
DRAFT — DO NOT DUPLICATE — DO NOT DISTRIBUTE

Open, reusable object models

Ian Piumarta
Viewpoints Research Institute
9242 Beverly Blvd, Suite 300

Beverly Hills, CA 90210, USA
piumarta@speakeasy.net

Alessandro Warth
UCLA Computer Science Department

3400 Boelter Hall
Los Angeles, CA 90095, USA

awarth@cs.ucla.edu

Abstract
Code reuse between different object model implementationsis rare.
Most object models cannot easily be shared because they are im-
plemented at a lower level of abstraction than that of the language
in which they are designed to operate, rendering their semantics
opaque and unavailable for modification by end users. We show
that three object types and four methods are sufficient to bootstrap
an object model whose semantics are described entirely in terms of
those same objects and messages. The result is a simple but power-
ful object model that can be implemented easily and efficiently, in
which all semantics are exposed and malleable, facilitating exten-
sibility, interoperability and implementation reuse.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and Objects

General Terms Programming Language Design, Programming
Language Implementation

Keywords object model, open implementation

1. Introduction
There are almost as many ways to represent structured data asthere
are programming languages to manipulate that data. Once a repre-
sentation has been chosen for a particularend user language it is
typically described in some lower-levelimplementation language.
To illustrate this, the implementer of a Lisp-like end user language
might choose C as the implementation language and use adiscrim-
inated union to store structured data:

enum RecordTag { Number, Symbol, Cons };

struct Record {
enum RecordTag tag;
union {

struct Number number;
struct Symbol symbol;
struct Cons cons;

} payload;
};

[Copyright notice will appear here once ’preprint’ option is removed.]

Each primitive in the end user language that manipulates structured
data would then use conditionalif or switch statements to select
appropriate behaviour depending on the value of thetag field.

This simple object model has already made significant design
decisions and rendered them immutable:

• All objects must start with an integertag field.

• The internal layout of the three intrinsic types cannot be modi-
fied at runtime.

The consequences of these decisions include:

• New payloads cannot be added by end user code, especially if
they require more storage than the intrinsic types.

• New tags cannot be added unless all primitives are explicitly de-
signed to work in the presence of arbitrary tags, or the user is in
a position to understand, modify and then recompile every part
of the base language implementation that might be concerned
with object tags.

We could start to address these problems by creating a more gen-
eral object model for our structured data, for example by adding
a size field to allow for arbitrary payloads. Unfortunately each
such changeadds complexity to the language runtime and imposes
more ‘meta-structure’ in the objects, ultimately making themless
amenable to unanticipated deep modification in the future.

These problems are more severe when we consider object-
oriented languages. The object model for a simple prototype-based
language might specify amethodDictionary and aparent field
in every object. The runtime would look up a message name in the
receiver’smethodDictionary, trying again in theparent object’s
method dictionary if no match is found (and so on until reaching
the end of the parent chain). Adding multiple inheritance tothis
language would be very difficult because of the runtime’s assump-
tion that theparent field contains a single object rather than, say,
a list of parent objects to try in turn.

The trouble is that some of the semantics are reified eagerly
in the execution mechanisms of the language. This in turn eagerly
imposes supporting meta-structure within the objects. Since the ex-
ecution mechanisms are expressed in an implementation language
at a lower level of abstraction than that of the end user language,
neither the mechanisms nor their effects on object structure can be
customised by end users. Moreover, adapting the model for use in a
different language is more difficult when the required changes are
pervasive and expressed in a low-level implementation language. In
this paper we construct an object model that eliminates all of these
problems to the greatest extent possible:

• We show how an object-based model of data can help alleviate
some of the problems of extensibility in programming language
implementation (Section 2).

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 1 2007/11/2

• We define a simple (possiblythe simplest to implement) exten-
sible object model that imposes no structure at all on end user
objects (Section 3).

• This object model implements its own message-passing seman-
tics in terms of the objects that it implements, making the im-
plementation replaceable from within the end user language.
We show that five small methods and four initial objects are
sufficient to achieve this (Section 3.1).

• The flexibility gained by exposing the object model’s semantics
is illustrated by showing how it can be extended easily to sup-
port language features such as multiple inheritance and mixed-
mode execution (Sections 2.2 and 3).

• We validate the use of this approach for production systems by
showing that: it has low space overhead (Section 4); its per-
formance can be competitive with, or even better than, equiv-
alent ‘static’ implementation techniques (Section 4.1); that an
existing object system can be easily implemented on top of
our model (Section 4.2); and that advanced compositional tech-
niques such as traits can be accommodated (Section 4.3).

2. The problem
This section sets the stage for our object model by pursuing the
examples mentioned in the introduction.

2.1 Adding data types to a language

For our Lisp-like language we might want to implement alength
primitive that tells us how many elements are present in a string or
list. Using thetag field in theRecord structure to discriminate the
type of payload,length might look something like this:

static inline int length(struct Record *object)
{

switch (object->tag)
{
case String: return object->payload.string.length;
case Cons: return object->payload.cons.cdr

? 1 + length(object->payload.cons.cdr)
: 1;

case Number: error("numbers have no length");
case Symbol: error("symbols have no length");
default: error("illegal tag");

}
}

Let’s add a vector type to this language. We have to extend the
switch statement with a newcase to take into account our new
data type and itstag value:

case Vector: return object->payload.vector.length;

This isn’t too bad if we are the only user of the language. However,
it is much worse if we want to share our new type with other users
of the language, maybe as a third-party extension.

It would be better to associate thecases within the primitive
function with the data types themselves. Using our object model
the new data type is added to the language by creating a new kind
of object behaviour (called avtable) and then installing its primitive
functionality in the vtable. Figure 1 shows what the additions would
look like.

This is more than advocating an object-oriented style of pro-
gramming language construction. Consider the same Lisp-like lan-
guage implemented in C++. Even if thelength primitive was
made a virtual function of each supported data type, we wouldhave
to recompile every file after addingVector since the layout of C++
vtables is computed statically at compile time; adding a newvirtual
method would invalidate all previous assumptions about thevtable
layout.

struct vtable *Vector vt = 0;

int Vector length(struct Vector *vector) {
return vector->length;

}

void initialise(void) {
...
Vector vt = send(vtable, s allocate,

sizeof(struct vtable));
send(Vector vt, s addMethod, s length, Vector length);
...

}

int length(struct object *object) {
return send(object, s length);

}

Figure 1. Creating a new type and associating functionality with
it. The vtableVector vt describes the behaviour of our new type.
Invoking the s addMethod method in it makes an association
between the selectors length and the method implementation
Vector length. Our length primitive can now simply invoke
the methods length in any object and expect it to respond ap-
propriately regardless of the number of data types supported by—
or added to—the language. (The variables prefixed withs are
symbols: interned, unique strings suitable for identifying method
names.)

Perhaps more compelling is an example involving an object-
oriented language that uses our object model directly and that can
consequently directly modify the implementation of its ownobject
model.

2.2 Converting single inheritance to multiple inheritance

We can easily create a prototype-based high-level programming
language that uses our object model directly for its end userob-
jects.1 To modify the semantics of message sending in this language
we need only replace the mechanism that finds a method implemen-
tation given an object and the name of a method to invoke.

Everything in our object model is an object, including the vta-
bles that describe the behaviour of objects. Interacting with vtables
is just a matter of invoking methods in them. One such method is
calledlookup:; it takes a method name as an argument and returns
the corresponding method implementation stored in the vtable. By
redefining this method we can change the semantics of method
lookup.

Our prototype-based language provides the programmer with
single inheritance: a given family of objects can inherit behaviour
from a parent family, and all families eventually inherit from
Object. Figure 2 shows how the programmer can directly add mul-
tiple inheritance to this language, without loss of performance.2

With these additions to the language, and given three prototype
familiesC1, C2 andC3:

C1 : Object ()
C1 m [StdOut nextPutAll: ’this is m’; cr]

C2 : Object()
C2 n [StdOut nextPutAll: ’this is n’; cr]

1 This language is written entirely in itself and can be downloaded, along
with many example programs, fromhttp://piumarta.com/pepsi
2 The message sending mechanism uses amethod cache to memoize the
result of invokinglookup: in a givenvtable for a givenmethodName.
The overhead of iterating through multiple parents is incurred only when
the method cache misses, which is rarely.

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 2 2007/11/2

ParentList : List ()

vtable addParent: aVtable
[

parent isNil
ifTrue: [parent := aVtable]
ifFalse:
[parent isParentList

ifTrue: [parent add: aVtable]
ifFalse: [parent := ParentList new

add: parent;
add: aVtable;
yourself]]

]

ParentList lookup: methodName
[

| method |
self do: [:vt |
(method := vt lookup: methodName) notNil

ifTrue: [↑method].
↑nil

]

Figure 2. Adding multiple inheritance to a prototype-based lan-
guage. We will store multiple parents inParentList objects; these
extend (inherit behaviour from)List without adding any addi-
tional state. We tellvtable how toaddParent: by converting a
single parentvtable into aParentList if necessary, thenadding
the new parentvtable to the list. Next we definelookup: for
ParentList to search for themethodName in each parent con-
secutively. (Thelookup: method already installed invtable can
be left in place; it searches up the inheritance chain by invoking
lookup: in its parent slot, which can now be either avtable or
aParentList.)

C3 : C1 () "C3 inherits from C1"

the programmer can now dynamically addC2 as a parent ofC1:

C3 vtable addParent: C2 vtable

such that objects in its family can execute methods inherited from
bothC1 andC2:

C3 new
m; "inherited from C1"
n "inherited from C2"

A serious implementation would of course have to take state
into account, although this could be as simple as only allowing one
parent to be stateful (the others effectively beingtraits).

3. Open object models
An object typically describes bothstate andbehaviour that acts on
(or is influenced by) that state. We might account for both state and
behaviour in our object model, but it would be simpler to model
just one of them and then use it to provide the other indirectly. We
choose to model (and expose) behaviour as a set ofmethods that
are invoked in an object by name; access to state, if appropriate, is
then provided through ‘accessor’ methods.3

Figure 3 illustrates this simple model: an object is some quan-
tity in which a method can be invoked by name; we call the set
of methods associated with a given object itsbehaviour. Since we
wish to avoid imposing structure on end user objects, the descrip-
tion of behaviour is stored separately from the object. An object

3 The discussion of related work (Section 5) mentions Self, a system that
made the opposite choice of modeling behaviour as a special kind of state.

M ?

M
?

B

?’ ?’’

Figure 3. Minimal object model. An object is some unknown
state? on which a methodM can be invoked by name. To im-
plement this model we need a mapping from method names to
method implementations. So, to invoke a methodM

′ in the ob-
ject ?’ we find the corresponding method implementation in a be-
haviour descriptionB′. Hence an object is a tuple of behaviour
B

′ and state?’. Since behaviour is separate from the object it de-
scribes, it is possible to share any given behaviourB

′ between sev-
eral distinct objects?’, ?’’, ?’’’, . . .

object’s vtableobject
pointer

?
increasing

memory
addresses

Figure 4. Implementation of minimal object. An object pointer
(oop) points to the start of the object’s internal state (if any). The
object’s behaviour is described by avirtual table (vtable). A pointer
to the vtable is placed one word before the object’s state.

S -> I
lookup: -> <impl>

object
vtable

vtable

oop

? ?

object’s behaviour
object

vtable’s behaviour

indirectly defines internal structure

Figure 5. Everything is an object. Every object has a vtable that
describes its behaviour. A method is looked up in a vtable by
invoking its lookup: method. Hence there is a ‘vtable vtable’
that provides an implementation oflookup: for all vtables in the
system, including for itself. The implementation of thislookup:
method is the only thing in the object model that imposes internal
structure on vtables. (If the figure seems confusing, try thinking of
the word in the solid box as the ‘type’ of the object to which itis
attached.)

is therefore atuple of behaviour and state. Since the behaviour is
decoupled from the internal state of the object, it can be replaced
and/or shared as desired.

Figure 4 shows the layout of our objects in memory. An ordinary
object pointer (oop) points to the first byte of the object’s internal
state (if any). The object’s behaviour is described by avirtual table
(vtable). A pointer to the vtable is placed immediately before the
object’s state.

A vtable is an object too, and has a reference to a ‘vtable for
vtables’ before its internal state. The ‘vtable for vtables’ is its own
vtable as shown in Figure 5. The state within a vtable describes

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 3 2007/11/2

vtable’s vtablevtable
pointer

native codeselector

vtable for vtables

Figure 6. Internals of vtables. A vtable maps method names (se-
lectors) onto method implementations. A method implementation
is represented as aclosure containing the address of the native code
to be executed along with some arbitrary data. Since vtablesand
closures are objects, they each have a vtable pointer in the word
before their state.

VtableVTvtable
pointer ClosureVT

method

data
getter(closure, self)
{
 ^closure.data
}

slotName

ClosureVT

method

data

slotName:

setter(closure, self, value)
{
 ^closure.data.data := value
}

FunctionVT

FunctionVT

Figure 7. Self-like slots. An assignable slot is implemented as a
pair of methods: a ‘getter’ and a ‘setter’. The value of the slot is
stored as thedata in the closure of its getter method. Thedata
of the setter method’s closure contains a reference to the getter’s
closure, allowing the setter to assign into the getter’sdata. A single
implementation of getter and setter can be shared by all closures
associated with assignable slots.

the mapping between method names and the corresponding method
implementations. The ‘vtable vtable’ defines the methodlookup:
for all vtables, used to find a method implementation associated
with a method name. Thislookup: method indirectly defines the
internal structure of all vtables, but there is nothing special about
the initial ‘vtable vtable’ nor the structure of vtables: a new ‘vtable
vtable’ can be created at any time and given alookup: method that
implements a family of vtables with arbitrarily different internal
structure and semantics.

The simplest possible arrangement would be for each selector in
the vtable to be associated with the address of the compiled native
code that implements the method. We chose to introduce an ad-
ditional level of indirection, so that a selector is insteadassociated
with aclosure. Each closure then contains two items: the address of
the compiled code implementing the method and some (arbitrary)
data.

The final arrangement of our vtables is shown in Figure 6. We
believe the slight increase in complexity is more than justified by
the generality that is gained. For example:

• Figure 7 illustrates closures used to store assignable slots, cre-
ating an end user object model similar to that of traditional
prototype-based languages.

• Figure 8 shows how closures are used to support mixed-mode
execution. A single interpreter method is shared between many
closures whosedata fields contain the code to be interpreted.
To the caller there is no difference between invoking a natively
compiled method or a byte-compiled method.

VtableVT
vtable ClosureVT

method

data

interp(closure, self)
{
 char *bytecodes = closure.data;
 ...
}

byte-compiled method 1

selector

ClosureVT

method

data

byte-compiled method 2selector

FunctionVT

Figure 8. Mixed-mode execution. An interpreter (for bytecodes or
other structures) can be shared by any number of method closures.
The structure to be interpreted is stored in thedata part of the
closure. As described in the text, the closure is passed as anargu-
ment to the method implementation (in this case the interpreter)
from where itsdata is readily accessible. To the caller there is no
difference between invoking a native method and a byte-compiled
method; the calling conventions are identical.

prototype method

vtable addMethod
vtable lookup
vtable allocate

symbol intern

closure constructor

vtable delegated

Table 1. Essential objects and methods. The most important meth-
ods are applicable tovtables: addMethod constructs vtables by
adding an association from a method name to an implementation,
lookup queries the associations to find an implementation corre-
sponding to a name, andallocate creates a new object (whose
vtable is the object in which the method was invoked). We in-
cludesymbol’s intern method since the end user must have some
way to construct the name of a method. Theclosure prototype
is required (for cloning when adding methods to a vtable) buthas
no required methods defined for it. A delegation mechanism isnot
required, but is trivial to implement in the intrinsic object model;
in that case adelegated method forvtable is required, to create
a newvtable that delegates to the one in whichdelegated was
invoked.

3.1 Essential objects and methods

Table 1 lists the three essential object types and the four essential
methods defined for them.4

Before we can begin constructing an object system we need a
way to add methods tovtables, which in turn means we need a
way to construct unique method names. Figure 9 shows a simple
algorithm for creating ‘interned’ (unique) strings that are perfect
for use as method names.

To add methods to avtable we invoke itsaddMethod method,
passing a message namesymbol and the address of native code
implementing the method. The algorithm is shown in Figure 10.

To invoke a method it must first be looked up in avtable.
Figure 11 shows the algorithm forvtable’s lookup method.

4 Note that constructors (other than the general end user object constructor
allocate) are not considered methods.

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 4 2007/11/2

let SymbolList = EmptyList

method symbol.intern(string) =
foreach symbol in SymbolList
if string = symbol.string
return symbol

let symbol = new symbol(string)
SymbolList.append(symbol)
return symbol

Figure 9. Method symbol.intern. Symbols are unique strings.
A lazy implementation could co-opt avtable into use as the
SymbolList.

method vtable.addMethod(symbol, method) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
self.values[i] := method
return

self.keys.append(symbol)
self.values.append(new closure(method, nil))

Figure 10. Method vtable.addMethod. If the method name
symbol is already present, replace the method associated with it.
Otherwise add a new association between the name and the method.

method vtable.lookup(symbol) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
return self.values[i]

if self.parent 6=nil
return self.parent.lookup(symbol)

return nil

Figure 11. Method vtable.lookup. The two lines involving
parent are not essential, but are trivial to include and provide sin-
gle delegation as part of the intrinsic object model.

method vtable.allocate(size) =
let object = allocateMemory(PointerSize + size)
let object = object + PointerSize
object[-1] := self /* vtable */
return object

Figure 12. Methodvtable.allocate. A new object is created and its
vtable (stored in the word preceding the object) set to thevtable
in which the method is invoked. Thesize argument specifies the
size of the object’s state. Computation of the correct valuefor
size is dependent on the programming language implementation
in which the object model is being used.

method vtable.delegated() =
let child = self.allocate(VtableSize)
child.parent := self

return child

Figure 13. Method vtable.delegated. A new vtable is
allocated and its parent set to thevtable in which the
delegated method is being invoked. Theseparent fields link the
vtables together into a single delegation chain.

Invoking theallocate method in avtable allocates a new
object. The object is made a member of the vtable’s family, as
shown in Figure 12.

If single delegation is being included in the intrinsic ob-
ject model, an additional method can be installed invtable:
delegated creates a newvtable whose parent is the vtable in
which delegated was invoked. The algorithm as shown in Fig-
ure 13 is far easier to understand than this verbose description.

3.2 Implementation language bindings

To deploy the object model as part of a programming language
implementation, we need three things:

• implementation language structure definitions for the layouts
of symbol, closure and thevtable implied by thelookup
method of the ‘vtable vtable’;

• implementations of the four essential methods in the implemen-
tation language; and

• implementation languagebindings to method invocation (the
process that invokes the result oflookup in an object).

By now it should be clear how to construct the first two. To illustrate
the third, we will create bindings to our object model for theGNU
C language.

To invoke a method namedM in an objectO we look upM in
the vtable ofO to yield a closure, and then call the native method
stored in the closure. This call passes the closure, the object O

(which becomesself in the invoked method) and any remaining
arguments in the invocation. If we call this ‘sending a message’ to
M then the functionsend can be defined as:

function send(object, messageName, args...) =
let closure = bind(object, messageName)
return closure.method(closure, object, args...)

The functionbind is responsible for looking up the method name in
the vtable ofobject and just invokeslookup in theobject’s vtable,
passingmethodName as the argument:

function bind(object, messageName) =
let vtable = object[-1]
if messageName = SymbolLookup

and object = VtableVtable
let closure = vtable lookup(0, vtable, messageName)

else

let closure = send(vt, SymbolLookup, messageName)
return closure

Note that the recursion implied bysend calling bind which in
turn calls send (to invoke thelookup method in the object’s
vtable) is broken by short-circuiting to the intrinsic definition of
vtable lookup when the method name islookup and the object
in which it is being bound is the ‘vtable vtable’. This can be seen
both in the above algorithm and in the working translations to C of
send andbind in Figure 14.

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 5 2007/11/2

struct object { struct vt[0]; };
struct vtable { struct vt[0]; ...internals... };

#define send(OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(OBJ); \
struct closure *c = bind(o, (MSG)); \
c->method(c, o, ##ARGS); \

})

struct closure *bind(struct object *obj,
struct object *msg)

{
struct vtable *vt = obj-> vt[-1];
return ((msg == s lookup)

&& (obj == (struct object *)vtable vt))
? (struct closure *)vtable lookup(0, vt, msg)
: (struct closure *)send(vt, s lookup, msg);

}

Figure 14. Simple method invocation. Thevt member of the
structs is empty but gives access to the vtable pointer stored
at offset -1. Thesend operation is implemented as a macro and
inlined at each send site. It evaluates theOBJ expression once and
calls bind on the result to find aclosure. The method stored
in the closure is invoked passing the closure, the object, and any
remaining arguments. Thebind function extracts the vtable from
the object and invokeslookup in it. If the method name being
bound islookup and the object in which it is being invoked is
the ‘vtable vtable’ then the lookup is short-circuited to its native
methodvtable lookup (creating a fixed point in the recursive
definition of method lookup); otherwise a fullsend is performed to
lookup and then invoke thelookup method in the object’s vtable,
to find a method implementation for the name being bound.

We always pass the bound closure as the first argument of the
invoked native method. This gives shared methods access to any
differentiatingdata that might be stored in the closure.

3.3 Bootstrapping the object universe

A small amount of structure has to be created before the object
model will behave as we have described:

1. the symbols associated with the essential method names must
be constructed; then

2. the ‘vtable vtable’ is constructed and its circularvtable refer-
ence pointed back to itself; then

3. the methodsvtable.lookup andvtable.addMethod can be
installed by calling the nativevtable addMethod method di-
rectly; we can now invokeaddMethod in vtable using the
send macro, so

4. the methodvtable.allocate is added tovtable by sending
addMethod with appropriate arguments; then

5. vtables forsymbol andclosure can be allocated.

Figure 15 shows this process for a C implementation of the object
model as it appears in our reference implementation (including the
optional support for single delegation).

3.4 Optimising performance

The performance of bothsend and bind can be improved by
caching.

Figure 16 shows a version ofsend that caches the previous
vtable and closure resulting from binding the method name inthe
vtable. Provided the message name is a constant (does not change

void initialise(void)
{
SymbolList = vtable delegated(0, 0);

s lookup = symbol intern(0, 0, "lookup");
s addMethod = symbol intern(0, 0, "addMethod");
s allocate = symbol intern(0, 0, "allocate");
s delegated = symbol intern(0, 0, "delegated");

vtable vt = vtable delegated(0, 0);
vtable vt-> vt[-1] = vtable vt;

vtable addMethod(0, vtable vt,
s lookup, (imp t)vtable lookup);

vtable addMethod(0, vtable vt,
s addMethod, (imp t)vtable addMethod);

send(vtable vt, s addMethod,
s allocate, vtable allocate);

send(vtable vt, s addMethod,
s delegated, vtable delegated);

object vt = vtable delegated(0, 0);
object vt-> vt[-1] = vtable vt;
vtable vt->parent = object vt;

symbol vt = vtable delegated(0, object vt);
closure vt = vtable delegated(0, object vt);

}

Figure 15. Initialising the object model. Avtable is pressed into
service as aSymbolList. Variables that begin withs are method
names (symbols). Variables that end withvt are the vtables for
the various kinds of object. Functions calledx y are the method
implementations destined to be installed as methody in the vtable
for objects of typex. Whenever a method implementations is called
directly a0 is passed as the first argument, corresponding to the
closure that would be passed implicitly if we were to usesend
instead.

#define send(OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(OBJ); \
static struct vtable *prevVT = 0; \
static struct closure *closure = 0; \
register struct vtable *thisVT = o-> vt[-1]; \
thisVT == prevVT \

? closure \
: (prevVT = thisVT, \

closure = bind(o, (MSG))); \
closure->method(closure, o, ##ARGS); \

})

Figure 16. Optimisingsend with an inline cache. The macrosend
memoizes the previous vtable and associated closure returned from
bind. bind is only called (and the memoized closure and vtable
values updated) if the invocation is to an object whose vtable is
not the same as the previous object’s vtable at the same invocation
site; otherwise the previously bound closure is reused immediately.
This is safe provided the method name is a constant at any given
invocation site.

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 6 2007/11/2

struct entry {
struct vtable *vtable;
struct object *message;
struct closure *closure;

} MethodCache[8192];

struct closure *bind(struct object *obj,
struct object *msg)

{
struct closure *c;
struct vtable *vt = obj-> vt[-1];
struct entry *cl = MethodCache
+ ((((unsigned)vt << 2) ^ ((unsigned)msg >> 3))

& ((sizeof(MethodCache) / sizeof(struct entry))
- 1));

if (cl->vtable == vt && cl->message == msg)
return cl->closure;

c = ((msg == s lookup)
&& (obj == (struct object *)vtable vt))

? (struct closure *)vtable lookup(0, vt, msg)
: (struct closure *)send(vt, s lookup, msg);

cl->vtable = vt;
cl->message = msg;
cl->closure = c;
return c;

}

Figure 17. Optimising bind with a global method cache. The
MethodCache stores vtables, method names, and the associated
closures. Tobind a method name within a vtable, a hash is com-
puted from the vtable and name modulo the size of the method
cache to create an index. If the vtable and name stored in the cache
at that index correspond to the vtable and name being bound, the
stored closure is returned immediately. Otherwiselookup is in-
voked in the vtable to bind the method name, and cache updated
accordingly.

between consecutive sends) the cached closure can be reusedwith-
out callingbind.5

Figure 17 shows a version ofbind that has been optimised
with a global method cache. Before invokinglookup the optimised
bind looks for the vtable and method name in a cache of previously
bound methods. If it finds a match, it returns the cached closure; if
not, it invokeslookup and fills the appropriate cache line.6

These two optimisations are independent and can be used sepa-
rately or together.

4. Evaluation
We measured speed and size, then tried to estimate ease of use
objectively. All measurements were made on a 2.16 GHz Intel Core
Duo.

Our sample implementation (faithfully following the algorithms
and C language bindings presented in this paper, and including
optional single delegation) is 144 lines of code and contains:

• the three essential object types, and a negligible common parent
typeobject;

• two constructors, forsymbol andclosure;

• the four essential methods plusvtable.delegated;

• send as presented, with defeatable inline cache;

5 A realistic language implementation would need a way to invalidate the
inline caches. Mechanisms for doing this are beyond the scope of this paper.
6 A realistic language implementation would have to invalidate all or parts
of the global method cache on every change to vtable contentsor inheritance
relationships.

• bind as presented, with defeatable global method cache;

• an initialisation method that creates the initial objects and pop-
ulates their vtables.

The object code size for all essential objects and their methods,
with unoptimisedsend andbind, is 1,451 bytes. With the inline
and global caches enabled, the code size grows to 1,602 bytes.
This should not be an issue for any but the most severely resource-
constrained environments.

4.1 Benchmarks

The first thing we have to investigate is the overhead of dynamic
dispatch through the vtable.

We implemented thenfibs function (that has a very high send,
or method invocation, to computation ratio) in optimised C with
statically-bound sends and compared it with our object model using
dynamically-bound message invocations and an inline cache. The
results from runningnfibs(34) (performing 18,454,929 calls or
method invocations) were:

type time % C
static call (C) 150 ms 100.0%
dynamic send 270 ms 55.6%

While the results are polluted a little by the arithmetic computation,
they show that a static C function call is only approximatelytwice
as fast as a dynamically-bound send through an inline cache.The
actual overhead should be lower in practice since most code will
perform more computation per call/send thannfibs.

Next we implemented the example presented in Section 2 of
this paper: data structures suitable for a Lisp-like language. We
implemented a ‘traditional’length primitive using aswitch on
an integertag to select the appropriate implementation amongst
a set of possiblecase labels. This was compared with an imple-
mentation in which data was stored using our object model andthe
length primitive calledsend to invoke amethod in the objects
themselves.7 Both were run for one million iterations on forty ob-
jects, ten each of the four types that support thelength operation.
The results, with varying degrees of object model optimisations en-
abled, were:

implementation time % C
switch-based 503 ms 100.0%
dynamic object-based 722 ms 69.7%

+ global cache 557 ms 90.3%
+ inline cache 243 ms 207.0%

This shows that an extensible, object-based implementation is bet-
ter than half the speed of a typical C implementation for a sim-
ple language primitive. With a global method cache (constant over-
head, no matter how many method invocation sites exist) the per-
formance is within 10% of optimised C. When the inline cache was
enabled the performance was better than twice that of optimised
C. In a practical language implementation the above performance
gaps would be decrease in all cases as the amount of useful work
per primitive increases. (It is hard to conceive of a simplerprimitive
thanlength.)

4.2 Ease of use: Javascript objects

Javascript [3] has a simple object model based on delegation[7].
Objects are dictionaries that map property names to their values.
When an object is asked for an unknown property, it forwards the
request to its prototype (the value of itsproto property). (As-
signing to a property of an object always updates an existingor

7 Our reference implementation, including thelength benchmarks, can be
downloaded from:http://piumarta.com/pepsi/objmodel.tar.gz

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 7 2007/11/2

vtable get [↑closure data]

get := [(vtable vtable lookup: #get) method]

Object set: prop to: val
[

| closure |
(closure := self vtable lookup: prop) notNil
ifFalse:

[closure := self vtable methodAt: prop put: get].
closure setData: val.
prop == # proto
ifTrue:

[self vtable parent: val vtable.
vtable flush].

]

Figure 18. Javascript objects. Properties are implemented in a
manner similar to that of slots in Figure 7. However, setter methods
were eliminated in favour of aset:to: method that treats the
proto property specially. If proto is assigned then the

parent of the object’s vtable is set to thevalue’s vtable, and any
method caches are flushed. (Note that the block expression assigned
to get is evaluated; the value assigned is the result of executing the
block, not an unevaluated, literal block.)

creates a new property in the object.) This simple model really is
sufficient to implement all Javascript objects, functions and meth-
ods.

Figure 18 shows one way of implementing these semantics in
our object model. This implementation is small, runs efficiently,
can be understood easily, and took very little time to construct.8

We should stress that this implementation is not intended tobe
used directly by programmers (although nothing prohibits this).
Rather, a compiler is expected to translate Javascript expressions
into method invocations. For example, a field accessx.p is trans-
lated tox p (an invocation of methodp in x). Similarly, the assign-
mentx.p = y is translated tox set: #p to: y (an invocation
of set:to: in x with arguments#p (the namep) andy).

4.3 Ease of use: traits

Traits [9] are a powerful software composition mechanism. Atrait
is a collection of methods without state that can be manipulated and
combined with other traits according to an algebra of composition,
aliasing and exclusion. They are interesting because they provide
the power of multiple inheritance without the drawbacks andcom-
plexity.

Figure 19 shows support for traits added to our prototype-based
language. We can then easily implement the operations of thetraits
algebra, for example:

Trait + aTrait
[

↑Trait delegated
useTrait: self;
useTrait: aTrait

]

This creates a new empty trait and adds both the receiver and the
argument to it, composing their behaviours. (Method exclusion and
method aliasing are left as an exercise; they take no more than a
few minutes each. Once all three operations are available, you will
have a genuine, conformant traits implementation.)

With the above traits implementation in place, we can write
code such as:

8 Admittedly, the person who constructed it was already an expert in the
underlying object model.

Trait : Object ()

Object useTrait: aTrait [aTrait addTo: self]

Trait addTo: anObject
[
self vtable keysAndValuesDo: [:key :value |

| newClosure |
newClosure := anObject vtable

traitMethodAt: selector
put: closure method.

newClosure setData: closure data]
]

vtable traitMethodAt: aSelector put: aMethod
[
(self includesKey: aSelector)

ifTrue: [↑self errorConflict: aSelector]
↑self methodAt: aSelector put: aMethod

]

Figure 19. Support for traits. Trait.addTo: adds the
methods of the receiver to the vtable of the argument.
vtabel.traitMethodAt:put: adds a method implementa-
tion to the receiver with a given name, and signals an error ifthe
method name is already defined.

T1 : Trait ()
T1 m [’this is m’ putln]

T2 : Trait ()
T2 n [’this is n’ putln]

C : Object () [C useTrait: T1 + T2]

C o [self m; n]

(Note that in the above what looks like a literal block after the
declaration ofC is actually an imperative; the program is executed
from top to bottom, sendinguseTrait: to C before continuing
with the installation of methodo in C.)

4.4 Limitations

Our object model relies on a method cache [2] for performance. It
is necessary to flush the cache after certain programming changes,
such as adding a new method to a vtable or storing into a vtable’s
parent, etc.

We don’t count constructors in the number of methods in the
object implementation. (There is norequirement for the construc-
tors to be installed as methods although in practice it is convenient
to do so.)

We don’t count the vtable pointer as part of the end-user object
structure, since it appears before the nominal start of the object.
This might be considered dishonest.

The implementation ofbind andsend cannot be exposed as
easily as the method lookup mechanism. This can be addressedby
exposing the semantics of pure functions (Section 6) in the same
way that the object model exposes the semantics of lookup.

5. Related work
TinyObjects [6] is an impressive attempt to simplify applications by
empowering the programmer to remove limitations from the sys-
tem instead of ‘programming around’ them. It provides a Metaob-
ject Protocol (MOP) [5] through which programmers can customise
the object model to fit the needs of their applications. By theau-
thors’ own admission, when a particular customisation cannot be
expressed with the MOP the programmer must contact the MOP

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 8 2007/11/2

designer and request that the MOP be extended with new function-
ality. This lack of control over the language is exactly the problem
MOPs were designed to solve in the first place. Instead of solving
the problem MOPs simply move it to a different (the ‘meta’) level.
We address this problem by implementing the object model and
the equivalent of a MOP at the same level of abstraction, giving the
programmer control over all aspects of the object model implemen-
tation.9

Smalltalk-80 [4] has methods (in classesBehaviour, Class and
Metaclass) that provide what is essentially an incomplete MOP.
While these can be used by programs (including the Smalltalkpro-
gramming environment itself) to create new subclasses and modify
method dictionaries, they cannot be used to modify the semantics
of message sending itself nor the internal layout of objects.

McCarthy’s metacircular evaluator for LISP [8] demonstrated
that it is possible for a language to be implemented (described) in
itself. Such implementations are ‘open’: they allow programmers
both to write ‘user programs’ and also to modify or extend these-
mantics of the language. The circular implementation of ourob-
ject model brings an equivalent openness to the object-messaging
paradigm.

Some object models, such as those of the Self programming
language [10] and Lieberman’s prototypes [7], are simpler than the
one we describe. The cost of this simplicity is that some of the
semantics of their object model is hidden (slot lookup in particular)
and cannot be modified from end user code. Self also requires a
significantly more complex runtime to run efficiently. Our model is
much closer Self’s internal object model which usesmaps (similar
to our vtables) to describe the behaviour of entireclone families [1].
Very promising recent experiments with Self aim to expose the
entire implementation to the programmer [11].

6. Conclusions and further work
We presented a simple, extensible object model that exposesits
own semantics in terms of the objects and messages that it imple-
ments. This circularity in the implementation results in surprising
flexibility; end users have direct access to, and control over, the
implementation mechanisms of the object model itself. Our expe-
rience with this object model has shown that it can be customised
easily to support powerful features such as multiple inheritance and
mixed-mode execution. While it is not necessarily a friendly model
for hand-written code, it is an attractive target for automatic trans-
lation.

Because it imposes no structure on end user objects, our model
invites experimentation that might otherwise be difficult.For exam-
ple, it allows a pointer to a compiled native function to alsobe an
object, to which messages can be sent; a vtable in the word before
the function prologue suffices. We envisage going further and stor-
ing useful information about compiled code (stack layout, signature
information, pre- and post-conditions, etc.) in the word before the
function’s vtable.

This complements ongoing work with dynamic code genera-
tion that brings the purely functions aspects of our object model
(method implementations and method invocation, andsend and
bind in particular) under the control of the programmer. This work
will be the subject of forthcoming publications.

Starting with the algorithms and C language bindings described
in this paper, implementing our object model in C took no more

9 The authors of TinyObjects state that MOPs are expected to stabilise
and eventually accommodate “most of the substrate adjustments that are
reasonable”. We think ‘reasonable’ is in the eye of the programmer, not the
MOP designer. Nobody can know (or predict) which parts of their systems
programmers will need to modify in the future. The only way toimplement
the future is to avoid having to predict it.

than four hours. The essential objects and methods total 144lines
of source code. Not only is it tiny, but it also scales well: ina
slightly different form it has been in daily use by several people
for over a year. This model provides rich Smalltalk-like class li-
braries, implements its own compiler and dynamic code generator
for multiple architectures, and integrates seamlessly with platform
libraries and garbage collection. With the addition of a fewlines
of code it also supports tagged immediate quantities and theobject
nil represented as the NULL pointer.

References
[1] C. Chambers, D. Ungar, and E. Lee. An efficient implementation

of SELF a dynamically-typed object-oriented language based on
prototypes. InOOPSLA ’89: Conference proceedings on Object-
oriented programming systems, languages and applications, pages
49–70, New York, NY, USA, 1989. ACM Press.

[2] L. P. Deutsch and A. M. Schiffman. Efficient implementation of
the Smalltalk-80 system. InPOPL ’84: Proceedings of the 11th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 297–302, New York, NY, USA, 1984. ACM Press.

[3] ECMA. Ecmascript language specification, December 1999.
http://www.ecma.ch/ecma1/stand/ecma-262.htm.

[4] A. Goldberg and D. Robson.Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[5] G. Kiczales, J. des Rivieres, and D. G. Bobrow.The art of metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991.

[6] G. Kiczales and A. Paepcke. Open Implementations and Metaob-
ject Protocols. http://www2.parc.com/csl/groups/sda/
publications/papers/Kiczales-TUT95/for-web.pdf.

[7] H. Lieberman. Using prototypical objects to implement shared
behavior in object-oriented systems. InOOPLSA ’86: Conference
proceedings on Object-oriented programming systems, languages
and applications, pages 214–223, New York, NY, USA, 1986. ACM
Press.

[8] J. McCarthy.LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[9] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable units of behavior. InProceedings ECOOP 2003
(European Conference on Object-Oriented Programming), volume
2743 ofLNCS, pages 248–274. Springer Verlag, July 2003.

[10] D. Ungar and R. B. Smith. Self: The power of simplicity. In OOPSLA
’87: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 227–242, New York,
NY, USA, 1987. ACM Press.

[11] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacircular virtual
machine in an exploratory programming environment. InOOPSLA
’05: Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 11–20, New York, NY, USA, 2005. ACM Press.

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 9 2007/11/2

A. Example object model implementation
An example implementation in C of the object model describedin this paper.10

#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#define ICACHE 1 /* nonzero to enable point-of-send inline cache */
#define MCACHE 1 /* nonzero to enable global method cache */

struct vtable;

struct object;
struct closure;

struct symbol;

typedef struct object *(*imp_t)(struct closure *closure, struct object *receiver, ...);

struct vtable

{
struct vtable *_vt[0];
int size;

int tally;
struct object **keys;

struct object **values;
struct vtable *parent;

};

struct object {
struct vtable *_vt[0];

};

struct closure
{

struct vtable *_vt[0];
imp_t method;

struct object *data;
};

struct symbol
{

struct vtable *_vt[0];
char *string;

};

struct vtable *SymbolList= 0;

struct vtable *vtable_vt;

struct vtable *object_vt;
struct vtable *symbol_vt;

struct vtable *closure_vt;

struct object *s_addMethod = 0;

struct object *s_allocate = 0;
struct object *s_delegated = 0;

struct object *s_lookup = 0;

extern inline void *alloc(size_t size)

{
struct vtable **ppvt= (struct vtable **)calloc(1, sizeof(struct vtable *) + size);

return (void *)(ppvt + 1);
}

struct object *symbol_new(char *string)
{

struct symbol *symbol = (struct symbol *)alloc(sizeof(struct symbol));
symbol->_vt[-1] = symbol_vt;

symbol->string = strdup(string);
return (struct object *)symbol;

}

struct object *closure_new(imp_t method, struct object *data)

{
struct closure *closure = (struct closure *)alloc(sizeof(struct closure));

closure->_vt[-1] = closure_vt;
closure->method = method;
closure->data = data;

return (struct object *)closure;
}

10This code and that of the two benchmarks in the following sections can be downloaded from:http://piumarta.com/pepsi/objmodel.tar.gz

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 10 2007/11/2

struct object *vtable_lookup(struct closure *closure, struct vtable *self, struct object *key);

#if ICACHE

define send(RCV, MSG, ARGS...) ({ \
struct object *r = (struct object *)(RCV); \
static struct vtable *prevVT = 0; \
static struct closure *closure = 0; \
register struct vtable *thisVT = r->_vt[-1]; \
thisVT == prevVT \

? closure \
: (prevVT = thisVT, \

closure = bind(r, (MSG))); \
closure->method(closure, r, ##ARGS); \

})
#else

define send(RCV, MSG, ARGS...) ({ \
struct object *r = (struct object *)(RCV); \
struct closure *c = bind(r, (MSG)); \
c->method(c, r, ##ARGS); \

})
#endif

#if MCACHE
struct entry {

struct vtable *vtable;

struct object *selector;
struct closure *closure;

} MethodCache[8192];
#endif

struct closure *bind(struct object *rcv, struct object *msg)
{

struct closure *c;
struct vtable *vt = rcv->_vt[-1];

#if MCACHE
struct entry *cl = MethodCache + ((((unsigned)vt << 2) ^ ((unsigned)msg >> 3))

& ((sizeof(MethodCache) / sizeof(struct entry)) - 1));

if (cl->vtable == vt && cl->selector == msg)
return cl->closure;

#endif
c = ((msg == s_lookup) && (rcv == (struct object *)vtable_vt))

? (struct closure *)vtable_lookup(0, vt, msg)
: (struct closure *)send(vt, s_lookup, msg);

#if MCACHE

cl->vtable = vt;
cl->selector = msg;

cl->closure = c;
#endif

return c;

}

struct vtable *vtable_delegated(struct closure *closure, struct vtable *self)
{

struct vtable *child= (struct vtable *)alloc(sizeof(struct vtable));
child->_vt[-1] = self ? self->_vt[-1] : 0;
child->size = 2;

child->tally = 0;
child->keys = (struct object **)calloc(child->size, sizeof(struct object *));

child->values = (struct object **)calloc(child->size, sizeof(struct object *));
child->parent = self;
return child;

}

struct object *vtable_allocate(struct closure *closure, struct vtable *self, int payloadSize)
{

struct object *object = (struct object *)alloc(payloadSize);
object->_vt[-1] = self;
return object;

}

imp_t vtable_addMethod(struct closure *closure, struct vtable *self, struct object *key, imp_t method)
{

int i;

for (i = 0; i < self->tally; ++i)
if (key == self->keys[i])

return ((struct closure *)self->values[i])->method = method;
if (self->tally == self->size)

{
self->size *= 2;
self->keys = (struct object **)realloc(self->keys, sizeof(struct object *) * self->size);

self->values = (struct object **)realloc(self->values, sizeof(struct object *) * self->size);

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 11 2007/11/2

}
self->keys [self->tally] = key;
self->values[self->tally++] = closure_new(method, 0);

return method;
}

struct object *vtable_lookup(struct closure *closure, struct vtable *self, struct object *key)
{

int i;
for (i = 0; i < self->tally; ++i)

if (key == self->keys[i])
return self->values[i];

fprintf(stderr, "lookup failed %p %s\n", self, ((struct symbol *)key)->string);

return 0;
}

struct object *symbol_intern(struct closure *closure, struct object *self, char *string)

{
struct object *symbol;
int i;

for (i = 0; i < SymbolList->tally; ++i)
{

symbol = SymbolList->keys[i];
if (!strcmp(string, ((struct symbol *)symbol)->string))

return symbol;

}
symbol = symbol_new(string);

vtable_addMethod(0, SymbolList, symbol, 0);
return symbol;

}

void init(void)

{
vtable_vt = vtable_delegated(0, 0);

vtable_vt->_vt[-1] = vtable_vt;

object_vt = vtable_delegated(0, 0);

object_vt->_vt[-1] = vtable_vt;
vtable_vt->parent = object_vt;

symbol_vt = vtable_delegated(0, object_vt);

closure_vt = vtable_delegated(0, object_vt);

SymbolList = vtable_delegated(0, 0);

s_lookup = symbol_intern(0, 0, "lookup");

s_addMethod = symbol_intern(0, 0, "addMethod");
s_allocate = symbol_intern(0, 0, "allocate");
s_delegated = symbol_intern(0, 0, "delegated");

vtable_addMethod(0, vtable_vt, s_lookup, (imp_t)vtable_lookup);

vtable_addMethod(0, vtable_vt, s_addMethod, (imp_t)vtable_addMethod);

send(vtable_vt, s_addMethod, s_allocate, vtable_allocate);
send(vtable_vt, s_addMethod, s_delegated, vtable_delegated);

}

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 12 2007/11/2

B. Object model benchmark
The object model benchmark discussed in the body of the paper. It uses the example object model implementation in C from the previous section to provide a
few data types and primitives that discriminate between them using dynamic dispatch.

struct object *s_new= 0;
struct object *s_length= 0;

struct Number
{

struct vtable *_vt[0];
};

struct vtable *Number_vt = 0;
struct object *Number = 0;

struct object *Number_new(struct closure *closure, struct Number *self)
{

fprintf(stderr, "Number_new\n");
exit(1);
return 0;

}

int Number_length(struct closure *closure, struct Number *self)
{

fprintf(stderr, "Number has no length\n");
exit(1);
return 0;

}

struct String
{

struct vtable *_vt[0];
int length;
char *chars;

};

struct vtable *String_vt = 0;
struct object *String = 0;

struct object *String_new(struct closure *closure, struct String *self, int size)
{

struct String *clone = (struct String *)send(self->_vt[-1], s_allocate, sizeof(struct String));
clone->length = size;
clone->chars = (char *)malloc(size);
return (struct object *)clone;

}

int String_length(struct closure *closure, struct String *self)
{

return self->length;
}

struct Symbol
{

struct vtable *_vt[0];
struct String *string;

};

struct vtable *Symbol_vt = 0;
struct object *Symbol = 0;

struct object *Symbol_new(struct closure *closure, struct Symbol *self, struct String *string)
{

struct Symbol *clone = (struct Symbol *)send(self->_vt[-1], s_allocate, sizeof(struct Symbol));
clone->string = string;
return (struct object *)clone;

}

int Symbol_length(struct closure *closure, struct Symbol *self)
{

return self->string->length;

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 13 2007/11/2

}

struct Vector
{

struct vtable *_vt[0];
int length;
struct object *contents;

};

struct vtable *Vector_vt = 0;
struct object *Vector = 0;

struct object *Vector_new(struct closure *closure, struct Vector *self, int size)
{

struct Vector *clone = (struct Vector *)send(self->_vt[-1], s_allocate, sizeof(struct Vector));
clone->length = size;
clone->contents = (struct object *)calloc(size, sizeof(struct object *));
return (struct object *)clone;

}

int Vector_length(struct closure *closure, struct Vector *self)
{

return self->length;
}

struct Cons
{

struct vtable *_vt[0];
struct object *car;
struct object *cdr;

};

struct vtable *Cons_vt = 0;
struct object *Cons = 0;

struct object *Cons_new(struct closure *closure, struct Cons *self, struct object *car, struct object *cdr)
{

struct Cons *clone = (struct Cons *)send(self->_vt[-1], s_allocate, sizeof(struct Cons));
clone->car = car;
clone->cdr = cdr;
return (struct object *)clone;

}

int Cons_length(struct closure *closure, struct Cons *self)
{

return self->cdr
? 1 + (int)send(self->cdr, s_length)
: 0;

}

void init2(void)
{

s_new = symbol_intern(0, 0, "new");
s_length = symbol_intern(0, 0, "length");

Number_vt = (struct vtable *)send(object_vt, s_delegated);
String_vt = (struct vtable *)send(object_vt, s_delegated);
Symbol_vt = (struct vtable *)send(object_vt, s_delegated);
Vector_vt = (struct vtable *)send(object_vt, s_delegated);
Cons_vt = (struct vtable *)send(object_vt, s_delegated);

send(Number_vt, s_addMethod, s_new, Number_new);
send(String_vt, s_addMethod, s_new, String_new);
send(Symbol_vt, s_addMethod, s_new, Symbol_new);
send(Vector_vt, s_addMethod, s_new, Vector_new);
send(Cons_vt, s_addMethod, s_new, Cons_new);

send(Number_vt, s_addMethod, s_length, Number_length);
send(String_vt, s_addMethod, s_length, String_length);
send(Symbol_vt, s_addMethod, s_length, Symbol_length);
send(Vector_vt, s_addMethod, s_length, Vector_length);
send(Cons_vt, s_addMethod, s_length, Cons_length);

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 14 2007/11/2

Number = send(Number_vt, s_allocate, 0);
String = send(String_vt, s_allocate, 0);
Symbol = send(Symbol_vt, s_allocate, 0);
Vector = send(Vector_vt, s_allocate, 0);
Cons = send(Cons_vt, s_allocate, 0);

}

void doit(void)
{

int i, j;

struct object *a = send(String, s_new, 1);
struct object *b = send(Symbol, s_new, a);
struct object *c = send(Vector, s_new, 3);
struct object *d = send(Cons, s_new, 0, 0);

for (i = 0, j = 0; i < 1000000; ++i)
{

j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);
j += (int)send(a, s_length) + (int)send(b, s_length) + (int)send(c, s_length) + (int)send(d, s_length);

}

printf("total %d\n", j);
}

int main()
{

init();
init2();
doit();
return 0;

}

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 15 2007/11/2

C. Equivalent benchmark using taggedunion and switch

The example data types from the previous section implemented as a C taggedunion with primitives that discriminate between them using aswitch on the
tag value stored in theunion.

#include <stdio.h>
#include <stdlib.h>

enum { Number, String, Symbol, Vector, Cons };

struct Number
{
};

struct String
{

int length;
char *contents;

};

struct Symbol
{

struct String *string;
};

struct Vector
{

int length;
struct Object *contents;

};

struct Cons
{

struct Object *car;
struct Object *cdr;

};

typedef struct Object
{

int tag;
union {
struct Number number;
struct String string;
struct Symbol symbol;
struct Vector vector;
struct Cons cons;

} payload;
} *oop;

static inline int length(struct Object *object)
{

switch (object->tag)
{
case Number:

fprintf(stderr, "Number has no length\n");
exit(-1);

case String:
return object->payload.string.length;

case Symbol:
return object->payload.symbol.string->length;

case Vector:
return object->payload.vector.length;

case Cons:
return object->payload.cons.cdr

? 1 + length(object->payload.cons.cdr)
: 0;

default:
fprintf(stderr, "illegal tag %d\n", object->tag);

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 16 2007/11/2

exit(-1);
}

}

int main()
{

int i, j;
struct Object *a= calloc(1, sizeof(struct Object));
struct Object *b= calloc(1, sizeof(struct Object));
struct Object *c= calloc(1, sizeof(struct Object));
struct Object *d= calloc(1, sizeof(struct Object));

a->tag= String; a->payload.string.length= 1;
b->tag= Symbol; b->payload.symbol.string= (struct String *)a;
c->tag= Vector; c->payload.vector.length= 3;
d->tag= Cons; c->payload.cons.cdr= 0;

for (i= 0, j= 0; i < 1000000; ++i)
{

j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);
j += length(a) + length(b) + length(c) + length(d);

}

printf("total %d\n", j);

return 0;
}

Copyright (c) 2006, 2007 Ian Piumarta. DO NOT DISTRIBUTE 17 2007/11/2

