and Giuseppe Longo, and sponsored by ESPRIT and NSF. Local arrangementswere done by Dinesh Katiyar and John Mitchell. Participation was by invitation only; theparticipants are listed in the appendix of this paper.The purpose of the workshop was both to understand and compare the many models ofobject-oriented languages, and to create better language constructs and models. The workshopconsisted both of presentations and lively discussions about such topics as challenge problems fortype systems, relative merits of di�erent language designs and type systems, and encapsulationand modularity.In the following section we briey report on the talks given at the workshop. In Section 3we present a dictionary of object-oriented terminology that was created during the discussions.Finally, in Section 4 we report on the discussions by listing the open problems and benchmarksfor type systems that were suggested at the workshop.2 PresentationsFifteen of the participants presented recent work or commented on the state of the �eld. Herefollow brief summaries of their talks.Luca Cardelli and Mart��n Abadi: A theory of primitive objects.Cardelli and Abadi jointly presented a new formal system that supports both subsumptionand override. Subsumption is the ability to use a \more powerful" or \more complete" object�To appear in ACM SIGPLAN Notices.yDigital Equipment Corporation, Cambridge Research Laboratory, 1 Kendall Square, Building 700, Cam-bridge, Massachusetts 02139, Internet: black@crl.dec.com.zComputer Science Department, Aarhus University, Ny Munkegade, DK{8000 Aarhus C, Denmark; currentlyvisiting 161 Cullinane Hall, College of Computer Science, Northeastern University, 360 Huntington Avenue,Boston, Massachusetts 02115, Internet: palsberg@ccs.neu.edu.



in place of a less powerful or less complete object. Override is the ability to replace one methodimplementation by another. These features are both essential to object-oriented languages, butoften they are combined in ways that are unsound, unclear, confused, or ad hoc, or they arenot combined at all.The system described in this talk departed from the authors' previous work by starting notfrom the �-calculus, but from a new object calculus. Just as objects subsume functions, thisnew object calculus subsumes the �-calculus. The system does not support a notion of state.The system supports shallow subtyping: an object of a subtype can have more methods thanobjects of its supertype, but the types of the arguments and results of the common methodsmust be identical. Encoding the object calculus in a recognized typed �-calculus in a way thatpreserves the subtypings remains an open problem.A draft of a 90+ page paper presenting this theory can be obtained by electronic mail fromthe authors [1]. Shorter versions are to appear as [3, 2].Giorgio Ghelli: Objects with rôles.Ghelli described rôles, a concept from the Fibonacci database programming language. Thelanguage has a notion of state and a concept of object identity; it also allows existing objectsto be extended. For example, if John is an object (representing a person), when John enrollsas a student the object might be extended to support new behavior, such as a method Numberthat returns his student number. Let us call this extended object JohnAsStudent .In Fibonacci, John and JohnAsStudent are considered to be the same object by the ob-ject identity test. Nevertheless, JohnAsStudent and John have di�erent behaviors: the �rstunderstands the Number message while the second does not.It is also possible for John to take a part time job, requiring that the object that representshim be extended in another direction, creating JohnAsEmployee. Worse, JohnAsEmployeemight also understand a Number method, which returns John's employee number.Fibonacci deals with these complexities by treating an object as a DAG of rôles; messagesare sent to a receiving role, which �rst tries delegating to subrôles, and then inheriting fromsuperrôles. Thus, the meaning of p.Number depends on the rôle type of the identi�er p.Jens Palsberg: Object-oriented type systems.Palsberg presented an overview of the theory of types that he has developed jointly withMichael Schwartzbach. The goal of the theory is to to explain and improve existing typesystems, not to overthrow them. The work provides a common theory that can be used as abasis for comparisons between languages.The theory deals with object-oriented languages directly, rather than via the �-calculus. Itfollows the traditions of languages like SIMULA, C++, Ei�el, and BETA. Types are treated assets of classes. Thus, the theory can deal with \class types" (the set of subclasses of a particularclass) as well as with more abstract notions of type (the set of classes whose objects support aparticular interface.)The theory and its implications are presented in Palsberg and Schwartzbach's recentlypublished book [14].



Ole Agesen: Type inference for Self { why and how?Agesen described an application [4] of Palsberg and Schwartzbach's theory to the untypedprogramming language Self. Although Self does not have classes, a similar classi�cation ofobjects can be created by the transitive closure of the \cloned" relation.Agesen's system solves a number of practical problems faced by object-oriented program-mers, including �nding all of the places a particular message is sent to a particular object andits clones, and \tree shaking" (extracting an application from the programming environment).Giuseppe Castagna: Second order ad hoc polymorphism.Castagna presented joint work with Giorgio Ghelli and Giuseppe Longo dealing with genericfunction languages [7, 8]. Such languages treat messages as functions, and message sending asfunction application. Castagna, Ghelli, and Longo have developed a model for this approachcalled �&.In �&, each function has many branches, each corresponding to a method in an object-oriented language. The branch chosen in response to an application depends on the class of thearguments. The binding is dynamic: it depends on the dynamic class of the argument objects,not the syntactic class of the argument expressions.The class of a generic function is the set of the classes of the branches that constitute it. Toensure that there is always a \best �tting" branch for a particular invocation, there are somerestrictions on the methods that can be combined in a generic function.Benjamin Pierce: Concurrent OO language design.Pierce described work in progress in Edinburgh to design an object-oriented concurrentlanguage based on �rm formal foundations [15, 16]. He is starting with the �-calculus, becausethis work is going on at Edinburgh, because the �-calculus is small and relatively simple,because it is theoretically well understood, and because it is computationally complete.To this base he plans to add values, typing, higher-order programming, results and objects.Values are structured collections of behaviors. Typing applies to channels; each channel hasa type describing the shape of the values that it carries.An object is a record of request channels for some server process. This approach providesselective enabling of methods via the guarded choice command of the �-calculus. Pierce believesthat typing, subtyping and polymorphism should yield to standard techniques. Inheritance ismore problematic, and is a topic for future work. Because there is no method body as such,just fragments of the process body that execute in response to a message, it is not clear whatto inherit.Robert van Gent: TOIL: a type-safe object-oriented imperative language.Van Gent presented joint work with Kim Bruce on TOIL, an imperative object-orientedlanguage that is provably type safe [6, 17]. In TOIL, methods in a subtype can have anysubtype of the corresponding method of the supertype; this is deep subtyping (compare withCardelli and Abadi's shallow subtyping). TOIL can be type-checked in a modular fashion, andinherited methods are type-safe.



TOIL adds several features to Bruce's previous work: references, nil, an identity test, andeager evaluation of values imported into objects.Andrew Black: What a language designer wants to know about types.Black took the position that the language designer is a consumer (of ideas), and the typetheorist is a vendor (of type systems). A question of obvious importance is then: do the vendorsunderstand the consumers? He also made the point that being in the type theory business islike being in the dog-food business: the consumer is not the same as the customer, and caremust be taken to satisfy the needs of both.Black emphasized that the designer of object-oriented languages wants the type theorists towork on objects right from the beginning. Objects subsume records, not the other way round.Similarly, although bounded polymorphism may be theoretically complex, it reects the needof real programs to adapt to new objects.Black also mentioned some practical solutions to real problems, such as �nding the unionof two types that contain methods with the same name but di�erent numbers of arguments(by treating the number of arguments and results as part of the method name), and �ndinga typing for nil. He posed the question: if subtyping is undecidable in all interesting typesystems, is there any reason to avoid type:type?William Cook: ADTs vs OOLs.Cook contrasted the concepts of Abstract Data Types (ADTs) and objects in Object-Oriented Languages (OOLs) [9]. He argued that although both are based on the idea of dataabstraction, they are fundamentally di�erent. In short, an ADT may be understood as a setwith operations, whereas objects are sets of operations.In an ADT, abstraction is achieved by hiding the type of the representation. This hiding isoften modeled using an existential quanti�er. In OOLs, abstraction is achieved by letting theoperations themselves represent the data. The interfaces of the operations need not have anydirect relation to the underlying representation at all.One of the consequences of the above is that in an ADT, recursion is seldomly needed inthe interface (although it may well be used in the representation). In OOLs, recursion is oftenessential to the interface. Thus, recursion should be central in models of OOLs.Dinesh Katiyar: Interfaces and typed OOP.Katiyar presented a type system featuring bounded existential quanti�cation [10, 5, 13]. Hisexperience with modeling systems con�rmed the need for such types.A bounded existential quanti�cation may be understood as both hiding a type, and at thesame time stating requirements on of what form the hidden type should be.Roberto di Cosmo: Which types for the objects?di Cosmo presented and criticized the idea of using a type as the search key for �ndingmethods in a class library. The idea is that the search should return only those methodsthat have the given type. This would be helpful if we don't know the name of the method



we are searching for. He had analyzed a commercially available class library containing 2349methods. Most methods required 0{2 arguments, and it appeared that insu�cient functionalitywas expressed in the interfaces to e�ectively distinguish them. Thus, to provide e�cient methodretrieval tools, we may need to reconsider the notion of type for objects and methods.Francois Bouladoux: Inheritance and subtyping: Some problems and possible approaches.Bouladoux presented a re�ned approach to subtyping in a framework where objects aremodeled as recursive records. In that framework, F-bounded quanti�cation is a well-knownapproach to typing methods.Bouladoux showed how to de�ne a pre-order between methods, based on the F-bounds, andused that to re�ne the subtype ordering. With the re�ned subtyping relation, a method can beapplied in more contexts than before.Gary Leavens and K. Kishore Dhara: A model theory for subtyping in imperative OOLs.Leavens and Dhara jointly presented work on speci�cation and veri�cation of object-orientedprograms [12, 11]. The emphasis was on incomplete speci�cations and model theory. Once oneconsiders speci�cations, the meaning of subtyping must be changed to include not just theexistence the of corresponding methods, but also their behavior.The general idea is that a type is described by an incomplete speci�cation; a subtype mayhave a more complete speci�cation, but it must not contradict any of the properties of thesupertype. Leavens' previous work on subtyping uses explicit simulation to show that thisproperty holds. The work presented here focused on subtyping in the presence of aliasing.3 TerminologyHere follows the dictionary of object-oriented terminology that was created at the workshop.The explanations are not de�nitive; there were substantial disagreements during their creation.� object. A primitive term.� message. A name, a member of a countable set. In the invocation x.f , f is a message.� method. A procedure inside an object. It is associated with a message (it has a name).It can be called by invoking the enclosing object with the corresponding name.� dynamic lookup. A term expressing the idea that the method that executes in responseto the invocation x.f depends on the current value of x .� class. A function returning objects; an object constructor.� inheritance. A mechanism for making one class or type from another, in which self islate-bound.� delegation. A mechanism for one thing to call another, in which self is late-bound. Likeinheritance, but between objects directly, rather than between their classes.



� subtyping (or conformance). A relationship between types such that if S is a subtypeof T , then S s are substitutable for T s, i.e., a value of type S may be used in any contextthat expects a value of type T.� matching. The relationship that holds between two types when one is derived from theother by type inheritance; it is Bruce's �meth. Also, it is the relation required to de�neF-bounded parameters.4 DiscussionsThe following ways of using a type system were listed during the discussions:� Partial documentation during program design.� Checking for errors.� Maintenance; \understanding what you've got".� E�ciency; provides information for an optimizing compiler.It is unlikely that one single type system will be equally useful for all four purposes.The following benchmark problems emerged. The idea is that a type system should be ableto type the programs suggested in this list.� Point and ColorPoint, including equality methods.� Church numerals.� Calculators.� Encoding of �-calculus.� Overriding of methods that return modi�ed versions of self.� Expression evaluators.� Binary tree with search tree as subclass.� Sorting of arbitrary (but homogeneous) objects, under the constraint that all the objectshave a comparison method.� Generic sort, in which < is part of the argument list.� A class for nodes in a singly linked list, and a subclass for nodes in a doubly linked list.The many models of object-oriented languages focus on a wide variety of aspects of object-oriented programming. Often, two given models focus on rather di�erent aspects and even whenthey focus on the same aspect, they may model di�erent design choices. To guide comparisonof various models, the following extremes in some design dimensions were identi�ed:



� Speci�cation types versus implementation types. Types may contain more orless implementation information. At one extreme we �nd types that only specify suchinformation as type checking interfaces (speci�cation types), and at the other extremewe �nd types that give the full implementation of the objects of a type (implementationtypes). Commonly used object-oriented languages such as C++ tend to use implementationtypes.� Structural subtyping versus subtyping by name. In some languages, all subtypingrelationships must be explicitly declared (subtyping by name). The alternative is toenable the compiler to deduce if two types are in the subtyping relationship (structuralsubtyping). The latter choice requires the subtyping relationship to be decidable. If so,it is more exible, but perhaps less transparent for programmers.� Shallow versus deep subtyping. In many type systems, types can be arbitrarilynested, and, in the presence of recursive types, in�nite. When de�ning the subtypingrelation A � B, we may for example want to allow A to have more components than B.Given this, the following question emerges: should common components be of the sametype (shallow subtyping), or should we for example allow the one in A to be a subtypeof the one in B, or perhaps the other way round (deep subtyping)? In most models, careis needed to ensure the soundness of the type system.� Single versus many implementations for each interface. Some models separate theclass hierarchy and the type hierarchy. If we consider a type as specifying an interface forobjects, then classes provides the implementation of the objects. A basic design questionis whether there can be only a single or several implementations for each interface.� Type inference versus type annotation. With any type discipline comes the questionof type inference. It is only partially understood how powerful type systems we can getand at the same time have computable type inference.� Closed world assumption versus open world assumption. Type-checking of pro-grams can happen under various assumptions. If the compiler can assume that all partsof the program is known (closed world assumption), then it might do a better a job thanif di�erent units are to be compiled separately (open world assumption). The open worldassumption is especially useful when compiling libraries, and the closed world assumptionappears to be most useful towards the end of program development where global analysistechniques may be helpful. The system-level type-checking that has been announced forEi�el uses the closed world assumption.� Extension versus overriding. Inheritance can be used both for extending classes withmore instance variables and methods, and it can be used for method override. In somemodels, these two uses put rather di�erent requirements on type systems.� Delegation versus inheritance. Some models include both objects and classes, othersjust objects. As a consequence, the former models involve inheritance, while the latter



involve delegation. It is unclear if the same style of type systems can be used in bothcases.� Object identity. A key feature of many object-oriented languages is that objects retaintheir identity even when their local state changes, when they are put into secondarystorage, and when they migrate to other computers. Only a few models so far faithfullymodel this.� Multi-methods: encapsulation, compositionality, extensibility, abstract types.Most object-oriented languages are based on single dispatch. This means that the codeto be executed in response to a message send is chosen on the basis of one object, the re-ceiver. Other languages feature multi-methods and multiple dispatch. In such languages,the multi-method to be executed in response to a message send is determined on the basisof several objects. Languages with multi-methods tend to identify types with classes, andthe employed lookup strategies seem to expose instance variables. It appears that the typesystems required for single dispatch and multiple dispatch are rather di�erent. Moreover,the models of multi-methods may help clarify the issues of encapsulation, composition-ality, extensibility, and abstract types that are the subject of much experimentation incurrent object systems with multi-methods.� Meta-object protocols. In recent years, some object systems have pioneered the idea ofhaving a meta-object protocol. Only few models have attempted to model this construct,and it is unclear how well it can be integrated with a type system.� Concurrency. Although there has been a plethora of work on concurrent object-orientedprogramming, no consensus has emerged on how to integrate objects, processes, and typesin one framework.Finally, the following list of open problems was compiled:� ADT's versus objects. Can we translate back and forth? Issues: Extensibility versushiding; abstraction versus e�ciency; and subtyping and reuse.� How can types be used in a programming-support methodology? How can they help oneto clean up messy programs?� Can we reduce objects to records? What basic record operations would be needed?� Can and should we unify objects and processes?� How can we extend ML with object-oriented features?� Can we give an adjoint characterization of functions and objects?In conclusion, the workshop helped clarify many issues and provided plenty of input forfurther research.



AcknowledgementsThe authors thank Kim Bruce, Guiseppe Longo, and Mitchell Wand for helpful comments ondrafts of the report.Appendix: ParticipantsMart��n Abadi DEC, SRC ma@src.dec.comOle Agesen Stanford University/SUN agesen@cs.stanford.eduRoberto Bellucci ENS, Paris bellucci@dmi.ens.frAndrew Black DEC, CRL black@crl.dec.comFrancois Bouladoux ENS, Paris bouladou@dmi.ens.frKim Bruce Williams College kim@cs.williams.eduLuca Cardelli DEC, SRC luca@src.dec.comGiuseppe Castagna ENS, Paris castagna@dmi.ens.frWilliam Cook Apple william@applelink.apple.comRoberto di Cosmo ENS, Paris dicosmo@dmi.ens.frK. Kishore Dhara Iowa State University dhara@cs.iastate.eduKathleen Fisher Stanford University k�sher@theory.stanford.eduRobert van Gent Stanford University vangent@cs.stanford.eduGiorgio Ghelli University of Pisa ghelli@di.unipi.itDinesh Katiyar Stanford University katiyar@theory.stanford.eduGary Leavens Iowa State University leavens@cs.iastate.eduGiuseppe Longo ENS, Paris longo@dmi.ens.frJohn Mitchell Stanford University jcm@theory.stanford.eduEugenio Moggi University of Genova moggi%igecuniv@vm.cnuce.cnr.itJens Palsberg Aarhus Univ./Northeastern Univ. palsberg@ccs.neu.eduBenjamin Pierce Edinburgh bcp@dcs.ed.ac.ukMitchell Wand Northeastern University wand@ccs.neu.eduPhil Yelland ParcPlace yelland@parcplace.comReferences[1] Mart��n Abadi and Luca Cardelli. A theory of primitive objects. Manuscript, October 1993.[2] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Second-order systems. In Proc.ESOP'94, European Symposium on Programming. Springer-Verlag, 1994. To appear.[3] Mart��n Abadi and Luca Cardelli. A theory of primitive objects: Untyped and �rst-order systems.In Proc. TACS'94, Theoretical Aspects of Computing Sofware. Springer-Verlag, 1994. To appear.[4] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of Self: Analysis of ob-jects with dynamic and multiple inheritance. In Proc. ECOOP'93, Seventh European Conferenceon Object-Oriented Programming, pages 247{267, Kaiserslautern, Germany, July 1993.



[5] Kim Bruce and John C. Mitchell. PER models of subtyping, recursive types and higher-orderpolymorphism. In Nineteenth Annual ACM SIGACT-SIGPLAN Symposium on Principles ofProgramming Languages. Albuquerque, New Mexico, pages 316{327, January 1992.[6] Kim B. Bruce and Robert van Gent. TOIL: A new type-safe object-oriented imperative language.To appear, 1993.[7] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functionswith subtyping. Information and Computation. To appear.[8] Guiseppe Castagna. F&� : Integrating parametric and \ad hoc" second order polymorphism. InProc. 4th International Workshop on Database Programming Languages, pages 335{355. Springer-Verlag, 1993.[9] William Cook. Object-oriented programming versus abstract data types. In Proc. REX Work-shop/School on the Foundations of Object-Oriented Languages. Springer-Verlag (LNCS 489),1990.[10] Dinesh Katiyar, David Luckham, and John Mitchell. A type system for prototyping languages.In Proc. POPL'94, 21st Annual Symposium on Principles of Programming Languages, 1994. Toappear. Available by anonymous ftp from theory.stanford.edu:pub/katiyar/papers/popl-94.dvi.Z.[11] Gary T. Leavens and Krishna Kishore Dhara. A model theory for abstract data types withmutable objects (extended abstract). Technical Report 93-21, Department of Computer Science,Iowa State University, September 1993. Available by anonymous ftp from ftp.cs.iastate.edu, andby e-mail from almanac@cs.iastate.edu.[12] Gary T. Leavens and William E. Weihl. Subtyping, modular speci�cation, and modular veri�ca-tion for applicative object-oriented programs. Technical Report 92-28b, Department of ComputerScience, Iowa State University, October 1993. Available by anonymous ftp from ftp.cs.iastate.edu,and by e-mail from almanac@cs.iastate.edu.[13] J. C. Mitchell, S. Meldal, and N. Madhav. An extension of Standard ML modules with subtypingand inheritance. In Eighteenth Symposium on Principles of Programming Languages, pages 316{327. ACM Press, January 1991.[14] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John Wiley & Sons,1993.[15] Benjamin C. Pierce, Didier R�emy, and David N. Turner. A typed higher-order programminglanguage based on the pi-calculus. Draft report; an earlier version was presented as an invitedlecture at the Workshop on Type Theory and its Application to Computer Systems, KyotoUniversity, July 1993, July 1993.[16] Benjamin C. Pierce and David N. Turner. Simple type-theoretic foundations for object-orientedprogramming. Journal of Functional Programming. To appear. A preliminary version appearedin Principles of Programming Languages, 1993, and as University of Edinburgh technical reportECS-LFCS-92-225, under the title \Object-Oriented Programming Without Recursive Types".[17] Robert van Gent. TOIL: An imperative type-safe object-oriented language. Williams CollegeSenior Honors Thesis, 1993.


