

Microsoft Corporation

Axum Programmer's
Guide
A simple and easy to follow programming guide to learn how to create safe,
scalable, and responsive application with the Axum language.

2

Contents

Introduction ... 3

Why Another Language? .. 3

The Basics ... 4

Hello, World! ... 4

Message-Passing ... 5

Asynchronous Programming with Messages .. 7

Programming with Agents ... 10

Channels and Ports .. 10

Schemas .. 12

Request-reply ports ... 13

Protocols... 14

Domains and State Sharing .. 17

Sharing State between Agents ... 17

Reader-Writer Semantic .. 17

Hosting Agents ... 19

Programming with Dataflow Networks ... 21

One to One: Forward ... 21

Many to One: Multiplex and Combine .. 22

One to Many: Broadcast and Alternate .. 24

Distributing an Axum Application .. 26

Appendix A: Asynchronous Methods .. 29

Appendix B: Defining Classes ... 31

Using a Separate Managed Language Project ... 31

Using C# within an Axum Project .. 31

Appendix C: Understanding Side-Effects ... 32

Isolated Classes .. 32

Isolation Attributes .. 33

Contract Assembly ... 34

3

Introduction

Why Another Language?
Writing a parallel program typically requires partitioning the

solution into a number of parallel tasks. Some problems are

easily amenable to parallelization because the tasks can run

independently of each other. In other problems the tasks have

interdependencies and require coordination.

For example, ray tracing, a method of generating an image by

tracing light’s path yields itself to a parallel solution because

each ray can be implemented as an independent task – processing of one ray has no effect on the

processing of another ray.

On the other hand, in a gameplay simulation, the game is modeled using parallel but interacting

objects. The state and behavior of an object have impact on the objects around it.

With Axum, we offer a language that allows programmers to arrange coordination between

components in a way that is close to their natural conception of the solution. In other words, if you

can model your solution in terms of interactive components, encoding it in Axum will be

straightforward, and you will likely avoid many common concurrency-related bugs.

An obvious motivation for writing a parallel program is to make it run faster. Closely related to that

is a desire to make the program do more while it’s running. This is especially important for

interactive applications that must process user input while performing a background task.

Very often, responsiveness of interactive applications is hindered by long-latency components such

as I/O or user input. For example, an email client must wait for the data from the server, which

might be behind a slow network. It is desirable that such an application remains responsive while

requesting data from the server.

One of the goals of Axum is to let you program without worrying about concurrency – your program

becomes fast and responsive by default, not as a result of an afterthought or a retrofit.

In addition to enabling the new capabilities for working with concurrency, Axum takes away one

capability that historically has proven to cause problems – that is unrestricted ability to share and

mutate state from different threads. Axum isolation model ensures “disciplined” access to shared

state that prevents many common programming errors.

Finally, please remember that Axum is an experiment. We want to make it better and we need to

know what you think. We will appreciate your comments about the language, and how you think

you can use it for building your own software. Please share your thoughts, comments and

suggestions with us and your fellow Axum users via MSDN forums at

http://social.msdn.microsoft.com/Forums/en/axum.

Axum helps you with:

 Coordinating concurrent

components

 Writing responsive

applications in the face of

latency.

http://social.msdn.microsoft.com/Forums/en/axum

4

The Basics

Hello, World!
To get started with Axum, launch Visual Studio and select File | New | Project from the menu. In the

dialog that comes up, select Axum project type, and choose a name for your application:

When you click OK, Visual Studio will generate some boilerplate code that is useful to create a new

Axum application. To keep things simple, and to follow the time-honored tradition, our first Axum

program will do nothing but print “Hello, World” on the console.

Replace the generated code with the following:

5

Let’s look at this code a little closer.

The program starts with the keyword agent. The concept of an agent in Axum derives from what is

known in computer science as the “actor model”. In this model, actors represent autonomous

entities that communicate with each other via messages, act on

the data they receive from other actors, spawn off other actors

and so on.

In Axum, actors are represented by agents. Writing a program

in Axum is all about defining agents and arranging interaction between them.

Agent-based programming is different from object-oriented programming in many important ways.

First of all, unlike objects, agents do not provide public methods or exhibit their state. You cannot

“reach into” an agent and modify any of its fields. You cannot call a method on an agent and wait for

it complete. Instead, you can send it a message, and arrange for the agent to “get back to you” with a

response.

Axum comes with a supporting class library that includes an agent called ConsoleApplication. This

agent implements the necessary workings of a console application – the startup, setting up the

command line parameters and shutdown.

Our sample above makes use of ConsoleApplication by deriving

an agent from it. When you derive from ConsoleApplication, you

will need to override the Main method and place your

application logic there – as it is done in our sample.

Being a .NET language, Axum can naturally use libraries written in any other .NET language such as

C#, VB.Net or F#. In our example, we’re calling the WriteLine of the System.Console class from the

.NET base class library (BCL)

Message-Passing
To make the previous example a little more interesting, we will introduce the concept of channels

and implement an agent that sends a message to the channel’s port.

Earlier we said that agents are components that perform actions on data – that data normally

comes in and goes out of the agent via a channel. To accommodate different types of data, a channel

has one or more ports.

using System;

agent Program : Microsoft.Axum.ConsoleApplication

{

 override int Run(String[] args)

 {

 Console.WriteLine("Hello, World!");

 }

}

Axum is a .NET language and

can use libraries written in

other .NET language such as

C#, Visual Basic or F#.

Axum program defines agents

and their interactions

6

Later when we talk about agents in more detail, we will see how to define a channel – but first, let’s

look at how to use a channel to send and receive messages.

An example:

Here we have an agent called Program that implements a channel Microsoft.Axum.Application.

Implementing a channel is different – syntactically and semantically – from deriving from a base

agent. When an agent derives from another agent, it merely

extends it by overriding some virtual methods, and potentially

adding more of its own.

However, when an agent implements a channel (notice the

channel keyword after the colon in the agent declaration), it “attaches” itself to the implementing

end of that channel and becomes the “server” of messages on that channel. The other end of the

channel – known as the using end – is only visible to the “client”, or the component (typically

another agent) on the other end of the channel. Figure 1 shows this:

Channels exist to transmit messages between agents. Channels define what kind of data can go into

and out of them, but unlike agents, they don’t perform any transformation of that data.

Returning to our example, the using end of Application channel is implemented in the Axum

runtime. The runtime instantiates the agent implementing channel Microsoft.Axum.Application,

Figure 1: Two ends of a channel

using System;

agent Program : channel Microsoft.Axum.Application

{

 public Program()

 {

 // Receive command line arguments from port CommandLine

 String [] args = receive(PrimaryChannel::CommandLine);

 // Send a message to port ExitCode:

 PrimaryChannel::ExitCode <-- 0;

 }

}

agent Program

implements

Application

client agent channel Application

Implementing end Using end

Channels have two ends: the

implementing end and the

using end

7

sends command line parameters to the channel’s CommandLine port, and then waits for a message

on port ExitCode. When the message is received, the application shuts down.

The agent Program waits for a message to arrive on its CommandLine port (the receive statement),

and then signals completion by sending a message to port ExitCode (operator <--). The agent

Program has a built-in property PrimaryChannel to access the channel being implemented –

sometime we will also call it “agent’s primary channel”. The double-colon “::” is used to access the

channel’s port.

Notice the phrase “waits for a message” used above. Receiving a message is a blocking operation in

Axum – meaning that receive statement that attempts to read from an empty port stalls until a

message arrives to that port. On the other hand, send is asynchronous – the sender of the message

doesn’t wait for it to arrive to the destination.

Asynchronous Programming with Messages
With messages being the main means of communication between agents, we need some systematic

ways of dealing with them. As a whole, we refer to this as orchestration. Axum offers two distinct

approaches to orchestration: control-flow-based and data-flow-based orchestration. Often, the two

are combined for ultimate expressiveness and power.

In Axum, the messages are sent to and received from the interaction points. An interaction point

from which a message originates is called the source, and the destination is called the target. An

interaction point can be both a source and a target, meaning that it can both send and receive

messages. This allows composition of multiple interaction

points into dataflow networks.

Simply put, a dataflow network is a messaging construct that

receives data, does something with it – in other words,

performs a transformation – and produces a result. Using a

dataflow network can be advantageous if some nodes of the

network are independent of each other and therefore can execute concurrently.

Unlike control-flow logic that is based on conditional statements, loops, and method calls, data-flow

networks base their logic on forwarding, filtering, broadcasting, load-balancing, and joining

messages that pass through the network. It’s a different and complementary approach to handling

messages.

Let’s look at an example of a dataflow network that calculates multiple Fibonacci numbers:

using System;

using Microsoft.Axum;

using System.Concurrency.Messaging;

agent MainAgent : channel Microsoft.Axum.Application

{

 function int Fibonacci(int n)

 {

Independent nodes in a

dataflow network can execute

concurrently

8

 if(n<=1) return n;

 return Fibonacci(n-1) + Fibonacci(n-2);

 }

 int numCount = 10;

 void ProcessResult(int n)

 {

 Console.WriteLine(n);

 if(--numCount == 0)

 PrimaryChannel::ExitCode <-- 0;

 }

 public MainAgent()

 {

 var numbers = new OrderedInteractionPoint<int>();

 // Create pipeline:

 numbers ==> Fibonacci ==> ProcessResult;

 // Send messages to numbers:

 for(int i=0; i<numCount; i++)

 numbers <-- 42-i;

 }

}

Here we’ve defined a method Fibonacci with the keyword function. In Axum, a function is a method

that does not modify any state outside of itself – in other words, it leaves no side effects of its

execution. For instance, if you try to modify member numCount or send a message in the Fibonacci

function, the compiler will issue an error.

Now, let’s take a look at the constructor of MainAgent. The very first statement creates an instance

of OrderedInteractionPoint<int>, which is an interaction point that acts as both a source and a

target. The word “ordered” means that the order of messages is preserved – the messages are

queued up in the order they arrive, and leave in the same order.

Next, the agent sets up the dataflow network using the forwarding operator ==>. The statement:

should be understood as “whenever a message arrives at

interaction point numbers, forward it to a transformation

interaction point implemented by function Fibonacci, then

forward the result to the method PrintResult.”

It turns out that dataflow networks that forward messages from one node to another are quite

common, and have a name – pipelines.

 numbers ==> Fibonacci ==> PrintResult;

A pipeline is the simplest form

of a dataflow network.

9

The fact that Fibonacci is a side-effect-free function allows Axum runtime to execute many

transformations in parallel, spawning off as many threads as it deems necessary for the most

efficient execution of the program.

In Axum, functions are often used to accomplish parallel execution of nodes in pipelines and other

types of networks.

It’s important to note that the even though the nodes of the pipeline can execute in parallel, the

order of the messages in the pipeline is preserved. In other words, PrintResult will receive the

results in the same order that the corresponding inputs have entered the numbers interaction point.

10

Programming with Agents
We saw on the Fibonacci example above how to build a trivial dataflow network. Such networks

work well for simple “data comes in, data goes out” scenarios, but they don’t specify exactly how the

data travels through the network, and don’t allow different types of data to come in or go out of the

network.

It turns out that agents and channels give us just what we need to build sophisticated dataflow

networks.

Channels and Ports
The two agents communicating over a channel are decoupled from each other: one doesn’t know or

care how the other one is implemented. The “contract”

between them is specified by the channel only. To borrow an

analogy from the OOP, the channel acts as an interface, and the

agent as the class implementing the interface.

When using a channel, you send data into the input ports, and receive data from the output ports.

That is, input ports act as targets, and output ports as sources.

When implementing a channel, the input ports are seen as sources and the output ports as targets.

If this duality sounds confusing, consider a mailbox with incoming and outgoing slots. The postman

delivers the incoming mail into the incoming slot and takes out the outgoing mail from the outgoing

slot. The resident, on the other hand, deposits the mail into the outgoing slot and takes out the

incoming mail from the incoming slot. In other words, the postman sees the incoming slot as a

source and outgoing slot as a target; the resident has the opposite view of the slots.

Let’s illustrate the idea with an example. Consider a channel Adder that takes two numbers and

produces the sum of these numbers. The user of the channel sends the numbers to the input ports

Num1 and Num2, and receives the result from the output port Sum. The channel is used by agent

MainAgent and is implemented by agent AdderAgent (see Figure 2).

Figure 2: Duality of ports

Num1

Num2

Sum

Num1

Num2

Sum

Source:

Source: Target:

Target:
agent AdderAgent

channel Adder agent MainAgent

Channels are to agents what

interfaces are to classes

11

Here is the implementation and use of the Adder channel:

The channel is defined with the keyword channel, and its ports are defined with input or output

keywords.

In the constructor of the MainAgent we first create an instance of channel Adder by calling the static

method CreateInNewDomain on AdderAgent1. This instantiates two ends of the Adder channel

(which are instances of different types), creates an instance of AdderAgent that implements the

channel, then returns the using end of the channel.

Next, we send messages to the ports Num1 and Num2 and wait for the result from port Sum.

1 There is another way to instantiate a channel, which requires hosting – we will describe it on page 18.

using System;

using System.Concurrency;

using Microsoft.Axum;

channel Adder

{

 input int Num1;

 input int Num2;

 output int Sum;

}

agent AdderAgent : channel Adder

{

 public AdderAgent()

 {

 int result = receive(PrimaryChannel::Num1) +

 receive(PrimaryChannel::Num2);

 PrimaryChannel::Sum <-- result;

 }

}

agent MainAgent : channel Microsoft.Axum.Application

{

 public MainAgent()

 {

 var adder = AdderAgent.CreateInNewDomain();

 adder::Num1 <-- 10;

 adder::Num2 <-- 20;

 // do something useful ...

 var sum = receive(adder::Sum);

 Console.WriteLine(sum);

 PrimaryChannel::ExitCode <-- 0;

 }

}

12

The motivation for using agents in this example lies in our ability to overlap the execution of

MainAgent and AdderAgent. We can do something (admittedly, little, in this example) while

AdderAgent performs the computation.

Schemas
Not every kind of data can be sent over a channel. The reason for that is twofold:

 First, in a distributed scenario, the agents can reside in two different processes, or even two

different computers. The data passed between the two agents must therefore be deeply

serializable (meaning the object and all transitively referenced objects must be serializable).

 Second, the Axum isolation model (which we will talk about on page 17) requires that two

agents executing concurrently don’t have access to shared mutable state. To satisfy this, the

data in the message must be either not shared, or not mutable; otherwise, the agents cannot

execute concurrently.

To support these requirements, Axum introduces the concept of schema. A schema is a type that

defines required and/or optional fields, but no methods. The concept is very similar to XML schema,

or, to a lesser degree, a struct in C#.

When an instance of a schema crosses a process or computer

boundary in a message, the data payload is deeply serialized.

This means that you can only declare fields in schema whose

types can be serialized using .NET-serialization. When the message is sent locally (in-process), deep

serialization is not required – however the fields in the schema are considered immutable.

Schemas are declared with the keyword schema, followed by the schema’s name, followed by a

semicolon-separated list of fields enclosed in curly-braces:

The distinction between the required and the optional fields allows for loose coupling between

different schemas, or between schemas and different types with the same “shape”2. This is useful

when the communicating parties cannot all use the same type of schema – for example, when one

component was updated with a new version of the product but the other was not.

A type can be converted (or coerced) to another type of the same shape using the coerce operator.

Consider a C# class CustomerData defined as:

2 That is, having the same required fields but not necessarily the same optional fields

schema Customer

{

 required string Name;

 optional string Address;

}

Schema fields are deeply

serializable and immutable

13

Then, an instance of schema Customer can be coerced to type CustomerData, even though it is

missing the optional field Address:

Axum compiler will generate an error if it is known at compile time that the coercion will fail. If, on

the other hand, there is a chance that it can succeed, the compiler will generate code that may or

may not succeed at runtime.

Schemas are also useful for combining different data types into a single container type, instances of

which can be sent in one message. In the next example, we define a schema as a tuple of two

integers, which we then send over a channel.

Request-reply ports
Let’s revisit the example with channel Adder above. As it is, it can only accept one request, after

which the agent AdderAgent shuts down.

An obvious solution would be to modify AdderAgent to not shut down after the first request, but to

keep accepting new requests indefinitely, or until some

condition is met.

This is a good start, but what if we want the user to able to

submit multiple requests, and then retrieve results of these

requests in arbitrary order? To achieve this, we need a way to

correlate the requests with results produced by the AdderAgent. One way to do this is to return to

the client a “ticket” that can later be used to “claim” the result. In Axum, such a ticket is called the

request correlator, and ports that support request correlators are called request-reply ports.

Now, let’s rewrite the Adder sample using request-reply ports:

using System;

using System.Concurrency;

using Microsoft.Axum;

schema Pair

{

 required int Num1;

 required int Num2;

}

channel Adder

{

 input Pair Nums : int; // input request-reply port

Customer c = new Customer{Name = "Artur", Address = "One Microsoft Way"};

CustomerData cd = coerce<CustomerData>(c);

class CustomerData

{

 public string Name;

}

Sending a message to a

request-reply port returns a

correlator, from which you

receive the requested value.

14

}

agent AdderAgent : channel Adder

{

 public AdderAgent()

 {

 while(true)

 {

 var result = receive(PrimaryChannel::Nums);

 result <-- result.RequestValue.Num1 +

 result.RequestValue.Num2;

 }

 }

}

agent MainAgent : channel Microsoft.Axum.Application

{

 public MainAgent()

 {

 var adder = AdderAgent.CreateInNewDomain();

 var correlator1 = adder::Nums <-- new Pair{ Num1=10, Num2=20 };

 var correlator2 = adder::Nums <-- new Pair{ Num1=30, Num2=40 };

 // do something useful here ...

 var sum1 = receive(correlator1);

 Console.WriteLine(sum1);

 var sum2 = receive(correlator2);

 Console.WriteLine(sum2);

 PrimaryChannel::ExitCode <-- 0;

 }

}

As you can see, submitting a request to the adder yields a request correlator (correlator1 and

correlator2), which then can be used to receive the result (naturally, using receive expression).

In this example, since we’ve submitted more than one request to the adder, we have more time to

do something useful while these requests are being processed.

Protocols
Let’s return again to the Adder sample on page 11. It so happens that if Adder is used incorrectly,

AdderAgent and MainAgent can each end up waiting for a message from one another, resulting in a

deadlock.

Consider what happens when a user forgets to send a number to port Num1, before sending a

number to Num2. The MainAgent will then proceed to receive from Sum, but at the same time, the

AdderAgent will still be “stuck” waiting for a message from Num1, which never comes.

15

We’ve run into a classic case of a deadlock: the MainAgent is waiting for a message from

AdderAgent, but the AdderAgent is waiting for a message from MainAgent. Neither can make any

progress.

Intuitively, we understand that the first message is “supposed to be” sent to port Num1, followed by

a second message sent to Num2.

We can formalize our intuitive understanding of how a channel

must work by specifying the channel’s protocol. The protocol is

a finite state machine, with states and transitions between

those states defined by the designer of the channel.

The protocol always starts in a special state called Start. When a new message arrives on any of the

channel ports, the protocol can either transition to another valid state – if that transition is

specified in the protocol – or trigger a protocol violation exception if no valid transition exists.

Here is how we can write a protocol for channel Adder – look at the last three lines of the channel’s

definition:

The protocol starts with a state Start and transitions to state GotNum1 after receiving a message on

port Num1. Getting a message on any other port at this point would result in a protocol violation.

Next, having transitioned to GotNum1, the next port that is expected to be used is Num2, which

triggers transition to state GotNum2.

Finally, message on port Sum triggers transition to the built-in state End. At this point the protocol

is considered closed and any attempt to send a message on any of its ports would trigger an

exception.

You can define more elaborate transitions that enable rich protocols. For example, one could say

“when a message arrives on port X or Y, transition to state Z”, or “transition to state X only if the

value of the message is greater than 10” and so on. For brevity, we will not describe the syntax here,

but you can look it up in the language specification document.

Let’s give it a try. Re-define the channel as shown above and comment out this line:

 adder::Num1 <-- 10;

channel Adder

{

 input int Num1;

 input int Num2;

 output int Sum;

 Start: { Num1 -> GotNum1; }

 GotNum1: { Num2 -> GotNum2; }

 GotNum2: { Sum -> End; }

}

Protocols can turn hard-to-

diagnose errors such as

deadlocks into explicit

protocol violations.

16

Next, build and execute the sample. Now, instead of the deadlock you will get a runtime exception

saying:

Invalid use of 'Num2' at this point in the conversation, i.e. in state 'Adder.Start'

Unfortunately, not every deadlock can be caught by a stringent protocol.

Consider what happens when a user sends a number to Num1, but forgets to send a second number

to Num2 before attempting to receive the result from port Sum. Like before, neither AdderAgent nor

MainAgent can make further progress at this point. However, this should not be considered a

protocol violation since a message can still be sent to Num2, unblocking both AdderAgent and

MainAgent.

17

Domains and State Sharing
Message-passing is an excellent communication mechanism, but it requires the data in the message

to be either deeply copied or immutable. Sometimes it is more efficient, or simpler, to let agents

share the data – provided that we can do it safely, of course.

This is where domains come into picture. A domain’s raison

d’etre is to allow a group of agents to safely share state, at the

same time isolating that state from everyone else.

Sharing State between Agents
Like regular classes, domains can contain fields and methods, but more importantly, domain

declarations can include agent declarations. The instances of agents declared within a domain can

access that domain’s fields.

Here is an example:

This declares the domain Chatroom that encloses two types of agents – the User and the

Administrator. The chatroom lets multiple users exchange messages with each other (or with the

administrator), and read domain state – such as m_Topic – but not to change domain state. The

administrator is the only type of agent that can modify domain state.

Let’s look at the distinction between readers and writers a little closer.

Reader-Writer Semantic
A reader-writer lock is a commonly used synchronization construct that grants access to a shared

resource to either multiple readers, or a single writer. This ensures that readers always see the

consistent state of the resource, and that no two writers can interfere with each other.

domain Chatroom

{

 private string m_Topic;

 private int m_UserCount;

 reader agent User : channel UserCommunication

 {

 // ...

 }

 writer agent Administrator : channel AdminCommunication

 {

 // ...

 }

}

Domains allow agents to share

state with one another

18

 Agents in Axum follow the same principle. An agent declared

with the reader keyword is only allowed to read domain state,

while writer agents can both read and write the state. An agent

declared as neither reader nor writer can only read the

immutable state of the domain.

Within an agent, the enclosing domain’s fields and methods can be accessed via the parent keyword.

An instance of User agent can read domain’s state thus:

If the agent were to try to modify the chatroom’s topic, however, the code would not compile:

Similar to the this reference, parent can be omitted. The keyword parent is only required when you

need to disambiguate between domain members and other symbols with the same name, but

otherwise using parent is a matter of taste.

The agents are similarly restricted from mutating the global state of the system. For example, an

agent cannot write to a static field or call a method that can (even potentially) modify a static field.

When you start programming in Axum, you will notice that some code (especially if it’s using a

third-party library) may not compile until you mark the agent as writer, or mark the class isolated

(see 32 for more details on this). While this might be fine in some cases, bear in mind that writer

agents within the same domain cannot execute in parallel. An application with a single domain

where all agents are declared as writers is effectively single-threaded!

 if(parent.m_Topic.Contains("Axum"))

 {

 // Start talking to other

 // users in this chatroom

 }

 else

 {

 // Let’s talk about Axum!

 parent.m_Topic = "Axum Discussion"

 }

 reader agent User : channel UserCommunication

 {

 public User()

 {

 if(parent.m_Topic.Contains("Axum"))

 {

 // Start talking to other users in this chatroom

 }

 else

 {

 // Do nothing and leave

 }

 }

 }

Keywords reader and writer

specify agent’s access mode to

the enclosing domain

Error: cannot modify

paent.m_Topic from reader

agent User

19

Axum has an “escape hatch” that lets you execute code that potentially modifies shared state – the

unsafe keyword. As the name suggests, using unsafe is, well, not safe, and you should only use it if

you know for sure that the code either does not modify shared state, or such modification is benign.

It’s always better to be a little slower and correct than to have a program full of really efficient bugs!

Example:

Here we might want to use unsafe if the third-party class Logger did its own synchronization, or if

we didn’t care about potential interleavings of lines in the log file.

Hosting Agents
Recall our first Adder sample on page 11. A new instance of channel Adder was created thus:

This created two ends of the channel Adder, the agent AdderAgent that implements it, and returned

the using end of channel Adder. As the name suggests, the CreateInNewDomain method also creates

an instance of that domain, and makes AdderAgent’s parent

reference point to it.

Creating a new domain instance every time you instantiate an

agent in this way means that the agents cannot share state –

their parent references point to the different instances of the

domain type. Clearly, this is a problem and we need another way to instantiate agents and associate

them with domains.

Hosting is a way to associate the agent’s type with a particular instance of the domain. By hosting an

agent’s type, written as:

we say, in effect, “when the user asks for the “Adder” service hosted at address ‘my adder’,

instantiate agent AdderAgent, attach it to the current domain, and return channel’s Adder using end”

The address at which the agent’s type is hosted can be any expression as long as it supports

equality comparison. We’ve chosen to use a string, because it is descriptive.

Host<AdderAgent>("my adder");

var adder = AdderAgent.CreateInNewDomain();

reader agent User : channel UserCommunication

{

 private WriteLog(string str)

 {

 unsafe

 {

 Logger.WriteLine(str);

 }

 }

}

Hosting associates the agent

type with the domain and the

address.

20

Because Host associates agents with the current domain (it is a domain method), it can only be

executed in the context of a domain (and not in an agent declared outside of a domain).

Now the agent can be instantiated like this:

You can read this statement as “create the using end of the

channel Adder implemented by a service hosted at address ‘my

adder’”.

Notice that the user doesn’t know the type of the agent – all it

cares is the type of the channel and the address of the service that implements this channel.

To better illustrate the idea of the agent as a service, consider a channel that given an integer,

reports the corresponding Fibonacci number. Unlike addition, which can only be done in one

meaningful way, Fibonacci can be calculated in a number of different ways – some more efficient

than others.

The same channel Fibonacci can be implemented by two different agents, let’s call them

FibonacciSlow and FibonacciFast. These two agent types can be hosted at different addresses:

Now depending on the user’s need, she may decide to instantiate a Fibonacci channel that is

implemented by one agent or another:

When the service provided by the agent is no longer required, the agent type can be evicted from

the domain:

Evict("slow");

Evict("fast");

Fibonacci fibChannel;

if(gotTimeToSpare)

{

 fibChannel = new Fibonacci("slow");

}

else

{

 fibChannel = new Fibonacci("fast");

}

var request = fibChannel::Number <-- 42;

...

Host<FibonacciSlow>("slow");

Host<FibonacciFast>("fast");

var adder = new Adder("my adder");

An agent is a service that

implements a channel.

Multiple agents types can

implement the same channel

type.

21

Note that evicting an agent type from the domain doesn’t affect instances of that agent type that

have already been created. Instead, it makes it impossible to create more such instances using the

operator new. Once the agent type has been evicted, an attempt to instantiate it will result in a

runtime exception.

22

Programming with Dataflow Networks
In a program where the agents are communicating with each

other by sending and receiving messages, their communication

can be driven by the application logic, the state of the program,

the data received from the other agents and so on.

Contrast this control-flow style model with the dataflow model,

where execution of the program is driven only by the

availability of the data entering the dataflow network, and the

computations are performed as the data moves through the

network.

In Axum, dataflow networks are built using network operators. A network operator is a binary

expression, with a source sub-expression as a left-hand operand and a target expression as a right-

hand operand. The operands can be either scalar or vector forms, where by “scalar” we understand

a single-valued data type, and by “vector” either an array or an IEnumerable of a type.

Below, we will classify the network operators by the type of their operands.

One to One: Forward
We have seen previously (on page 7) how to build a pipeline

using forward operator ==>. This operator takes a single

source interaction point and forwards the result to a target

interaction point.

Similar to forward, forward once operator --> forwards a

message from the source to the target, but then disconnects

after the first message.

`In addition to building pipelines, the operator has other uses – for example, it could be used to

build an event-driven system where different actions are performed in response to the events.

Consider a GUI application that handles events such as a mouse click, a key press, and a window

paint request. These events can be represented as ports on a channel:

Axum supports two

communication models:

 Control-flow driven

communication between

agents;

 Dataflow driven

communication with

networks.

Forward operator ==> sends

each message produced by the

source to the target.

Forward once operator -->

forwards a single message to

the target, then disconnects.

23

Now the agent GUIHandler that handles the requests can be implemented like this:

The constructor of GUIHandler sets up three simple networks that forward incoming messages to

the corresponding handler methods.

Many to One: Multiplex and Combine
The following two operators take a vector of sources and

produce a single target.

The multiplex operator >>- takes a vector of sources as the left-

hand operand and forwards data from each into a single target

as soon as it arrives at any of the sources.

Similarly, the combine operator &>- takes a vector of sources,

receives a message from each, then packages them into an array (thus the name “combine”) and

agent GUIHandler : channel GUIChannel

{

 public GUIHandler()

 {

 PrimaryChannel::Click ==> HandleClick;

 PrimaryChannel::KeyPress ==> HandleKeyPress;

 PrimaryChannel::Paint ==> HandlePaint;

 }

 void HandleClick(MouseEvent mouseEvent)

 {

 ...

 }

 void HandleKeyPress (Key key)

 {

 ...

 }

 void HandlePaint (Rect rect)

 {

 ...

 }

}

channel GUIChannel

{

 // MouseEvent is an enum with values Up and Down

 input MouseEvent Click;

 // Key describes which key was pressed

 input Key KeyPress;

 // Rect is a rectangle to repaint

 input Rect Paint;

}

Multiplex operator >>- sends

messages from a vector of

sources to a single target.

Combine operator &>- joins

multiple messages from

sources and propagates them

to a target as an array.

24

forwards the result to the right-hand operand. Unlike multiplex, combine waits for all sources to

have a message, before joining them together and propagating them all to the target.

Let’s illustrate this with an example. Consider an array of two interaction points, containing

numbers 10 and 20, respectively:

Now, we can set up a multiplex network expression:

This expression sends the data from the array ips to a node created from method PrintOneNumber:

Alternatively, we could set up a combine expression:

This expression would forward all numbers as one message to a node taking an array of ints:

Combine is also useful when you need to wait for multiple messages that can arrive in any order.

For example, the following expression combines output from two interaction points ip1 and ip2 and

passes the result on to an interaction point twoNumbers:

The expression above uses curly braces for array creation. In Axum, implicit array creation is a

convenient syntactic construct that is used often when building network expressions. We will see

below how it is used to build a more complex network.

 receive({ ip1, ip2 } &>- twoNumbers);

void PrintManyNumbers(int[] nums)

{

 foreach(var i in nums)

 Console.WriteLine(i);

}

 ips &>- PrintManyNumbers;

void PrintOneNumber(int n)

{

 Console.WriteLine(n);

}

 ips >>- PrintOneNumber;

var ip1 = new OrderedInteractionPoint<int>();

var ip2 = new OrderedInteractionPoint<int>();

ip1 <-- 10;

ip2 <-- 20;

var ips = new OrderedInteractionPoint<int>[] { ip1, ip2 };

25

One to Many: Broadcast and Alternate
The last two network operators take a single source interaction

point, and propagate the data to multiple targets.

The broadcast operator -<< accepts a single interaction point

on the left and a collection of interaction points on the right; it

propagates all data from the left operand to all the interaction

points on the right.

Propagating data to multiple sources can be used to implement

a publisher-subscriber scenario where data from a publisher is propagated to a number of

subscribers.

Finally, the alternate operator -<: propagates the data from the single source to the targets in the

right-hand collection in round-robin order.

Alternate is useful in the scenarios where we want to load-balance work. For example, we might

want to have a pool of “workers” to handle data coming into the source.

To put it all together, let’s revisit our first adder example from page 11, and re-implement it using a

dataflow network.

agent AdderAgent : channel Adder

{

 public AdderAgent()

 {

 var ipJoin = new OrderedInteractionPoint<int[]>();

 { PrimaryChannel::Num1 ==> ShowNumber, PrimaryChannel::Num2 ==> ShowNumber }

 &>- ipJoin -<: { GetSum, GetSum } >>- PrimaryChannel::Sum;

 }

 private int ShowNumber(int n)

 {

 Console.WriteLine("Got number {0}", n);

 return n;

 }

 private function int GetSum(int[] nums)

 {

 return nums[0] + nums[1];

 }

}

An explanation is in order. The first node in the network is an array of two elements, where each

element forwards the incoming data to the transfer method ShowNumber. We use this method for

debugging purposes, to keep track of the messages as they arrive at the input ports.

Broadcast operator -<<

copies one message to

multiple targets

Alternate operator -<: round-

robins messages between

multiple targets

26

Then, the array node is combined into an indirection point ipJoin of array of ints. The goal of this

node is take the two numbers and combine them into a tuple that can be processed by the method

GetSum.

The next node in the network is again an array, which contains two transformation nodes

implemented by the method GetSum. Because GetSum is declared as a function, its execution can be

scheduled concurrently, which improves the throughput of the network.

Finally, the output of the GetSum transformations is multiplexed into the output port Sum.

27

Distributing an Axum Application

Axum has great support for writing distributed applications. In fact, one of the reasons for taking

such a hard line on isolation is so that domains can interact locally or remotely with no change in

the model. By borrowing a page from how the Web is programmed and making it scale to the small,

we can easily go back to its roots and interact across networks.

With domains being services of a SOA application, agents the protocol handlers, and schema the

payload definitions (b.t.w. schema are XML-schema compliant), we have an easy time mapping

Axum to web services.

In the Axum runtime, we have support for local, in-process channels as well as WCF-based

channels.

To reach an agent within a domain, you have to give it an address; this is true in local and remote

scenarios alike. Within a process, it’s a bit easier, because the agent type name itself acts as a

“default” address if nothing else, but in the distributed scenario, we have to do a bit more. But it’s

just a little bit.

The Axum runtime does this through an interface called IHost, which allows you to give the agent an

address within a domain. To be precise, what we associate with an address is a factory for agents of

the hosted type, which is used to create agent instances when someone creates a new connection.

Each underlying communication / service hosting framework has to have its own implementation

of IHost; Axum comes with one for WCF and one for in-process communication.

The address may be associated with an existing domain instance, in which case created agent

instances are associated with that domain, or it may be associated with no domain instance, in

which case created agent instances are associated with a new domain instance, one for each new

connection.

For example, if you are building an Axum-based server, you can host domains as services with the

following code:

channel Simple

{

 input string Msg1;

 output string Msg2;

}

28

domain ServiceDomain

{

 agent ServiceAgent : channel Simple

 {

 public ServiceAgent ()

 {

 // Do something useful.

 }

 }

}

agent Server : channel Microsoft.Axum.Application

{

 public Server ()

 {

 var hst = new WcfServiceHost(new NetTcpBinding(SecurityMode.None, false));

 hst.Host<ServiceDomain.ServiceAgent>("net.tcp://localhost/Service1");

 }

}

Each time some client connects to the address "net.tcp://localhost/Service1,” a new instance of

ServiceAgent will be created, associated with a brand new ServiceDomain instance. If instead, we

wanted created agents to be associated with a single domain instance, we have to pass one in to

‘Host’:

hst.Host<ServiceDomain.ServiceAgent("net.tcp:...", new ServiceDomain());

There is a corresponding interface for the client side, called ICommunicationProvider. This is used to

create a new connection to an Axum service (or any service, for that matter, we have no knowledge

that it’s written in Axum, a consequence of loose coupling). It, too, must have a version for each

underlying communication framework and the Axum runtime comes with one for WCF and one for

in-process communication.

Connecting to the service above would look like this:

var prov = new WcfCommunicationProvider(new NetTcpBinding(SecurityMode.None, false));

var chan = prov.Connect<Simple>("net.tcp://localhost/Service1");

Of course, you don’t have to create a new communication provider for each connection, or a new

host for each Host call.

That’s pretty much it – you just make sure that you choose the right WCF binding, and it’s off to the

races with WCF doing all the hard work for us. If you are using schema types to define your channel

payloads, they are already DataContract-compliant and safe to use for both inter- and intra-process

communication.

As it turns out, this is no different from how you program Axum within a process boundary: the

only different is what concrete IHost/ICommunicationProvider implementations you use, and what

29

the addresses you create for your agents look like. In other words, the programming model for

distributed and local concurrency in Axum applications is identical.

30

Appendix A: Asynchronous Methods

In Axum, there are few sources of blocking:

 Direct or indirect use of .NET synchronization primitives such as Monitor.Enter.

 Direct or indirect use of synchronous I/O, e.g. Console.ReadLine.

 receive expressions (discussed later)

 receive statement (discussed later)

Blocking is an unfortunate limitation, but a reality of programming .NET. Furthermore, it is quite

cumbersome to program library-based solutions to avoid all blocking. Axum can automatically

transform methods into asynchronous constructs, aided by the programmer. It does not, however,

avoid blocking issues related to Monitor.Enter and other non-Axum synchronization primitives.

These should not be used in Axum, which uses messages and empty/full variables for all data-

exchange synchronization needs. Synchronization for protection purposes are handled

declaratively.

Writing non-blocking code by hand is typically complex, tedious, and error-prone. The Axum

compiler takes care of the tedious and subtle rules of doing it and allows you to concentrate on the

logic of the algorithm itself.

It does so in methods and functions declared as ‘asynchronous.’ In such methods, receive

expressions and statements are implemented without blocking the thread, and control-flow

constructs are also transformed using transformations of continuation points.

Within an asynchronous method, transformations are made not just for receives, but also for any

calls where there is an asynchronous alternative that adheres to the .NET Asynchronous

Programming Model (APM). That model relies on splitting an operation XXX into a BeginXXX and an

EndXXX call, one to start the operation, one to collect the results.

For example, System.IO.Stream has a method Read defined on it which has an APM alternative. Code

within an Axum asynchronous method referring to Stream.Read would instead be using

Stream.BeginRead /EndRead and avoid blocking the thread.

private asynchronous void ReadFile(string path)

{

 Stream stream = new Stream(...);

 int numRead = stream.Read(...);

 while (numRead > 0)

 {

 ...

 numRead = stream.Read(...);

 }

}

31

Using asynchronous methods in your Axum code can significantly reduce the cost of message-

passing and doing I/O and thus improve its scalability immensely3.

Using asynchronous methods is often overkill and has a performance penalty for small methods

and functions which do not do I/O or messaging. Therefore, the rule is that methods are

synchronous and have to be explicitly identified as asynchronous. The only methods that are

asynchronous by default are agent constructors.

Most Axum constructs are available for use in both synchronous and asynchronous methods.

The rule of thumb around declaring asynchronous methods is as follows:

1. Any method containing a receive expression or statement should be asynchronous.

2. Any method calling an API that is known to have an APM variant should be asynchronous.

3. Any method calling an asynchronous method should be asynchronous.

3 The author was able to observe 500,000 simultaneously blocked agents on his laptop without seeing the
thread pool create any additional threads (there were 6 threads before they were started, 6 threads when
they were all sitting blocked). He didn't try more than that...

32

Appendix B: Defining Classes

Axum is a coordination language, and as such, does not accept class definitions. If you would like to

add class definitions to your application there are two ways to do so: via creating a separate C#, F#,

Managed C++, or Visual Basic.NET project in the same solution as your Axum project, or by directly

compiling C# source in your Axum project.

Using a Separate Managed Language Project
Axum is a .NET language that builds upon the Common Language Runtime (CLR) and, therefore, can

interact with classes defined in any .NET language. To define a class for use in your Axum project,

simply:

1. Add a new C#, Visual Basic, or any other CLR-based language project to your solution.

2. Right-click your Axum project and select “Add Reference…”

3. Choose the “Projects” tab from the “Add Reference” window.

4. Select the other project you just added and click “OK”.

You should now be able to declare any type you have defined in your non-Axum project.

Using C# within an Axum Project
Sometimes, for simple Axum projects, it’s either unnecessary or inconvenient to add an additional

project just to define a new type. To make this process simpler, the Axum project system can

compile C# files. To add a C# file to your project:

1. Right click on your Axum project and select “Add/New Item…”

2. In the “Add New Item” window, select “C# Class”.

3. Replace “Class1.qcs” with the name of your new class

Note: The Axum project system will compile C# files with a special C# 3.0 compiler that contains

necessary support for some Axum concepts. This compiler can be used to evaluate the Axum

language. None of the features in this special C# compiler are indicative of potential features on the

official Microsoft C# compiler roadmap.

33

Appendix C: Understanding Side-Effects

Isolated Classes
When adding a new class to your Axum project, you will notice that the generated class declaration

will contain a new keyword, isolated:

using System;

using System.Collections.Generic;

using System.Text;

namespace MyProgram

{

 // Isolated classes cannot modify statics

 isolated class MyClass

 {

 // ...

 }

}

The Axum project system will invoke an experimental version of the C# compiler that supports the

new keywords such as isolated and others as described below.

The methods of an isolated class cannot modify any static fields. So if you were to define a method f

that modifies a static field n, the compiler would produce an error:

isolated class MyClass

{

 static int n;

 public static void f()

 {

 n=1; // Static field 'MyProgram.MyClass.n' cannot be assigned to in an isolated method

 }

}

Both classes and methods can be marked isolated. When applied on a class, the keyword isolated

means all that methods of the class are isolated. Isolated methods cannot call non-isolated methods.

Only isolated methods can be safely used with Axum. The reason for that is simple: imagine two

reader agents running concurrently, instantiating and using different instances of the class MyClass.

Now if a method of the class were to modify a static field, we’d be having a data race – exactly the

kind of problem Axum aims to solve.

We can restrict the effects of the method even further by declaring it readonly. A readonly method

cannot modify any non-static fields of the class it is declared in. Readonly methods are also

considered isolated.

34

When a reader agent calls a method on a domain-level field, in order to avoid data races, we need to

guarantee that the method does not modify the object itself (in addition to the guarantee that it

doesn’t modify any statics, which is given by the method being isolated). Here is an example:

domain D

{

 Employee employee;

 reader agent A : channel Microsoft.Axum.Empty

 {

 public A()

 {

 int age = employee.GetAge(); // safe?

 }

 }

}

For the call to GetAge to be safe, we need to know that it doesn’t mutate the domain field employee.

This guarantee is provided by the readonly keyword:

isolated class Employee

{

 public readonly int GetAge() { return 21; }

}

Isolation Attributes
Only the experimental C# compiler used with Axum supports isolated and readonly keywords.

Because that compiler has not undergone the same level of testing as the production C# compiler

that ships with Visual Studio 2008, it might be desirable to keep using the production C# compiler

but to augment the types and methods you want to expose to Axum with special custom attributes.

The Axum compiler will recognize these attributes and treat the types and methods decorated with

these attributes as if they were defined with the isolated and readonly keywords.

The custom attributes are defined in the TseCorelib.dll assembly. You will need to include this

assembly into your project and augment the types and methods you want to use from Axum with

Strict and Readable attributes, which correspond to, respectively, isolated and readonly keywords.

Here is how you would define the class Employee from the example above:

[Strict]

class Employee

{

 [Readable]

 public int GetAge() { return 18; }

}

This assembly that defines the class can now be compiled using the production C# compiler and

referenced in your Axum project.

35

Contract Assembly
What if you cannot re-compile the assembly with neither the production nor the experimental C#

compiler? For example, you might not have the sources of the assembly, or you might not want to

deploy and service that assembly.

The solution is to create a contract assembly. The contract assembly defines the same types and

methods as the assembly you want to reference in your Axum project. The contract assembly does

not substitute the original assembly, and does not need to be deployed with the original assembly.

Its only purpose is to provide additional information to the Axum compiler, when it references the

“real” assembly.

The types in the contract assembly should be enclosed in the

Contracts namespace. Since the types in the contract assembly are

only used at the compile time, and not supposed to be

instantiated, it’s a good idea to prevent the user from accidentally

instantiating the types or calling the methods of the contract

assembly. This could be achieved by either marking the methods

abstract or making the methods throw an exception4.

A contract assembly can be included into the project in the same way as any other referenced

assembly – that is, either by using a /r compiler switch or by adding the assembly to the list of

referenced assemblies when compiling using Visual Studio environment.

A contract assembly is recognized by the Axum compiler by the presence of the special

ContractAssembly attribute. Place the following line

[assembly: System.Diagnostics.Effects.ContractAssembly]

By convention, such attributes are usually placed in the AssemblyInfo.cs file, which is created

automatically by the Visual Studio New Project wizard.

One contract assembly that comes with Axum is called TseContracts.dll. This contract assembly

describes some types from the .NET Base Class Library (BCL). Because this assembly is implicitly

referenced by all Axum project, you can use some of the most common BCL classes in your Axum

projects5.

The following is an excerpt from TseContracts.dll that describes the effects of the indexer and the

Contains method of the generic class List:

using System.Diagnostics.Effects;

namespace Contracts

{

 namespace System.Collections.Generic

4 Not every method can be made abstract – for example, static methods.
5 The Tsecontracts.dll assembly is by no means complete; there are many side-effect-free classes in BCL that
are not included into the assembly.

Types and methods of the

contract assembly are merely

placeholders for the isolation

attributes; they are not

supposed to be instantiated or

invoked.

36

 {

 [Strict]

 public abstract class List<T>

 {

 public abstract int this[int index] { [Readable] get; }

 [Readable]

 public abstract bool Contains(T value);

 }

 }

}

As you can see, the class List is marked with the Strict attribute which indicates the class is isolated.

The indexer and the Contains method are marked with the Readable attribute, since they don’t

mutate the list itself and can be called concurrently.

When attributing an existing assembly, or defining your own contract assembly, keep in mind that

the Axum compiler cannot verify the validity of the attributes in the contract assembly – that

remains solely the responsibility of the author of the assembly. For example, one could include a

readable method Add to the contract of the class List above – however that would be incorrect (for

instance, it would make it possible for the two reader agents running concurrently to call Add on a

domain-level field, which would be unsafe)

