DRAFT — DO NOT DUPLICATE — DO NOT DISTRIBUTE

Open, reusable

lan Piumarta

Viewpoints Research Institute
9242 Beverly Blvd, Suite 300
Beverly Hills, CA 90210, USA

piumarta@speakeasy.net

Abstract

Code reuse between different object model implementaisoase.
Most object models cannot easily be shared because theyare i
plemented at a lower level of abstraction than that of thguage

in which they are designed to operate, rendering their sgosan
opaque and unavailable for modification by end users. We show
that three object types and four methods are sufficient toshrap

an object model whose semantics are described entirelyrirstef
those same objects and messages. The result is a simplenzrt po
ful object model that can be implemented easily and effiteint
which all semantics are exposed and malleable, facilgatixten-
sibility, interoperability and implementation reuse.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.3.Brfogramming Lan-
guages]: Language Constructs and Features—Classes and Objects

General Terms Programming Language Design, Programming
Language Implementation

Keywords object model, open implementation

1. Introduction

There are almost as many ways to represent structured dié@ras
are programming languages to manipulate that data. Onqeere
sentation has been chosen for a particetat user language it is
typically described in some lower-leviehplementation language.
To illustrate this, the implementer of a Lisp-like end userduage
might choose C as the implementation language and diseram-
inated union to store structured data:

enum RecordTag { Number, Symbol, Cons };

struct Record {
enum RecordTag tag;
union {
struct Number number;
struct Symbol symbol;
struct Cons cons;
} payload;

>

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

object models

Alessandro Warth

UCLA Computer Science Department
3400 Boelter Hall
Los Angeles, CA 90095, USA

awarth@cs.ucla.edu

Each primitive in the end user language that manipulateststred
data would then use conditionaf or switch statements to select
appropriate behaviour depending on the value ofttyefield.

This simple object model has already made significant design
decisions and rendered them immutable:

e All objects must start with an integegrg field.

e The internal layout of the three intrinsic types cannot b&limo
fied at runtime.

The consequences of these decisions include:

e New payloads cannot be added by end user code, especially if
they require more storage than the intrinsic types.

e New tags cannot be added unless all primitives are explidét
signed to work in the presence of arbitrary tags, or the wsser i
a position to understand, modify and then recompile every pa
of the base language implementation that might be concerned
with object tags.

We could start to address these problems by creating a mare ge
eral object model for our structured data, for example byiragd

a size field to allow for arbitrary payloads. Unfortunately each
such changedds complexity to the language runtime and imposes
more ‘meta-structure’ in the objects, ultimately making théess
amenable to unanticipated deep modification in the future.

These problems are more severe when we consider object-
oriented languages. The object model for a simple protebgsed
language might specifymethodDictionary and aparent field
in every object. The runtime would look up a message nameein th
receiver'snethodDictionary, trying again in thearent object’s
method dictionary if no match is found (and so on until reaghi
the end of the parent chain). Adding multiple inheritancehis
language would be very difficult because of the runtime’siags
tion that theparent field contains a single object rather than, say,
a list of parent objects to try in turn.

The trouble is that some of the semantics are reified eagerly
in the execution mechanisms of the language. This in turergag
imposes supporting meta-structure within the objectc&Sihe ex-
ecution mechanisms are expressed in an implementationdgeg
at a lower level of abstraction than that of the end user laggu
neither the mechanisms nor their effects on object straatan be
customised by end users. Moreover, adapting the model éoinues
different language is more difficult when the required clemnare
pervasive and expressed in a low-level implementationdagg. In
this paper we construct an object model that eliminatesf éiese
problems to the greatest extent possible:

¢ We show how an object-based model of data can help alleviate
some of the problems of extensibility in programming largpia
implementation (Section 2).

2007/11/2

¢ We define a simple (possibtie simplest to implement) exten-
sible object model that imposes no structure at all on end use
objects (Section 3).

tics in terms of the objects that it implements, making the im
plementation replaceable from within the end user language
We show that five small methods and four initial objects are
sufficient to achieve this (Section 3.1).

The flexibility gained by exposing the object model’s sernnt

is illustrated by showing how it can be extended easily to sup
port language features such as multiple inheritance anddnix
mode execution (Sections 2.2 and 3).

We validate the use of this approach for production systgms b
showing that: it has low space overhead (Section 4); its per-
formance can be competitive with, or even better than, equiv
alent ‘static’ implementation techniques (Section 4.hgttan
existing object system can be easily implemented on top of
our model (Section 4.2); and that advanced compositiochlte
niques such as traits can be accommodated (Section 4.3).

2. The problem

This section sets the stage for our object model by pursuieg t
examples mentioned in the introduction.

2.1 Adding data types to a language

For our Lisp-like language we might want to implementeagth
primitive that tells us how many elements are present iniagstr
list. Using thetag field in theRecord structure to discriminate the
type of payloadlength might look something like this:

static inline int length(struct Record *object)

switch (object->tag)

{

case String:
case Cons:

return object->payload.string.length;
return object->payload.cons.cdr
? 1 + length(object->payload.cons.cdr)
:1;
case Number: error("numbers have no length");
case Symbol: error("symbols have no length");
default: error("illegal tag");

This object model implements its own message-passing seman

struct vtable *Vector_vt = 0;
int Vector_length(struct Vector *vector) {
return vector->length;

}
void initialise(void) {
send(vtable, s_allocate,

sizeof (struct vtable));
send(Vector_vt, s_addMethod, s_length, Vector_length);

Vector_vt =

int length(struct object *object) {
return send(object, s_length);

}

Figure 1. Creating a new type and associating functionality with
it. The vtablevector_vt describes the behaviour of our new type.
Invoking the s_addMethod method in it makes an association
between the selectas_length and the method implementation
Vector_length. Our length primitive can now simply invoke
the methods_length in any object and expect it to respond ap-
propriately regardless of the number of data types supgpdaye—

or added to—the language. (The variables prefixed wittare
symbols: interned, unique strings suitable for identifyimethod
names.)

Perhaps more compelling is an example involving an object-
oriented language that uses our object model directly aatdcdm
consequently directly modify the implementation of its oslsject
model.

2.2 Converting single inheritance to multiple inheritance

We can easily create a prototype-based high-level progiagim
language that uses our object model directly for its end ober
jects? To modify the semantics of message sending in this language
we need only replace the mechanism that finds a method impleme
tation given an object and the name of a method to invoke.
Everything in our object model is an object, including tha-vt
bles that describe the behaviour of objects. Interactirig wtables
is just a matter of invoking methods in them. One such method i
calledlookup:; it takes a method name as an argument and returns

Let's add a vector type to this language. We have to extend the the corresponding method implementation stored in theletd&y

switch statement with a newase to take into account our new
data type and itsag value:

case Vector: return object->payload.vector.length;

This isn’t too bad if we are the only user of the language. Hare
it is much worse if we want to share our new type with other siser
of the language, maybe as a third-party extension.

It would be better to associate theses within the primitive
function with the data types themselves. Using our objeatleho
the new data type is added to the language by creating a nelv kin
of object behaviour (calledwaable) and then installing its primitive
functionality in the vtable. Figure 1 shows what the addisiavould
look like.

This is more than advocating an object-oriented style of pro
gramming language construction. Consider the same Ligpldn-
guage implemented in C++. Even if thength primitive was
made a virtual function of each supported data type, we wioaNe
to recompile every file after addingctor since the layout of C++
vtables is computed statically at compile time; adding a vietual
method would invalidate all previous assumptions about/table
layout.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

redefining this method we can change the semantics of method
lookup.

Our prototype-based language provides the programmer with
single inheritance: a given family of objects can inherihd&our
from a parent family, and all families eventually inheriorn
Object. Figure 2 shows how the programmer can directly add mul-
tiple inheritance to this language, without loss of perfante?
With these additions to the language, and given three oot
familiesC1, C2 andC3:

Cl : Object O

Cl m [StdOut nextPutAll: ’this is m’; cr]
C2 : Object()

C2 n [StdOut nextPutAll: ’this is n’; cr]

1This language is written entirely in itself and can be dowdled, along
with many example programs, fronttp://piumarta.com/pepsi

2The message sending mechanism usestaod cache to memoize the
result of invokinglookup: in a givenvtable for a givenmethodName.
The overhead of iterating through multiple parents is iredironly when
the method cache misses, which is rarely.

2 2007/11/2

ParentList : List ()
vtable addParent: aVtable
[
parent isNil
ifTrue: [parent := aVtable]
ifFalse:

[parent isParentList

ifTrue: [parent add: aVtable]
ifFalse: [parent := ParentlList new
add: parent;
add: aVtable;
yourself]]

]

ParentList lookup: methodName
[

| method |
self do: [:vt |
(method := vt lookup: methodName) notNil
ifTrue: [Tmethod].
Tnil

]

Figure 2. Adding multiple inheritance to a prototype-based lan-
guage. We will store multiple parentskarentList objects; these
extend (inherit behaviour from)ist without adding any addi-
tional state. We telirtable how toaddParent: by converting a
single parenttable into aParentList if necessary, theadding
the new parenttable to the list. Next we defindookup: for
ParentList to search for thenethodName in each parent con-
secutively. (Thelookup: method already installed itable can
be left in place; it searches up the inheritance chain bykimep
lookup: in its parent slot, which can now be eitherwetable or
aParentList.)

€3 : C1 () "C3 inherits from C1"

the programmer can now dynamically aclelas a parent of1:
C3 vtable addParent: C2 vtable

such that objects in its family can execute methods intefitem
bothc1 andc2:

C3 new
m;
n

"inherited from C1"
"inherited from C2"

A serious implementation would of course have to take state
into account, although this could be as simple as only afigvane
parent to be stateful (the others effectively beliraits).

3. Open object models

An object typically describes botfate andbehaviour that acts on
(or is influenced by) that state. We might account for bottesiad
behaviour in our object model, but it would be simpler to mode
just one of them and then use it to provide the other indiyetie
choose to model (and expose) behaviour as a seietifods that
are invoked in an object by name; access to state, if ap@tepiis
then provided through ‘accessor’ methdds.

Figure 3 illustrates this simple model: an object is somenqua
tity in which a method can be invoked by name; we call the set
of methods associated with a given objectiésaviour. Since we
wish to avoid imposing structure on end user objects, therges
tion of behaviour is stored separately from the object. Ajecb

3The discussion of related work (Section 5) mentions Selfystesn that
made the opposite choice of modeling behaviour as a spenihbk state.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

Figure 3. Minimal object model. An object is some unknown
state? on which a methodV/ can be invoked by name. To im-
plement this model we need a mapping from method names to
method implementations. So, to invoke a methdd in the ob-
ject? we find the corresponding method implementation in a be-
haviour description3’. Hence an object is a tuple of behaviour
B’ and state?’. Since behaviour is separate from the object it de-
scribes, it is possible to share any given behaviglibetween sev-

eral distinct object®’, ?’, 2", ..
j object’s vtable —f—»
object
pointer T .
increasing : ! : 7
memory i "TTTTommToooooo-
addresses ¥

Figure 4. Implementation of minimal object. An object pointer
(oop) points to the start of the object’s internal state fi§)a The
object’s behaviour is described byiatual table (vtable). A pointer
to the vtable is placed one word before the object’s state.

vtable’s behaviour

object’s behaviour

| vtable |I

S->1

object vtable

object I ookup:
oop :

-> <inpl>

indirectly defines internal structure

Figure 5. Everything is an object. Every object has a vtable that
describes its behaviour. A method is looked up in a vtable by
invoking its lookup: method. Hence there is a ‘vtable vtable’
that provides an implementation dbokup: for all vtables in the
system, including for itself. The implementation of thisokup:
method is the only thing in the object model that imposesriratie
structure on vtables. (If the figure seems confusing, tmykiinig of

the word in the solid box as the ‘type’ of the object to whiclisit
attached.)

is therefore auple of behaviour and state. Since the behaviour is
decoupled from the internal state of the object, it can béaoepul
and/or shared as desired.

Figure 4 shows the layout of our objects in memory. An ordinar
object pointer (oop) points to the first byte of the objeaternal
state (if any). The object’s behaviour is described irtual table
(vtable). A pointer to the vtable is placed immediately befthe
object’s state.

A vtable is an object too, and has a reference to a ‘vtable for
vtables’ before its internal state. The ‘vtable for vtablests own
vtable as shown in Figure 5. The state within a vtable dessrib

3 2007/11/2

vtable
pointer

vtable’s vtable vtable for vtables

selector ————» native code

Figure 6. Internals of vtables. A vtable maps method names (se-
lectors) onto method implementations. A method implententa

is represented asckosure containing the address of the native code
to be executed along with some arbitrary data. Since vtadies
closures are objects, they each have a vtable pointer in tid w
before their state.

vtable VtableVT

pointer

ClosureVT

slotName FunctionVT

method

getter(closure, self)

data

“closure.data

AAAAi&AAAAAAUU -

ClosurevT

slotName: FunctionvT

method
setter(closure, self, value)

data

“closure.data.data := value

Figure 7. Self-like slots. An assignable slot is implemented as a
pair of methods: a ‘getter’ and a ‘setter’. The value of that &
stored as theata in the closure of its getter method. Theta

of the setter method’s closure contains a reference to ttterige
closure, allowing the setter to assign into the getigisa. A single
implementation of getter and setter can be shared by alu@ss
associated with assignable slots.

the mapping between method names and the correspondinganeth
implementations. The ‘vtable vtable’ defines the methookup:
for all vtables, used to find a method implementation assedia
with a method name. Thikookup: method indirectly defines the
internal structure of all vtables, but there is nothing spleabout
the initial ‘vtable vtable’ nor the structure of vtables: @n‘vtable
vtable’ can be created at any time and givaakup : method that
implements a family of vtables with arbitrarily differentternal
structure and semantics.

The simplest possible arrangement would be for each selecto
the vtable to be associated with the address of the compdtden

FunctionvT

interp(closure, self)

VtableVT
vtable

selector

char *bytecodes = closure.data;

=

byte-compiled method 1
byte-compiled method 2

ClosureVT

method —J

data

[

4“1}““““““
PR | SEERERRRES S

ClosureVT
selector

(|

method

data

Figure 8. Mixed-mode execution. An interpreter (for bytecodes or
other structures) can be shared by any number of methodreksu
The structure to be interpreted is stored in thea part of the
closure. As described in the text, the closure is passed asgan
ment to the method implementation (in this case the intézpre
from where itsdata is readily accessible. To the caller there is no
difference between invoking a native method and a byte-dechp
method; the calling conventions are identical.

prototype | method
vtable | addMethod
vtable | lookup
vtable | allocate
symbol | intern
closure | constructor
vtable | delegated

Table 1. Essential objects and methods. The most important meth-
ods are applicable totables: addMethod constructs vtables by
adding an association from a method name to an implementatio
lookup queries the associations to find an implementation corre-
sponding to a name, andlocate creates a new object (whose
vtable is the object in which the method was invoked). We in-
cludesymbol’s intern method since the end user must have some
way to construct the name of a method. Tdi®sure prototype

is required (for cloning when adding methods to a vtable)Hast

no required methods defined for it. A delegation mechanisnois
required, but is trivial to implement in the intrinsic objenodel;

in that case delegated method forvtable is required, to create

a newvtable that delegates to the one in whidhlegated was
invoked.

code that implements the method. We chose to introduce an ad-

ditional level of indirection, so that a selector is instesdociated
with aclosure. Each closure then contains two items: the address of
the compiled code implementing the method and some (arpjtra
data.

The final arrangement of our vtables is shown in Figure 6. We
believe the slight increase in complexity is more than figstiby
the generality that is gained. For example:

e Figure 7 illustrates closures used to store assignabls, slat-
ating an end user object model similar to that of traditional
prototype-based languages.

e Figure 8 shows how closures are used to support mixed-mode
execution. A single interpreter method is shared betwearyma
closures whosé@ata fields contain the code to be interpreted.
To the caller there is no difference between invoking a etiv
compiled method or a byte-compiled method.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

3.1 Essential objects and methods

Table 1 lists the three essential object types and the faengial
methods defined for thefh.

Before we can begin constructing an object system we need a
way to add methods tetables, which in turn means we need a
way to construct unique method names. Figure 9 shows a simple
algorithm for creating ‘interned’ (unique) strings that grerfect
for use as method names.

To add methods to@table we invoke itsaddMethod method,
passing a message namsgmbol and the address of native code
implementing the method. The algorithm is shown in Figure 10

To invoke a method it must first be looked up invaable.
Figure 11 shows the algorithm fetable's lookup method.

4Note that constructors (other than the general end usectatzi@structor
allocate) are not considered methods.

2007/11/2

let SymbolList = EmptyList

method symbol.intern(string) =
foreach symbol in SymbolList
if string = symbol.string
return symbol
let symbol = new symbol(string)
SymbolList.append(symbol)
return symbol

Figure 9. Method symbol.intern. Symbols are unique strings.
A lazy implementation could co-opt atable into use as the
SymbolList.

method vtable.addMethod(symbol, method) =
foreach i in 1 .. self.size
if self.keys[i] = symbol
self.values[i] := method
return
self keys.append(symbol)
self.values.append(new closure(method, nil))

Figure 10. Method vtable.addMethod. If the method name
symbol is already present, replace the method associated with it.
Otherwise add a new association between the name and thedneth

method vtable.lookup(symbol) =
foreach i in 1 .. self.size
if self keys[i] = symbol
return self.values]i]
if self.parent #nil
return self.parent.lookup(symbol)
return nil

Figure 11. Method vtable.lookup. The two lines involving
parent are not essential, but are trivial to include and provide sin
gle delegation as part of the intrinsic object model.

method vtable.allocate(size)
let object = allocateMemory(PointerSize + size)
let object = object + PointerSize
object[-1] := self /x vtable */
return object

Figure 12. Methodvtable.allocate. A new object is created and its
vtable (stored in the word preceding the object) set totheble

in which the method is invoked. Theize argument specifies the
size of the object’s state. Computation of the correct vdare
size is dependent on the programming language implementation
in which the object model is being used.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

method vtable.delegated() =
let child = self.allocate(VtableSize)
child.parent := self
return child

Figure 13. Method vtable.delegated. A new vtable is
allocated and its parent set to thevtable in which the
delegated method is being invoked. Thegerent fields link the
vtables together into a single delegation chain.

Invoking theallocate method in avtable allocates a new
object. The object is made a member of the vtable’s family, as
shown in Figure 12.

If single delegation is being included in the intrinsic ob-
ject model, an additional method can be installedvirable:
delegated creates a newtable whose parent is the vtable in
which delegated was invoked. The algorithm as shown in Fig-
ure 13 is far easier to understand than this verbose descript

3.2

To deploy the object model as part of a programming language
implementation, we need three things:

Implementation language bindings

e implementation language structure definitions for the layo
of symbol, closure and thevtable implied by thelookup
method of the ‘vtable vtable’;

e implementations of the four essential methods in the imptem
tation language; and

e implementation languagbindings to method invocation (the
process that invokes the resultlafokup in an object).

By now it should be clear how to construct the first two. Tosthate
the third, we will create bindings to our object model for U
C language.

To invoke a method namel in an objectO we look upM in
the vtable ofO to yield a closure, and then call the native method
stored in the closure. This call passes the closure, theciobje
(which becomesself in the invoked method) and any remaining
arguments in the invocation. If we call this ‘sending a mgss#o
M then the functiorsend can be defined as:

function send(object, messageName, args...)
let closure = bind(object, messageName)
return closure.method(closure, object, args...)

The functionbind is responsible for looking up the method name in
the vtable obbject and just invoked ookup in theobject’s vtable,
passingnethodName as the argument:

function bind(object, messageName)
let vtable = object|[-1]
if messageName = SymbolLookup
and object = VtableVtable
let closure = vtable_lookup(0, vtable, messageName)
else
let closure = send(vt, SymbolLookup, messageName)
return closure

Note that the recursion implied byend calling bind which in
turn calls send (to invoke thelookup method in the object's
vtable) is broken by short-circuiting to the intrinsic défion of
vtable_lookup when the method name isokup and the object
in which it is being bound is the ‘vtable vtable’. This can lees
both in the above algorithm and in the working translatian€ tof
send andbind in Figure 14.

2007/11/2

struct object { struct vt[0]; };
struct vtable { struct _vt[0]; ...internals... };

#define send(0BJ, MSG, ARGS...) ({
struct object *o = (struct object *)(0BJ);
struct closure *c = bind(o, (MSG));
c->method(c, o, ##ARGS);

—

)

struct closure *bind(struct object *obj,
struct object *msg)

struct vtable *vt =
return (

obj->_vt[-1];
(msg == s_lookup)
&& (obj == (struct object *)vtable_vt))
? (struct closure *)vtable_lookup(O, vt, msg)
(struct closure *)send(vt, s_lookup, msg);

Figure 14. Simple method invocation. Thert member of the
structs is empty but gives access to the vtable pointer stored
at offset -1. Thesend operation is implemented as a macro and
inlined at each send site. It evaluates OB expression once and
calls bind on the result to find alosure. The method stored
in the closure is invoked passing the closure, the objedt,aany
remaining arguments. Theind function extracts the vtable from
the object and invoke3ookup in it. If the method name being
bound islookup and the object in which it is being invoked is
the ‘vtable vtable’ then the lookup is short-circuited te itative
methodvtable_lookup (creating a fixed point in the recursive
definition of method lookup); otherwise a flnd is performed to
lookup and then invoke thookup method in the object’s vtable,
to find a method implementation for the name being bound.

void initialise(void)

{
SymbolList = vtable_delegated(0, 0);
s_lookup = symbol_intern(0, 0, "lookup");
s_addMethod = symbol_intern(0, 0, "addMethod");

"allocate");
"delegated");

s_allocate
s_delegated

symbol_intern(0, O,
symbol_intern(0, O,

vtable_vt = vtable_delegated(0, 0);
vtable_vt->_vt[-1] = vtable_vt;

vtable_addMethod (0, vtable_vt,
s_lookup,

vtable_addMethod (0, vtable_vt,
s_addMethod, (imp_t)vtable_addMethod);

(imp_t)vtable_lookup) ;

send(vtable_vt, s_addMethod,
s_allocate, vtable_allocate);

send(vtable_vt, s_addMethod,
s_delegated, vtable_delegated);

object_vt = vtable_delegated(0, 0);
object_vt->_vt[-1] = vtable_vt;
vtable_vt->parent = object_vt;

vtable_delegated(0, object_vt);

symbol_vt =
= vtable_delegated(0, object_vt);

closure_vt

}

Figure 15. Initialising the object model. Artable is pressed into
service as &ymbolList. Variables that begin witk_ are method
names (symbols). Variables that end witlt are the vtables for
the various kinds of object. Functions calledy are the method

We always pass the bound closure as the first argument of theimplementations destined to be installed as methadthe vtable

invoked native method. This gives shared methods accessyto a
differentiatingdata that might be stored in the closure.

3.3 Bootstrapping the object universe

A small amount of structure has to be created before the bbjec
model will behave as we have described:

1. the symbols associated with the essential method namss mu
be constructed; then

2. the ‘vtable vtable’ is constructed and its circutarble refer-
ence pointed back to itself; then

. the methodstable.lookup andvtable.addMethod can be
installed by calling the nativetable_addMethod method di-
rectly; we can now invokexddMethod in vtable using the
send macro, so

the methodrtable.allocate is added tortable by sending
addMethod with appropriate arguments; then

4.

5. vtables forsymbol andclosure can be allocated.

Figure 15 shows this process for a C implementation of theabbj
model as it appears in our reference implementation (imetuthe
optional support for single delegation).

3.4 Optimising performance

The performance of botlend and bind can be improved by
caching.

Figure 16 shows a version afend that caches the previous
vtable and closure resulting from binding the method nantlen
vtable. Provided the message name is a constant (does mugjecha

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

for objects of typex. Whenever a method implementations is called
directly a0 is passed as the first argument, corresponding to the
closure that would be passed implicitly if we were to usend
instead.

#define send(0OBJ, MSG, ARGS...) ({ \
struct object *o = (struct object *)(0BJ); \
static struct vtable *previT = 0; \
static struct closure *closure = 0; \
register struct vtable *thisVT = o->_vt[-1]; \
thisVT == prevVT \

? closure \
: (prevVT = thisVT, \
closure = bind(o, (MSG))); \

\

closure->method(closure, o, ##ARGS);

o)

Figure 16. Optimisingsend with an inline cache. The maceend
memoizes the previous vtable and associated closure eetfmom
bind. bind is only called (and the memoized closure and vtable
values updated) if the invocation is to an object whose etabl
not the same as the previous object’s vtable at the samedtivoc
site; otherwise the previously bound closure is reused idiabely.
This is safe provided the method name is a constant at any give
invocation site.

6 2007/11/2

struct entry {
struct vtable *vtable;
struct object *message;
struct closure *closure;
} MethodCache[8192];

struct closure *bind(struct object *obj,
struct object *msg)

struct closure *c;
struct vtable *vt = obj->_vt[-1];
struct entry *cl = MethodCache

+ ((((unsigned)vt << 2) ~ ((unsigned)msg >> 3))
& ((sizeof (MethodCache) / sizeof(struct entry))
- 1);
if (cl->vtable == vt && cl->message == msg)
return cl->closure;

c = ((msg == s_lookup)
&% (obj == (struct object *)vtable_vt))
? (struct closure *)vtable_lookup(0, vt, msg)

: (struct closure *)send(vt, s_lookup, msg);
cl->vtable = vt;
cl->message =

msg;
cl->closure c;

return c;

}

Figure 17. Optimising bind with a global method cache. The
MethodCache stores vtables, method names, and the associated
closures. Tdind a method name within a vtable, a hash is com-
puted from the vtable and name modulo the size of the metho
cache to create an index. If the vtable and name stored iratiieec
at that index correspond to the vtable and name being bobed, t
stored closure is returned immediately. Otherwisekup is in-

d

voked in the vtable to bind the method name, and cache updated

accordingly.

between consecutive sends) the cached closure can be reitised
out callingbind.®

Figure 17 shows a version a@find that has been optimised
with a global method cache. Before invokibgokup the optimised
bind looks for the vtable and method name in a cache of previously
bound methods. If it finds a match, it returns the cached ofstu
not, it invokeslookup and fills the appropriate cache lifie.

These two optimisations are independent and can be used sepa

rately or together.

4. Evaluation

e bind as presented, with defeatable global method cache;

e an initialisation method that creates the initial objectd pop-
ulates their vtables.

The object code size for all essential objects and their austh
with unoptimisedsend andbind, is 1,451 bytes. With the inline
and global caches enabled, the code size grows to 1,602. bytes
This should not be an issue for any but the most severely resou
constrained environments.

4.1 Benchmarks

The first thing we have to investigate is the overhead of dyanam
dispatch through the vtable.

We implemented thefibs function (that has a very high send,
or method invocation, to computation ratio) in optimised Ghw
statically-bound sends and compared it with our object rhesiag
dynamically-bound message invocations and an inline cabihe
results from runningufibs (34) (performing 18,454,929 calls or
method invocations) were:

type time %C
staticcall (C) 150 ms 100.0%
dynamic send 270 ms 55.6%

While the results are polluted a little by the arithmetic guitation,
they show that a static C function call is only approximatelice

as fast as a dynamically-bound send through an inline cadte.
actual overhead should be lower in practice since most calile w
perform more computation per call/send thefribs.

Next we implemented the example presented in Section 2 of
this paper: data structures suitable for a Lisp-like lagguaNe
implemented a ‘traditionallength primitive using aswitch on
an integertag to select the appropriate implementation amongst
a set of possiblease labels. This was compared with an imple-
mentation in which data was stored using our object modetlaad
length primitive calledsend to invoke amethod in the objects
themselveg.Both were run for one million iterations on forty ob-
jects, ten each of the four types that supportlitegth operation.
The results, with varying degrees of object model optinmsesten-
abled, were:

implementation time %C
switch-based 503 ms 100.0%
dynamic object-based 722 ms 69.7%

+ global cache 557 ms 90.3%

+ inline cache 243 ms 207.0%

This shows that an extensible, object-based implementéibet-
ter than half the speed of a typical C implementation for a-sim

We measured speed and size, then tried to estimate ease of USBIe language primitive. With a global method cache (coristaer-

objectively. All measurements were made on a 2.16 GHz ImeéC
Duo.

Our sample implementation (faithfully following the alggtbms
and C language bindings presented in this paper, and imgudi
optional single delegation) is 144 lines of code and costain

e the three essential object types, and a negligible comm@mnpa
typeobject;

e two constructors, fosymbol andclosure;
e the four essential methods plusable.delegated;
® send as presented, with defeatable inline cache;

5A realistic language implementation would need a way tolidage the
inline caches. Mechanisms for doing this are beyond theesobihis paper.
6 A realistic language implementation would have to invakdall or parts
of the global method cache on every change to vtable conteirtberitance
relationships.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

head, no matter how many method invocation sites exist) ¢éne p
formance is within 10% of optimised C. When the inline caclesw
enabled the performance was better than twice that of ogpdiehi

C. In a practical language implementation the above pedooa
gaps would be decrease in all cases as the amount of usefll wor
per primitive increases. (Itis hard to conceive of a simplénitive
thanlength.)

4.2 Ease of use: Javascript objects

Javascript [3] has a simple object model based on deleggfjon
Objects are dictionaries that map property names to théiesa
When an object is asked for an unknown property, it forwahgs t
request to its prototype (the value of itproto__ property). (As-
signing to a property of an object always updates an existing

7 Our reference implementation, including thength benchmarks, can be
downloaded fromhttp://piumarta.com/pepsi/objmodel.tar.gz

2007/11/2

vtable get [Tclosure data]

get := [(vtable vtable lookup: #get) method]
Object set: prop to: val
[
| closure |
(closure :
ifFalse:
[closure self vtable methodAt: prop put: get].
closure setData: val.
prop == #__proto__
ifTrue:
[self vtable parent: val vtable.
vtable flush].

self vtable lookup: prop) notNil

]

Figure 18. Javascript objects. Properties are implemented in a
manner similar to that of slots in Figure 7. However, settetirads
were eliminated in favour of @et:to: method that treats the
__proto__ property specially. If__proto__ is assigned then the
parent of the object’s vtable is set to thelue’s vtable, and any
method caches are flushed. (Note that the block expressignasl

to get is evaluated; the value assigned is the result of executimg t
block, not an unevaluated, literal block.)

creates a new property in the object.) This simple modelyrésl
sufficient to implement all Javascript objects, functionsl aneth-
ods.

Figure 18 shows one way of implementing these semantics in
our object model. This implementation is small, runs effitig
can be understood easily, and took very little time to cansfr

We should stress that this implementation is not intenddukto
used directly by programmers (although nothing prohiliis)t
Rather, a compiler is expected to translate Javascripessmns
into method invocations. For example, a field accessis trans-
lated tox p (an invocation of methogd in x). Similarly, the assign-
mentx.p = y is translated tx set: #p to: y (an invocation
of set:to: in x with argumentstp (the namep) andy).

4.3 Ease of use: traits

Traits [9] are a powerful software composition mechanisntrait
is a collection of methods without state that can be manipdland
combined with other traits according to an algebra of coritioos
aliasing and exclusion. They are interesting because thayide
the power of multiple inheritance without the drawbacks eowh-
plexity.
Figure 19 shows support for traits added to our prototyeta

language. We can then easily implement the operations ¢fdtis
algebra, for example:

Trait + aTrait
[
TTrait delegated
useTrait: self;
useTrait: aTrait

]

This creates a new empty trait and adds both the receiverhend t
argument to it, composing their behaviours. (Method exctuand
method aliasing are left as an exercise; they take no moreaha
few minutes each. Once all three operations are availableywil
have a genuine, conformant traits implementation.)

With the above traits implementation in place, we can write
code such as:

8 Admittedly, the person who constructed it was already areexin the
underlying object model.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

Trait : Object (O

Object useTrait: aTrait [aTrait addTo: self]

Trait addTo: anObject
[

self vtable keysAndValuesDo: [:key :value |

| newClosure |
newClosure := anObject vtable
traitMethodAt: selector
put: closure method.

newClosure setData: closure datal

]

vtable traitMethodAt: aSelector put: aMethod
[
(self includesKey: aSelector)
ifTrue: []self errorConflict: aSelector]
Tself methodAt: aSelector put: aMethod

Figure 19. Support for traits. Trait.addTo: adds the
methods of the receiver to the vtable of the argument.
vtabel.traitMethodAt:put: adds a method implementa-
tion to the receiver with a given name, and signals an errthvef
method name is already defined.

T1 : Trait O
1m [’this is m’ putln]
T2 : Trait O
T2 n [’this is n’ putln]
C : Object () [C useTrait: T1 + T2]
Co [selfm;n]

(Note that in the above what looks like a literal block aftee t
declaration ofc is actually an imperative; the program is executed
from top to bottom, sendingseTrait: to C before continuing
with the installation of method in C.)

4.4 Limitations

Our object model relies on a method cache [2] for performatice
is necessary to flush the cache after certain programmingpelsa
such as adding a new method to a vtable or storing into a véable
parent, etc.

We don't count constructors in the number of methods in the
object implementation. (There is mequirement for the construc-
tors to be installed as methods although in practice it iveoient
to do so.)

We don't count the vtable pointer as part of the end-userabbje
structure, since it appears before the nominal start of Hject
This might be considered dishonest.

The implementation obind and send cannot be exposed as
easily as the method lookup mechanism. This can be addrbgsed
exposing the semantics of pure functions (Section 6) in émees
way that the object model exposes the semantics of lookup.

5. Related work

TinyObjects [6] is an impressive attempt to simplify apptions by
empowering the programmer to remove limitations from the sy
tem instead of ‘programming around’ them. It provides a Mbta
ject Protocol (MOP) [5] through which programmers can cosse

the object model to fit the needs of their applications. Byahe
thors’ own admission, when a particular customisation oare
expressed with the MOP the programmer must contact the MOP

2007/11/2

designer and request that the MOP be extended with new fumcti
ality. This lack of control over the language is exactly theljpem
MOPs were designed to solve in the first place. Instead ofrsplv
the problem MOPs simply move it to a different (the ‘metai)de

than four hours. The essential objects and methods totaliridgl
of source code. Not only is it tiny, but it also scales well:an
slightly different form it has been in daily use by severabple
for over a year. This model provides rich Smalltalk-likessldi-

We address this problem by implementing the object model and braries, implements its own compiler and dynamic code geaer

the equivalent of a MOP at the same level of abstractionngittie
programmer control over all aspects of the object model &mgin-
tation?

Smalltalk-80 [4] has methods (in clasdgshaviour, Class and

Metaclass) that provide what is essentially an incomplete MOP.

While these can be used by programs (including the Smalpralk
gramming environment itself) to create new subclasses antifyn
method dictionaries, they cannot be used to modify the stosan
of message sending itself nor the internal layout of objects

McCarthy’s metacircular evaluator for LISP [8] demonstrtht
that it is possible for a language to be implemented (desdjim
itself. Such implementations are ‘open’: they allow prognaers
both to write ‘user programs’ and also to modify or extendsbe
mantics of the language. The circular implementation of @or
ject model brings an equivalent openness to the objectagess
paradigm.

Some object models, such as those of the Self programming

language [10] and Lieberman’s prototypes [7], are simgilantthe

one we describe. The cost of this simplicity is that some ef th

semantics of their object model is hidden (slot lookup irtipatar)

and cannot be modified from end user code. Self also requires a

significantly more complex runtime to run efficiently. Our debis
much closer Self’s internal object model which usegps (similar
to our vtables) to describe the behaviour of ertiome families[1].

Very promising recent experiments with Self aim to expose th

entire implementation to the programmer [11].

6. Conclusions and further work

We presented a simple, extensible object model that exptses
own semantics in terms of the objects and messages thatlg-imp

ments. This circularity in the implementation results imgising
flexibility; end users have direct access to, and controt,ave
implementation mechanisms of the object model itself. Cqee
rience with this object model has shown that it can be custedhi
easily to support powerful features such as multiple inkhade and
mixed-mode execution. While it is not necessarily a frigndbdel
for hand-written code, it is an attractive target for autmaans-
lation.

Because it imposes no structure on end user objects, ourlmode

invites experimentation that might otherwise be diffictir exam-
ple, it allows a pointer to a compiled native function to atsoan

object, to which messages can be sent; a vtable in the woodebef

the function prologue suffices. We envisage going furtherstor-
ing useful information about compiled code (stack layoiginature
information, pre- and post-conditions, etc.) in the worébbe the
function’s vtable.

This complements ongoing work with dynamic code genera-

tion that brings the purely functions aspects of our objeotieh
(method implementations and method invocation, asdd and

bind in particular) under the control of the programmer. Thiskvor

will be the subject of forthcoming publications.
Starting with the algorithms and C language bindings dbsdri

in this paper, implementing our object model in C took no more

9The authors of TinyObjects state that MOPs are expectedatuilise

and eventually accommodate “most of the substrate adjmssntbat are
reasonable”. We think ‘reasonable’ is in the eye of the paogner, not the
MOP designer. Nobody can know (or predict) which parts ofrthgstems
programmers will need to modify in the future. The only wayrmgplement
the future is to avoid having to predict it.

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

for multiple architectures, and integrates seamlesslig plaatform
libraries and garbage collection. With the addition of a faves
of code it also supports tagged immediate quantities andlijest
nil represented as the NULL pointer.

References

[1] C. Chambers, D. Ungar, and E. Lee. An efficient implemiora
of SELF a dynamically-typed object-oriented language tase
prototypes. InOOPSLA '89: Conference proceedings on Object-
oriented programming systems, languages and applications, pages
49-70, New York, NY, USA, 1989. ACM Press.

[2] L. P. Deutsch and A. M. Schiffman. Efficient implementetiof
the Smalltalk-80 system. IROPL '84: Proceedings of the 11th
ACM S GACT-SIGPLAN symposium on Principles of programming
languages, pages 297-302, New York, NY, USA, 1984. ACM Press.

[3] ECMA. Ecmascript language specification, December 1999
http://www.ecma.ch/ecmal/stand/ecma-262.htm.

[4] A. Goldberg and D. RobsonSmalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1983.

[5] G. Kiczales, J. des Rivieres, and D. G. BobrdWe art of metaobject
protocol. MIT Press, Cambridge, MA, USA, 1991.

[6] G. Kiczales and A. Paepcke. Open Implementations anchdket
ject Protocols. http://www2.parc.com/csl/groups/sda/
publications/papers/Kiczales-TUT95/for-web.pdf.

[7] H. Lieberman. Using prototypical objects to implemehaged
behavior in object-oriented systems. QOPLSA '86: Conference
proceedings on Object-oriented programming systems, languages
and applications, pages 214-223, New York, NY, USA, 1986. ACM
Press.

[8] J. McCarthy.LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[9] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. itra
Composable units of behavior. Rroceedings ECOOP 2003
(European Conference on Object-Oriented Programming), volume
2743 ofLNCS, pages 248-274. Springer Verlag, July 2003.

[10] D. Ungar and R. B. Smith. Self: The power of simplicitp. QOPS_A
'87: Conference proceedings on Object-oriented programming
systems, languages and applications, pages 227—242, New York,
NY, USA, 1987. ACM Press.

[11] D. Ungar, A. Spitz, and A. Ausch. Constructing a metadar virtual
machine in an exploratory programming environmentOBPSLA
'05: Companion to the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
pages 11-20, New York, NY, USA, 2005. ACM Press.

9 2007/11/2

A. Example object model implementation
An example implementation in C of the object model describettiis paper-®

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define ICACHE 1 /* nonzero to enable point-of-send inline cache */
#define MCACHE 1 /* nonzero to enable global method cache */

struct vtable;
struct object;
struct closure;
struct symbol;

typedef struct object *(ximp_t) (struct closure *closure, struct object *receiver, ...);

struct vtable

{
struct vtable *_vt[0];
int size;
int tally;

struct object x*keys;
struct object **values;
struct vtable *parent;

}s

struct object {
struct vtable *_vt[0];

}s

struct closure

{
struct vtable *_vt[0];
imp_t method;

struct object *data;

H

struct symbol

{
struct vtable *_vt[0];
char *string;

+s
struct vtable *SymbolList= 0;

struct vtable *vtable_vt;
struct vtable *object_vt;
struct vtable *symbol_vt;
struct vtable *closure_vt;
struct object *s_addMethod = 0;
struct object *s_allocate = 0;
0
0

H

struct object *s_delegated
struct object *s_lookup =

H

extern inline void *alloc(size_t size)

{
struct vtable **ppvt= (struct vtable **)calloc(l, sizeof(struct vtable *) + size);
return (void *) (ppvt + 1);

}

struct object *symbol_new(char *string)

struct symbol *symbol = (struct symbol *)alloc(sizeof (struct symbol));
symbol->_vt[-1] = symbol_vt;

symbol->string = strdup(string);

return (struct object *)symbol;

}

struct object *closure_new(imp_t method, struct object *data)
{
struct closure *closure = (struct closure *)alloc(sizeof (struct closure));
closure->_vt[-1] = closure_vt;
closure->method = method;
closure->data = data;
return (struct object *)closure;

10This code and that of the two benchmarks in the followingisastcan be downloaded fromttp://piumarta.com/pepsi/objmodel.tar.gz

Copyright (c) 2006, 2007 lan Piumarta, DO NOT DISTRIBUTE 10 2007/11/2

struct object *vtable_lookup(struct closure *closure, struct vtable *self, struct object *key);

#if ICACHE

define send(RCV, MSG, ARGS...) ({
struct object *r = (struct object *)(RCV);
static struct vtable *prevViT = 0;

static struct closure *closure = 0;
register struct vtable *thisVT = r->_vt[-1];
thisVT == prevVT

? closure
(prevVT = thisVT,
closure = bind(r, (MSG)));
closure->method(closure, r, ##ARGS);
b

#else

define send(RCV, MSG, ARGS...) ({
struct object *r = (struct object *)(RCV);
struct closure *c = bind(r, (MSG));
c->method(c, r, ##ARGS);

b

#endif

P g

-

#if MCACHE

struct entry {
struct vtable *vtable;
struct object *selector;
struct closure *closure;

} MethodCache[8192];

#endif

struct closure *bind(struct object *rcv, struct object *msg)
{
struct closure *c;
struct vtable *vt = rcv->_vt[-1];
#if MCACHE
struct entry *cl = MethodCache + ((((unsigned)vt << 2) ~ ((unsigned)msg >> 3))
& ((sizeof (MethodCache) / sizeof(struct entry)) - 1));
if (cl->vtable == vt && cl->selector == msg)
return cl->closure;
#endif
c = ((msg == s_lookup) && (rcv == (struct object *)vtable_vt))
7 (struct closure *)vtable_lookup(0, vt, msg)
(struct closure *)send(vt, s_lookup, msg);

#if MCACHE
cl->vtable = vt;
cl->selector = msg;
cl->closure = c;

#endif
return c;

}

struct vtable *vtable_delegated(struct closure *closure, struct vtable *self)
{
struct vtable *child= (struct vtable *)alloc(sizeof (struct vtable));
child->_vt[-1] = self ? self->_vt[-1] : 0;

child->size = 2;
child->tally = 0;
child->keys = (struct object **)calloc(child->size, sizeof (struct object *));
child->values = (struct object **)calloc(child->size, sizeof (struct object *));

child->parent = self;
return child;

}

struct object *vtable_allocate(struct closure *closure, struct vtable *self, int payloadSize)
{

struct object *object = (struct object *)alloc(payloadSize);

object->_vt[-1] = self;

return object;

¥
imp_t vtable_addMethod(struct closure *closure, struct vtable *self, struct object *key, imp_t method)

int i;
for (i = 0; i < self->tally; ++i)
if (key == self->keys[i])
return ((struct closure *)self->values[i])->method = method;
if (self->tally == self->size)

self->size *= 2;

self->keys = (struct object **)realloc(self->keys, sizeof(struct object *) * self->size);
self->values = (struct object *x)realloc(self->values, sizeof (struct object *) * self->size);

Copyright (c) 2006, 2007 lan Piumarta, DO NOT DISTRIBUTE 11 2007/11/2

self->keys [self->tally 1] = key;
self->values[self->tally++] = closure_new(method, 0);
return method;

}

struct object *vtable_lookup(struct closure *closure, struct vtable *self, struct object xkey)

{
int i;
for (i = 0; i < self->tally; ++i)
if (key == self->keys[i])
return self->values[i];
fprintf (stderr, "lookup failed %p %s\n", self, ((struct symbol *)key)->string);
return 0;

struct object *symbol_intern(struct closure *closure, struct object *self, char *string)

{
struct object *symbol;
int i;
for (i = 0; i < SymbolList->tally; ++i)
symbol = SymbolList->keys[i];
if (!strcmp(string, ((struct symbol *)symbol)->string))
return symbol;
}
symbol = symbol_new(string);
vtable_addMethod (0, SymbolList, symbol, 0);
return symbol;
}
void init(void)
{
vtable_vt = vtable_delegated(0, 0);
vtable_vt->_vt[-1] = vtable_vt;
object_vt = vtable_delegated(0, 0);
object_vt->_vt[-1] = vtable_vt;
vtable_vt->parent = object_vt;
symbol_vt = vtable_delegated(0, object_vt);
closure_vt = vtable_delegated(0, object_vt);
SymbolList = vtable_delegated(0, 0);
s_lookup = symbol_intern(0, 0, "lookup");
s_addMethod = symbol_intern(0, 0, "addMethod");
s_allocate = symbol_intern(0, 0, "allocate");
s_delegated = symbol_intern(0, O, "delegated");
vtable_addMethod(0, vtable_vt, s_lookup, (imp_t)vtable_lookup) ;
vtable_addMethod (0, vtable_vt, s_addMethod, (imp_t)vtable_addMethod);
send(vtable_vt, s_addMethod, s_allocate, vtable_allocate);
send(vtable_vt, s_addMethod, s_delegated, vtable_delegated);
}

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

12

2007/11/2

B. Object model benchmark

The object model benchmark discussed in the body of the plipesies the example object model implementation in C froenpifevious section to provide a
few data types and primitives that discriminate betweemthsing dynamic dispatch.

struct object *s_new= 0;
struct object *s_length= 0;

struct Number

{
s

struct vtable *Number_vt = O;
struct object *Number = 0;

struct vtable *_vt[0];

struct object *Number_new(struct closure *closure, struct Number *self)
fprintf (stderr, "Number_new\n");
exit(1);

return O;

}

int Number_length(struct closure *closure, struct Number *self)

fprintf (stderr, "Number has no 1ength\n");

exit(1);
return 0;
}
struct String
{
struct vtable *_vt[0];
int length;
char *chars;
s

struct vtable *String vt = 0;
struct object *String = 0;

struct object *String_new(struct closure *closure, struct String *self, int size)

{
struct String *clone = (struct String *)send(self->_vt[-1], s_allocate, sizeof (struct String));
clone->length = size;
clone->chars = (char *)malloc(size);
return (struct object *)clone;

}

int String_length(struct closure *closure, struct String *self)

{
}

struct Symbol

{

return self->length;

struct vtable *_vt[0];
struct String *string;

b

struct vtable *Symbol_vt = O0;
struct object *Symbol = O;

struct object *Symbol_new(struct closure *closure, struct Symbol *self, struct String *string)

{
struct Symbol *clone = (struct Symbol *)send(self->_vt[-1], s_allocate, sizeof (struct Symbol));
clone->string = string;
return (struct object *)clone;

}

int Symbol_length(struct closure *closure, struct Symbol *self)

{

return self->string->length;

Copyright (c) 2006, 2007 lan Piumarta, DO NOT DISTRIBUTE 13 2007/11/2

}

struct Vector
struct vtable *_vt[0];
int length;
struct object *contents;

s

struct vtable *Vector_vt = 0;
struct object *Vector = O;

struct object *Vector_new(struct closure *closure, struct Vector *self,

{

clone->length = size;

struct Vector *clone = (struct Vector *)send(self->_vt[-1],

int size)

s_allocate, sizeof(struct Vector));

clone->contents = (struct object *)calloc(size, sizeof(struct object *));
return (struct object *)clone;

}

int Vector_length(struct closure *closure, struct Vector *self)

{

return self->length;

}

struct Cons
struct vtable *_vt[0];
struct object *car;
struct object *cdr;

b

struct vtable *Cons_vt = 0;
struct object *Cons = 0;

struct object *Cons_new(struct closure *closure, struct Cons #*self, struct object *car, struct object *cdr)

{

clone->car = car;
clone->cdr = cdr;

struct Cons *clone = (struct Cons *)send(self->_vt[-1],

return (struct object *)clone;

}

int Cons_length(struct closure *closure, struct Cons *self)

{

return self->cdr

? 1 + (int)send(self->cdr, s_length)
. O;
}
void init2(void)
{
s_new = symbol_intern(0, O, "new");

s_length = symbol_intern(0, 0, "length");

Number_vt = (struct vtable *)send(object_vt, s_delegated);
String_vt = (struct vtable *)send(object_vt, s_delegated);
Symbol_vt = (struct vtable *)send(object_vt, s_delegated);
Vector_vt = (struct vtable *)send(object_vt, s_delegated);
Cons_vt = (struct vtable *)send(object_vt, s_delegated);

send (Number_vt, s_addMethod,
send(String_vt, s_addMethod,
send (Symbol_vt, s_addMethod,
send(Vector_vt, s_addMethod,
send(Cons_vt, s_addMethod,

send (Number_vt, s_addMethod,
send (String_vt, s_addMethod,
send (Symbol_vt, s_addMethod,
send(Vector_vt, s_addMethod,
send(Cons_vt, s_addMethod,

s_new, Number_new);
s_new, String_new);
s_new, Symbol_new);
s_new, Vector_new);
s_new, Cons_new) ;

s_length, Number_length);
s_length, String_length);
s_length, Symbol_length);
s_length, Vector_length);
s_length, Cons_length);

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

s_allocate, sizeof(struct Coms));

14

2007/11/2

Number =
String =
Symbol =
Vector =
Cons =

}

send (Number_vt,
send(String_vt,
send (Symbol_vt,
send (Vector_vt,

send(Cons_vt,

void doit(void)

{

int i, j;

s_allocate, 0);
s_allocate, 0);
s_allocate, 0);
s_allocate, 0);

s_allocate, 0);

struct object *a = send(String, s_new, 1);

struct object

*b = send(Symbol, s_new, a);

struct object *c = send(Vector, s_new, 3);
struct object *d = send(Cons,

for (i =

{

el s s a Cn n s
+
il

}

0, j =0; i < 1000000;

(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,
(int)send(a,

s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)

printf("total %d\n", j);

}

int main()
{
init(Q);
init2Q);
doit();
return 0;

S_

o+ F o+ o+ o+

new, 0, 0);
++i)

(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,
(int)send (b,

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)

o+ F F o+ o+ o+ o+ o+

(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,
(int)send(c,

s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)
s_length)

15

+ o+ F o+ o+ o+

(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,
(int)send(d,

s_length);
s_length);
s_length);
s_length);
s_length);
s_length);
s_length);
s_length);
s_length);
s_length);

2007/11/2

C. Equivalent benchmark using taggedinion and switch

The example data types from the previous section implerdeagea C taggednion with primitives that discriminate between them usingwd tch on the
tag value stored in thenion.

#include <stdio.h>
#include <stdlib.h>

enum { Number, String, Symbol, Vector, Cons };

struct Number

{
b

struct String

int length;
char *contents;

}s
struct Symbol

struct String *string;

b

struct Vector
int length;
struct Object *contents;

s

struct Cons
struct Object *car;
struct Object *cdr;

}s

typedef struct Object
int tag;
union {

struct Number number;
struct String string;
struct Symbol symbol;
struct Vector vector;
struct Cons cons;
} payload;
} *oop;

static inline int length(struct Object *object)

{

switch (object->tag)

case Number:
fprintf(stderr, "Number has no 1ength\n“);
exit(-1);

case String:
return object->payload.string.length;

case Symbol:
return object->payload.symbol.string->length;

case Vector:
return object->payload.vector.length;

case Cons:
return object->payload.cons.cdr
7 1 + length(object->payload.cons.cdr)
: 03

default:
fprintf(stderr, "illegal tag %d\n", object->tag);

Copyright (c) 2006, 2007 lan Piumarta, DO NOT DISTRIBUTE 16 2007/11/2

exit(-1);

}

int main()

{

int i, j;

struct Object *a=
struct Object *b=
struct Object *c=
struct Object *d=

a->tag= String;
b->tag= Symbol;
c->tag= Vector;
d->tag= Cons;

for (i= 0, j= 0;

{

el s s a Cn n s
+
il

}

calloc(1,
calloc(1,
calloc(1,
calloc(1,

a->payload.
b->payload.
c->payload.

c->payload.

i < 1000000;
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)
length(a) + length(b)

printf("total %d\n",

return 0;

}

3);

sizeof (struct
sizeof (struct
sizeof (struct
sizeof (struct

string.length=
symbol.string=
vector.length=
cons.cdr= 0;

++i)

length(c)
length(c)
length(c)
length(c)
length(c)
length(c)
length(c)
length(c)
length(c)
length(c)

Object));
Object));
Object));
Object));

1;

(struct String *)a;

3;

o+ F o+ o+ o+ o+

Copyright (c) 2006, 2007 lan Piumarta. DO NOT DISTRIBUTE

length(d) ;
length(d);
length(d) ;
length(d) ;
length(d);
length(d) ;
length(d) ;
length(d);
length(d) ;
length(d);

17

2007/11/2

