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Preface 

The compiler is the linchpin of the programmer's toolbox. Working pro
grammers use compilers every day and count heavily on their correct
ness and reliability. A compiler must accept the standard definition of 
the programming language so that source code will be portable across 
platforms. A compiler must generate efficient object code. Perhaps more 
important, a compiler must generate correct object code; an application 
is only as reliable as the compiler that compiled it. 

A compiler is itself a large and complex application that is worthy of 
study in its own right. This book tours most of the implementation of 
1 cc, a compiler for the ANSI C programming language. It is to compil
ing what Software Tools by B. W. Kernighan and P. J. Plauger (Addison
Wesley, 1976) is to text processing like text editors and macro proces
sors. Software design and implementation are best learned through ex
perience with real tools. This book explains in detail and shows most 
of the code for a real compiler. The accompanying diskette holds the 
source code for the complete compiler. 

1 cc is a production compiler. It's been used to compile production 
programs since 1988 and is now used by hundreds of C programmers 
daily. Detailing most of a production compiler in a book leaves little 
room for supporting material, so we present only the theory needed for 
the implementation at hand and leave the broad survey of compiling 
techniques to existing texts. The book omits a few language features -
those with mundane or repetitive implementations and those deliberately 
treated only in the exercises - but the full compiler is available on the 
diskette, and the book makes it understandable. 

The obvious use for this book is to learn more about compiler con
struction. But only few programmers need to know how to design and 
implement compilers. Most work on applications and other aspects of 
systems programming. There are four reasons why this majority of C 
programmers may benefit from this book. 

First, programmers who understand how a C compiler works are often 
better programmers in general and better C programmers in particular. 
The compiler writer must understand even the darkest comers of the 
C language; touring the implementation of those comers reveals much 
about the language itself and its efficient realization on modem comput
ers. 

Second, most texts on programming must necessarily use small ex
amples, which often demonstrate techniques simply and elegantly. Most 

xiii 



PREFACE 

programmers, however, work on large programs that have evolved - or 
degenerated - over time. There are few well documented examples of 
this kind of "programming in the large" that can serve as reference ex
amples. 1 cc isn't perfect, but this book documents both its good and 
bad points in detail and thus provides one such reference point. 

Third, a compiler is one of the best demonstrations in computer sci
ence of the interaction between theory and practice. 1 cc displays both 
the places where this interaction is smooth and the results are elegant, 
as well as where practical demands strain the theory, which shows in 
the resulting code. Exploring these interactions in a real program helps 
programmers understand when, where, and how to apply different tech
niques. 1 cc also illustrates numerous C programming techniques. 

Fourth, this book is an example of a "literate program." Like Ti?(: 
The Program by D. E. Knuth (Addison-Wesley, 1986), this book is lee's 
source code and the prose that describes it. The code is presented in the 
order that best suits understanding, not in the order dictated by the C 
programming language. The source code that appears on the diskette is 
extracted automatically from the book's text files. 

This book is well suited for self-study by both academics and profes
sionals. The book and its diskette off er complete documented source 
code for 1 cc, so they may interest practitioners who wish to experiment 
with compilation or those working in application areas that use or im
plement language-based tools and techniques, such as user interfaces. 

The book shows a large software system, warts and all. It could thus 
be the subject of a postmortem in a software engineering course, for 
example. 

For compiler courses, this book complements traditional compiler 
texts. It shows one way of implementing a C compiler, while traditional 
texts survey algorithms for solving the broad range of problems encoun
tered in compiling. Limited space prevents such texts from including 
more than a toy compiler. Code generation is often treated at a particu
larly high level to avoid tying the book to a specific computer. 

As a result, many instructors prepare a substantial programming 
project to give their students some practical experience. These instruc
tors usually must write these compilers from scratch; students duplicate 
large portions and have to use the rest with only limited documentation. 
The situation is trying for both students and instructors, and unsatisfy
ing to boot, because the compilers are still toys. By documenting most 
of a real compiler and providing the source code, this book offers an 
alternative. 

This book presents full code generators for the MIPS R3000, SPARC, 
and Intel 386 and successor architectures. It exploits recent research that 
produces code generators from compact specifications. These methods 
allow us to present complete code generators for several machines, which 
no other book does. Presenting several code generators avoids tying 
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the book to a single machine, and helps students appreciate engineering 
retargetable software. 

Assignments can add language features, optimizations, and targets. 
When used with a traditional survey text, assignments could also replace 
existing modules with those using alternate algorithms. Such assign
ments come closer to the actual practice of compiler engineering than 
assignments that implement most of a toy compiler, where too much 
time goes to low-level infrastructure and accommodating repetitive lan
guage features. Many of the exercises pose just these kinds of engineer
ing problems. 

l cc has also been adapted for purposes other than conventional com
pilation. For example, it's been used for building a C browser and for 
generating remote-procedure-call stubs from declarations. It could also 
be used to experiment with language extensions, proposed computer ar
chitectures, and code-generator technologies. 

We assume readers are fluent in C and assembly language for some 
computer, know what a compiler is and have a general understanding 
of what one does, and have a working understanding of data structures 
and algorithms at the level covered in typical undergraduate courses; the 
material covered by Algorithms in C by R. Sedgewick (Addison-Wesley, 
1990), for example, is more than sufficient for understanding l cc. 
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1 
Introduction 

A compiler translates source code to assembler or object code for a target 
machine. A retargetable compiler has multiple targets. Machine-specific 
compiler parts are isolated in modules that are easily replaced to target 
different machines. 

This book describes 1 cc, a retargetable compiler for ANSI C; it fo
cuses on the implementation. Most compiler texts survey compiling al
gorithms, which leaves room for only a toy compiler. This book leaves 
the survey to others. It tours most of a practical compiler for full ANSI C, 
including code generators for three target machines. It gives only enough 
compiling theory to explain the methods that it uses. 

1.1 Literate Programs 

This book not only describes the implementation of 1 cc, it is the imple
mentation. The noweb system for "literate programming" generates both 
the book and the code for 1 cc from a single source. This source con
sists of interleaved prose and labelled code fragments. The fragments 
are written in the order that best suits describing the program, namely 
the order you see in this book, not the order dictated by the C program
ming language. The program noweave accepts the source and produces 
the book's typescript, which includes most of the code and all of the text. 
The program notangl e extracts all of the code, in the proper order for 
compilation. 

Fragments contain source code and references to other fragments. 
Fragment definitions are preceded by their labels in angle brackets. For 
example, the code 

(a fragment label I)= 
sum = O; 
for Ci= O; i < 10; i++) (incrementsumI) 

(increment sum 1)= 
sum+= x[i]; 

2 ... 

1 

sums the elements of x. Fragment uses are typeset as illustrated by the 
use of (increment sum) in the example above. Several fragments may 
have the same name; notangl e concatenates their definitions to produce 

1 



2 CHAPTER 1 • INTRODUCTION 

a single fragment. noweave identifies this concatenation by using + = 
instead of = in continued definitions: 

(a fragment label I)+= 
.... 
1 

printf("%d\n", sum); 

Fragment definitions are like macro definitions; notangl e extracts a pro
gram by expanding one fragment. If its definition refers to other frag
ments, they are themselves expanded, and so on. 

Fragment definitions include aids to help readers navigate among 
them. Each fragment name ends with the number of the page on which 
the fragment's definition begins. If there's no number, the fragment 
isn't defined in this book, but its code does appear on the companion 
diskette. Each continued definition also shows the previous definition, .... 
and the next continued definition, if there is one. 14 is an example of a 
previous definition that appears on page 14, and 31 says the definition .... 
is continued on page 31. These annotations form a doubly linked list of 
definitions; the up arrow points to the previous definition in the list and 
down arrow points to the next one. The previous link on the first defi
nition in a list is omitted, and the next link on the definition is omitted. 
These lists are complete: If some of a fragment's definitions appear on 
the same page with each other, the links refer to the page on which they 
appear. 

Most fragments also show a list of pages on which the fragment is 
used, as illustrated by the number 1 to the right of the definition for 
(increment sum), above. These unadorned use lists are omitted for root 
fragments, which define modules, and for some fragments that occur too 
frequently, as detailed below. 

notangl e also implements one extension to C. A long string literal 
can be split across several lines by ending the lines to be continued with 
underscores. notangle removes leading white space from continuation 
lines and concatenates them to form a single string. The first argument 
to error on page 119 is an example of this extension. 

1.2 How to Read This Book 

Read this book front-to-back. A few variants are possible. 

• Chapter 5 describes the interface between the front end and back 
ends of the compiler. This chapter has been made as self-contained 
as possible. 

• Chapters 13-18 describe the back ends of the compiler. Once you 
know the interface, you can read these chapters with few excur
sions back into their predecessors. Indeed, people have replaced 
the front end and the back ends without reading, much less under
standing, the other half. 
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• Chapters 16-18 describe the modules that capture all information 
about the three targets - the MIPS, SPARC, and Intel 386 and suc
cessor architectures. Each of these chapters is independent, so you 
may read any subset of them. If you read more than one, you may 
notice some repetition, but it shouldn't be too irritating because 
most code common to all three targets has been factored out into 
Chapters 13-15. 

Some parts of the book describe 1 cc from the bottom up. For example, 
the chapters on managing storage, strings, and symbol tables describe 
functions that are at or near the ends of call chains. Little context is 
needed to understand them. 

Other parts of the book give a top-down presentation. For example, 
the chapters on parsing expressions, statements, and declarations begin 
with the top-level constructs. Top-down material presents some func
tions or fragments well after the code that uses them, but material near 
the first use tells enough about the function or fragment to understand 
what's going on in the interim. 

Some parts of the book alternate between top-down and bottom-up 
presentations. A less variable explanation order would be nice, but it's 
unattainable. Like most compilers, 1 cc includes mutually recursive func
tions, so it's impossible to describe all callees before all callers or all 
callers before all callees. 

Some fragments are easier to explain before you see the code. Others 
are easier to explain afterward. If you need help with a fragment, don't 
struggle before scanning the text just before and after the fragment. 

Most of the code for 1 cc appears in the text, but a few fragments are 
used but not shown. Some of these fragments hold code that is omitted 
to save space. Others implement language extensions, optional debug
ging aids, or repetitious constructs. For example, once you've seen the 
code that handles C's for statement, the code that handles the do-while 
statement adds little. The only wholesale omission is the explanation of 
how 1 cc processes C's initializers, which we skipped because it is long, 
not very interesting, and not needed to understand anything else. Frag
ments that are used but not defined are easy to identify: no page number 
follows the fragment name. 

Also omitted are assertions. 1 cc includes hundreds of assertions. 
Most assert something that the code assumes about the value of a param
eter or data structure. One is assert(O), which guarantees a diagnostic 
and thus identifies states that are not supposed to occur. For example, if 
a switch is supposed to have a bona fide case for all values of the switch 
expression, then the default case might include assert(O). 

The companion diskette is complete. Even the assertions and frag
ments that are omitted from the text appear on the diskette. Many of 
them are easily understood once the documented code nearby is under
stood. 

3 



4 CHAPTER 1 • INTRODUCTION 

A "mini-index" appears in the middle of the outside margin of many 
pages. It lists each program identifier that appears on the page and the 
page number on which the identifier is defined in code or explained in 
text. These indices not only help locate definitions, but highlight circu
larities: Identifiers that are used before they are defined appear in the 
mini-indices with page numbers that follow the page on which they are 
used. Such circularities can be confusing, but they are inevitable in any 
description of a large program. A few identifiers are listed with more 
than one definition; these name important identifiers that are used for 
more than one purpose or that are defined by both code and prose. 

1.3 Overview 

l cc transforms a source program to an assembler language program. 
Following a sample program through the intermediate steps in this trans
formation illustrates l cc's major components and data structures. Each 
step transforms the program into a different representation: prepro
cessed source, tokens, trees, directed acyclic graphs, and lists of these 
graphs are examples. The initial source code is: 

int round(f) float f; { 
return f + 0.5; /*truncates */ 

} 

round has no prototype, so the argument is passed as a double and round 
reduces it to a float upon entry. Then round adds 0. 5, truncates the 
result to an integer, and returns it. 

The first phase is the C preprocessor, which expands macros, includes 
header files, and selects conditionally compiled code. l cc now runs un
der DOS and UNIX systems, but it originated on UNIX systems. Like many 
UNIX compilers, l cc uses a separate preprocessor, which runs as a sepa
rate process and is not part of this book. We often use the preprocessor 
that comes with the GNU C compiler. 

A typical preprocessor reads the sample code and emits: 

# 1 "sample.c" 
int round(f) float f; { 

return f + 0.5; 
} 

The sample uses no preprocessor features, so the preprocessor has noth
ing to do but strip the comment and insert a # directive to tell the com
piler the file name and line number of the source code for use when 
issuing diagnostics. These sample coordinates are straightforward, but 
a program with numerous #include directives brackets each included 
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INT inttype 
ID "round" 
I(' 

ID "f" 
')I 

FLOAT floattype 
ID "f" 
I' I 
' I { I 

RETURN 
ID "f" 
'+' 
FCON 0.5 
I, I 
' I} I 

EOI 

FIGURE 1.1 Token stream for the sample. 

file with a pair of # directives, and every other one names a line other 
than 1. 

The compiler proper picks up where the preprocessor leaves off. It 
starts with the lexical analyzer or scanner, which breaks the input into 
the tokens shown in Figure 1.1. The left column is the token code, which 
is a small integer, and the right column is the associated value, if there 
is one. For example, the value associated with the keyword int is the 
value of i nttype, which represents the type integer. The token codes for 
single-character tokens are the ASCII codes for the characters themselves, 
and EOI marks the end of the input. The lexical analyzer posts the source 
coordinate for each token, and it processes the # directive; the rest of the 
compiler never sees such directives. 1 cc's lexical analyzer is described 
in Chapter 6. 

The next compiler phase parses the token stream according to the 
syntax rules of the C language. It also analyzes the program for seman
tic correctness. For example, it checks that the types of the operands 
in operations, such as addition, are legal, and it checks for implicit con
versions. For example, in the sample's addition, f is a float and 0. 5 is 
a double, which is a legal combination, and the sum is converted from 
double to int implicitly because round's return type is int. 

The outcome of this phase for the sample are the two decorated ab
stract syntax trees shown in Figure 1.2. Each node represents one basic 
operation. The first tree reduces the incoming double to a float. It as
signs a float (ASGN+F) to the cell with the address &f (the left ADDRF+P). 
It computes the value to assign by converting to float (CVD+F) the double 
fetched (INDIR+D) from address &f (the right ADDRF+P). 

5 



6 

ASGN+F 

/~ 
ADDRF+P CVD+F ' i 

' 
' ~ 

INDIR+D 

i 
ADDRF+P 

caller "f"- double 

CHAPTER 1 • INTRODUCTION 

RET+I 

i 
CVD+I 

i 
ADD+D 

/~ 
CVF+D CNST+D i 0.5 

INDIR+F 

i 
ADDRF+P 

.... >-' --------------
callee "f"--+ float 

FIGURE 1.2 Abstract syntax trees for the sample. 

The second tree implements the sample's lone explicit statement, 
and returns an int (RET +I). The value is computed by fetching the float 
(INDIR+F) from the cell with the address &f (ADDRF+P), converting it to 
double, adding (ADD+D) the daub 1 e constant 0. 5 (CNST +D), and truncating 
the result to int (CVD+I). 

These trees make explicit many facts that are implicit in the source 
code. For example, the conversions above are all implicit in the source 
code, but explicit in the ANSI standard and thus in the trees. Also, the 
trees type all operators explicitly; for example, the addition in the source 
code has no explicit type, but its counterpart in the tree does. This 
semantic analysis is done as 1 cc's parser recognizes the input, and is 
covered in Chapters 7-11. 

From the trees shown in Figure 1.2, lee produces the directed acyclic 
graphs - dags - shown in Figure 1.3. The dags labelled 1 and 2 come 
from the trees shown in Figure 1.2. The operators are written without 
the plus signs to identify the structures as dags instead of trees. The 
transition from trees to dags makes explicit additional implicit facts. For 
example, the constant 0. 5, which appeared in a CNST +D node in the tree, 
appears as the value of a static variable named 2 in the dag, and the 
CNST +D operator has been replaced by operators that develop the address 
of the variable (ADDRGP) and fetch its value (INDIRD). 

The third dag, shown in Figure 1.3, defines the label named 1 that 
appears at the end of round. Return statements are compiled into jumps 
to this label, and trivial ones are elided. 

As detailed in Chapter 12, the transition from trees to dags also elim
inates repeated instances of the same expression, which are called com
mon subexpressions. Optionally, each multiply referenced dag node can 
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. ' ' 
.if 

(!)ASGNF 

/~ 
ADDRFP CVDF ' i 

IND I RD 

,' i 
ADDRFP 

' . 
callee "f'~float 

~ .-
caller "f'~double 

@RETI 

i 
CVDI 

i 
ADDO 

/~ 
CVFD IND I RD 

i i 
IND I RF ADDRGP 

i 

@LABELV 

' 
' 
' 

'4 
"1" 

ADDRFP "2" ... o.s 

FIGURE 1.3 Dags for the sample. 

be eliminated by assigning its value to a temporary and using the tempo
rary in several places. The code generators in this book use this option. 

These dags appear in the order that they must execute on the code 
list shown in Figure 1.4. Each entry in this list following the Start entry 
represents one component of the code for round. The Defpoi nt entries 
identify source locations, and the Blockbeg and Blockend entries identify 
the boundaries of round's one compound statement. The Gen entries 
carry the dags labelled 1 and 2 in Figure 1.3, and the Label entry carries 
the dag labelled 3. The code list is described in Chapters 10 and 12. 

Start 

(. Def point 22, 1, "samp 1 e. c" 

(.Gen@ 

4 Blockbeg 5 ~----
(. Defpoint 8,2, "sample.c" 

4Gen@ 

(. Blockend 

(. La~el@ 
(. Defpoint 0,3,"sample.c" 

FIGURE 1.4 Code list for the sample. 

217 Blockbeg 
217 Blockend 
217 Defpoint 
217 Gen 
217 Label 
217 Start 
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8 CHAPTER 1 • INTRODUCTION 

At this point, the structures that represent the program pass from 
l cc's machine-independent front end into its back end, which translates 
these structures into assembler code for the target machine. One can 
hand-code a back end to emit code for a specific machine; such code 
generators are often largely machine-specific and must be replaced en
tirely for a new target. 

The code generators in this book are driven by tables and a tree gram
mar that maps dags to instructions as described in Chapters 13-18. This 
organization makes the back ends partly independent of the target ma
chine; that is, only part of the back end must be replaced for a new 
target. The other part could be moved into the front end - which serves 
all code generators for all target machines - but this step would com
plicate using l cc with a different kind of code generator, so it has not 
been taken. 

The code generator operates by annotating the dags. It first identifies 
an assembler-code template - an instruction or operand - that imple
ments each node. Figure 1.5 shows the sample's dags annotated with 
assembler code for the 386 or compatibles, henceforth termed X86. %n 
denotes the assembler code for child n where the leftmost child is num
bered 0, and %letter denotes one of the symbol-table entries at which 
the node points. In this figure, the solid lines link instructions, and the 
dashed lines link parts of instructions, such as addressing modes, to the 
instructions in which they are used. For example, in the first dag, the 
ASGNF and INDIRD nodes hold instructions, and the two ADDRGP nodes 
hold their operands. Also, the CVDF node that was in the right operand 
of the ASGNF in Figure 1.3 is gone - it's been swallowed by the instruction 
selection because the instruction associated with the ASGNF does both the 
conversion and the assignment. Chapter 14 describes the mechanics of 
instruction selection and l burg, a program that generates selection code 
from compact specifications. 

For those who don't know X86 assembler code, fl d loads a floating
point value onto a stack; fstp pops one off and stores it; fi stp does 
likewise but truncates the value and stores the resulting integer instead; 
fadd pops two values off and pushes their sum; and pop pops an integral 
value off the stack into a register. Chapter 18 elaborates. 

The assembler code is easier to read after the compiler takes its next 
step, which chains together the nodes that correspond to instructions 
in the order in which they're to be emitted, and allocates a register for 
each node that needs one. Figure 1.6 shows the linearized instructions 
and registers allocated for our sample program. The figure is a bit of 
a fiction - the operands aren't actually substituted into the instruction 
templates until later - but the white lie helps here. 

Like many compilers that originated on UNIX systems, l cc emits as
sembler code and is used with a separate assembler and linker. This 
book's back ends work with the vendors' assemblers on MIPS and SPARC 



1.3 • OVERVIEW 

CD ASGNF 
"fstp dword ptr %0\n" 

~: 

ADDRFP 
"%a[ebp]" 

-~ 
IND I RD 

"fl d qword ptr %0\n" 

@ RETI 
"# ret\n" 

i 
CVDI 

"sub esp,4\n 

CI) LABELV 
"%a:\n" 

' 

y 
ADDRFP 

"%a[ebp]" 

fistp dword ptr O[esp]\n 
pop %c\n" 

i 
ADDD 

"fadd%1\n" 

/' ':4. 
IND I RD CVFD 

"# nop\n" " qword ptr %0" 

i 
INDIRF 

"fld dword ptr %0\n" 

y 
ADDRFP 

"%a[ebp]" 

y 
ADDRGP 

11%all 

FIGURE 1.5 After selecting instructions. 

systems, and with Microsoft's MASM 6.11 and Harland's Turbo Assembler 
4.0 under DOS. 1 cc generates the assembler language shown in Figure 1.7 
for our sample program. The lines in this code delimit its major parts. 
The first part is the boilerplate of assembler directives emitted for every 
program. The second part is the entry sequence for round. The four push 
instructions save the values of some registers, and the mov instruction 
establishes the frame pointer for this invocation of round. 

The third part is the code emitted from the annotated dags shown in 
Figure 1.5 with the symbol-table data filled in. The fourth part is round's 

Register Assembler Template 
fld qword ptr %a[ebp]\n 
fstp dword ptr %a[ebp]\n 
fld dword ptr %a[ebp]\n 
# nop\n 
fadd qword ptr %a\n 

eax sub esp,4\nfistp dword ptr O[esp]\npop %c\n 
# ret\n 
%a:\n 

FIGURE 1.6 After allocating registers. 

9 



10 

.486 

.model small 
extrn ~turboFloat:near 
extrn ~setargv:near 
public _round 
_TEXT segment 
_round: 
push ebx 
push esi 
push edi 
push ebp 
mov ebp,esp 
fld qword ptr 20[ebp] 
fstp dword ptr 20[ebp] 
fld dword ptr 20[ebp] 
fadd qword ptr L2 
sub esp,4 
fistp dword ptr O[esp] 
pop eax 
Ll: 
mov esp,ebp 
pop ebp 
pop edi 
pop esi 
pop ebx 
ret 
_TEXT ends 
_DATA segment 
align 4 
L2 label byte 
dd OOH,03feOOOOOH 
_j)ATA ends 
end 

CHAPTER 1 • INTRODUCTION 

boilerplate 

entry 
sequence 

body of 
round 

exit 
sequence 

initialized data 
& boilerplate 

FIGURE 1.7 Generated assembler language for the sample. 

exit sequence, which restores the registers saved in the entry sequence 
and returns to the caller. Ll labels the exit sequence. The last part holds 
initialized data and concluding boilerplate. For round, these data consist 
only of the constant 0.5; L2 is the address of a variable initialized to 
000000003fe0000016 , which is the IEEE floating-point representation for 
the 64-bit, double-precision constant 0.5. 
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1.4 Design 

There was no separate design phase for 1 cc. It began as a compiler for 
a subset of C, so its initial design goals were modest and focussed on 
its use in teaching about compiler implementation in general and about 
code generation in particular. Even as 1 cc evolved into a compiler for 
ANSI C that suits production use, the design goals changed little. 

Computing costs less and less, but programmers cost more and more. 
When obliged to choose between two designs, we usually chose the one 
that appeared to save our time and yours, as long as the quality of the 
generated code remained satisfactory. This priority made 1 cc simple, 
fast, and less ambitious at optimizing than some competing compil
ers. 1 cc was to have multiple targets, and it was overall simplicity that 
counted. That is, we wrote extra code in 1 cc's one machine-independent 
part to save code in its multiple target-specific parts. Most of the design 
and implementation effort devoted to 1 cc has been directed at making 
it easy to port 1 cc to new targets. 

1 cc had to be simple because it was being written by ry uy two pro
grammers with many other demands on their time. Simpl• ly saved im
plementation time and saves more when it comes time lO change the 
compiler. Also, we wanted to write this book, and you'll see that it was 
hard to make even a simple compiler fit. 

1 cc is smaller and faster than most other ANSI C compilers. Compila
tion speed is sometimes neglected in compiler design, but it is widely ap
preciated; users often cite compilation speed as one of the reasons they 
use 1 cc. Fast compilation was not a design goal per se; it's a consequence 
of striving for simplicity and of paying attention to those relatively few 
compiler components where speed really matters. 1 cc's lexical analysis 
(Chapter 6) and instruction selection (Chapter 14) are particularly fast, 
and contribute most to its speed. 

1 cc generates reasonably efficient object code. It's designed specifi
cally to generate good local code; global optimizations, like those done 
by optimizing compilers, were not part of 1 cc's design. Most modern 
compilers, particularly those written by a CPU vendor to support its ma
chines, must implement ambitious optimizers so that benchmarks put 
their machines in the best light. Such compilers are complex and typ
ically supported by groups of tens of programmers. Highly optimizing 
C compilers generate more efficient code than 1 cc does when their op
timization options are enabled, but the hundreds of programmers who 
use 1 cc daily as their primary C compiler find that its generated code 
is fast enough for most applications, and they save another scarce re
source - their own time - because 1 cc runs faster. And 1 cc is easier 
to understand when systems programmers find they must change it. 

Compilers don't live in a vacuum. They must cooperate with pre
processors, linkers, loaders, debuggers, assemblers, and operating sys-

11 
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terns, all of which may depend on the target. Handling all of the target
dependent variants of each of these components is impractical. l cc's 
design minimizes the adverse impact of these components as much as 
possible. For example, its target-dependent code generators emit assem
bler language and rely on the target's assembler to produce object code. 
It also relies on the availability of a separate preprocessor. These design 
decisions are not without some risk; for example, in vendor-supplied as
semblers, we have tripped across several bugs over which we have no 
control and thus must live with. 

A more important example is generating code with calling sequences 
that are compatible with the target's conventions. It must be possible 
for l cc to do this so it can use existing libraries. A standard ANSI C 
library is a significant undertaking on its own, but even if l cc came with 
its own library, it would still need to be able to call routines in target
specific libraries, such as those that supply system calls. The same con
straint applies to proprietary third-party libraries, which are increasingly 
important and are usually available only in object-code form. 

Generating compatible code has significant design consequences on 
both lee's target-independent front end and its target-dependent back 
ends. A good part of the apparent complexity in the interface between 
the front and back ends, detailed in Chapter 5, is due directly to the 
tension between this design constraint and those that strive for simplic
ity and retargetability. The mechanisms in the interface that deal with 
passing and returning structures are an example. 

l cc's front end is roughly 9,000 lines of code. Its target-dependent 
code generators are each about 700 lines, and there are about 1,000 
lines of target-independent back-end code that are shared between the 
code generators. 

With a few exceptions, l cc's front end uses well established compiler 
techniques. As surveyed in the previous section, the front end per
forms lexical, syntactic, and semantic analysis. It also eliminates local 
common subexpressions (Chapter 12), folds constant expressions, and 
makes many simple, machine-independent transformations that improve 
the quality of local code (Chapter 9); many of these improvements are 
simple tree transformations that lead to better addressing code. It also 
lays down efficient code for loops and switch statements (Chapter 10). 

l cc's lexical analyzer and its recursive-descent parser are both written 
by hand. Using compiler-construction tools, such as parser generators, is 
perhaps the more modern approach for implementing these components, 
but using them would make l cc dependent on specific tools. Such de
pendencies are less a problem now than when l cc was first available, but 
there's little incentive to change working code. Theoretically, using these 
kinds of tools simplifies both future changes and fixing errors, but ac
commodating change is less important for a standardized language like 
ANSI C, and there have been few lexical or syntactic errors. Indeed, prob-
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ably less than 15 percent of l cc's code concerns parsing, and the error 
rate in that code is negligible. Despite its theoretical prominence, pars
ing is a relatively minor component in l cc and other compilers; semantic 
analysis and code generation are the major components and account for 
most of the code - and have most of the bugs. 

One of the reasons that l cc's back ends are its most interesting com
ponents is because they show the results of the design choices we made 
to enhance retargetability. For retargeting, future changes - each new 
target - are important, and the retargeting process must make it rea
sonably easy to cope with code-generation errors, which are certain to 
occur. There are many small design decisions made throughout l cc that 
affect retargetability, but two dominate. 

First, the back ends use a code-generator generator, l burg, that pro
duces code generators from compact specifications. These specifications 
describe how dags are mapped into instructions or parts thereof (Chap
ter 14). This approach simplifies writing a code generator, generates 
optimal local code, and helps avoid errors because l burg does most of 
the tedious work. One of the l burg specifications in this bP'lk can often 
be used as a starting point for a new target, so retargeterf' .. on't have to 
start from scratch. To avoid depending on foreign tools, tile companion 
diskette includes lburg, which is written in ANSI C. 

Second, whenever practical, the front end implements as much of an 
apparently target-dependent function as possible. For example, the front 
end implements switch statements completely, and it implements access 
to bit fields by synthesizing appropriate combinations of shifting and 
masking. Doing so precludes the use of instructions designed specifi
cally for bit-field access and switch statements on those increasingly few 
targets that have them; simplifying retargeting was deemed more impor
tant. The front end can also completely implement passing or returning 
structures, and it does so using techniques that are often used in target
dependent calling conventions. These capabilities are under the control 
of interface options, so, on some targets, the back end can ignore these 
aspects of code generation by setting the appropriate option. 

While l cc's overall design goals changed little as the compiler evolved, 
the ways in which these goals were realized changed often. Most of these 
changes swept more functionality into the front end. The switch state
ment is an example. In earlier versions of l cc, the code-generation inter
face included functions that the back end provided specifically to emit 
the selection code for a switch statement. As new targets were added, 
it became apparent that the new versions of these functions were nearly 
identical to the corresponding functions in existing targets. This experi
ence revealed the relatively simple design changes that permitted all of 
this code to be moved into the front end. Doing so required changing 
all of the existing back ends, but these changes removed code, and the 
design changes simplify the back ends on future targets. 

13 
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The most significant and most recent design change involves the way 
1 cc is packaged. Previously, 1 cc was configured with one back end; that 
is, the back end for target X was combined with the front end to form 
an instance of 1 cc that ran on X and generated code for X. Most of 
1 cc's back ends generate code for more than one operating system. Its 
MIPS back end, for example, generates code for MIPS computers that 
run DEC's Ultrix or SGI's IRIX, so two instances of 1 cc were configured. 
N targets and M operating systems required N x M instances of 1 cc 
in order to test them completely, and each one was configured from a 
slightly different set of source modules depending on the target and the 
operating system. For even small values of N and M, building N x M 
compilers quickly becomes tedious and prone to error. 

In developing the current version of 1 cc for this book, we changed the 
code-generation interface, described in Chapter 5, so that it's possible to 
combine all of the back ends into a single program. Any instance of 1 cc 
is a cross-compiler. That is, it can generate code for any of its targets 
regardless of the operating system on which it runs. A command-line 
option selects the desired target. This design packages all target-specific 
data in a structure, and the option selects the appropriate structure, 
which the front end then uses to communicate with the back end. This 
change again required modifying all of the existing back ends, but the 
changes added little new code. The benefits were worth the effort: Only 
M instances of 1 cc are now needed, and they're all built from one set of 
source modules. Bugs tend to be easier to decrypt because they can usu
ally be reproduced in all instances of 1 cc by specifying the appropriate 
target, and it's possible to include targets whose sole purpose is to help 
diagnose bugs. It's still possible to build a one-target instance of 1 cc, 
when it's important to save space. 

1 cc's source code documents the results of the hundreds of subordi
nate design choices that must be made when implementing software of 
any significance. The source code for 1 cc and for this book is in noweb 
files that alternate text and code just as this book does. The code is ex
tracted to form 1 cc's modules, which appear on the companion diskette. 
Table 1.1 shows the correspondence between chapters and modules, and 
groups the modules according to their primary functions. Some corre
spondences are one-to-one, some chapters generate several small mod
ules, and one large module is split across three chapters. 

The modules without chapter numbers are omitted from this book, 
but they appear on the companion diskette. 1 i st. c implements the 
list-manipulation functions described in Exercise 2.15, output. c holds 
the output functions, and i nit. c parses and processes C initializers. 
event. c implements the event hooks described in Section 8.5, trace. c 
emits code to trace calls and returns, and prof. c and profi o. c emit 
profiling code. 
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Function Chapter Header Modules 

common definitions 1 c.h 

2 alloc.c string.c 
infrastructure and 3 sym.c 
data structures 4 types.c 

list.c 

code-generation 5 ops.h bind.c 
interface null .c symbolic.c 

1/0 and 6 token.h input.c lex.c 
lexical analysis output.c 

7 error. c 
8 expr.c tree.c 

parsing and 9 enode.c expr.c simp.c 
semantic analysis 10 stmt.c 

11 decl.c main.c 
init.c 

intermediate-code 12 dag.c 
generation 

debugging and event.c trace.c 
profiling prof.c profio.c 

target-independent 13 config.h 
instruction selection 13, 14, 15 gen.c 
and register management 

16 mips.md 
code generators 17 sparc.md 

18 x86.md 

TABLE 1.1 Chapters and modules. 

By convention, each chapter specifies the implementation of its mod
ule by a fragment of the form 

{Mis)= 
#include "c.h" 
{M macros) 
{M types) 
{M prototypes) 
{M data) 
{M functions) 

where Mis the module name, like alloc.c. {M macros), {M types), and 
{M prototypes) define macros and types and declare function prototypes 
that are used only within the module. {M data) and {M functions) in
clude definitions (not declarations) for both external and static data and 

15 
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functions. Empty fragments are elided. A module is extracted by giving 
notangle a module name, such as alloc.c, and it extracts the fragment 
shown above and all the fragments it uses, which yields the code for 
the module. 

Page numbers are not included in the fragments above, and they do 
not appear in the index; they're used in too many places, and the long 
lists of page numbers would be useless. Pointers to previous and subse
quent definitions are given, however. 

1.5 Common Declarations 

Each module also specifies what identifiers it exports for use in other 
modules. Declarations for exported identifiers are given in fragments 
named (M typedefs), (M exported macros), (M exported types), (Mex
ported data), and (M exported functions), where M names a module. 
The header file c. h collects these fragments from all modules by defin
ing fragments without the Ms whose definitions list the similarly named 
fragments from each module. All modules include c. h. These fragments 
are neither page-numbered nor indexed, just like those in the last section, 
and for the same reason. 

(c.h 16)= 
(exported macros) 
(typedefs) 
#include "config.h" 
(interface 78) 
(exported types) 
(exported data) 
(exported functions) 

The include file confi g. h defines back-end-specific types that are refer
enced in (interface), as detailed in Chapter 5. c.h defines lee's global 
structures and some of its global manifest constants. 

1 cc can be compiled with pre-ANSI compilers. There are just enough 
of these left that it seems prudent to maintain compatibility with them. 
ANSI added prototypes, which are so helpful in detecting errors that 
we want to use them whenever we can. The following fragments from 
output. c show how l cc does so. 

( outpu t.c exported functions)= 
extern void outs ARGS((char *)); 

(output.c functions)= 
void outs(s) char *s; { 

char *p; 

18 .... 

18 .... 
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} 

for (p = bp; (*p *s++) != O; p++) 

bp = p; 
if (bp > io[fd]->limit) 

outflush(); 

Function definitions omit prototypes, so old compilers compile them di
rectly. Function declarations precede the definitions and give the entire 
list of ANSI parameter types as one argument to the macro ARGS. ANSI 
compilers must predefine _STDC_, so ARGS yields the types if _STDC_ 
is defined and discards them otherwise. 

(c.h exported macros)= 
#ifdef _STDC_ 
#define ARGS(list) list 
#else 
#define ARGS(list) () 
#endif 

A pre-ANSI compiler sees the declaration for outs as 

extern void outs (); 

but 1 cc and other ANSI C compilers see 

extern void outs (char*); 

17 ... 

Since the declaration for outs appears before its definition, ANSI com
pilers must treat the definition as if it included the prototype, too, and 
thus will check the legality of the parameters in all calls to outs. 

ANSI also changed variadic functions. The macro va_start now ex
pects the last declared parameter as an argument, and varargs. h became 
stdarg. h: 

(c.h exported macros)+= 
#ifdef _STDC_ 
#include <stdarg.h> 
#define va_init(a,b) va_start(a,b) 
#else 
#include <varargs.h> 
#define va_init(a,b) va_start(a) 
#endif 

.... 
17 18 ... 

Definitions of variadic functions also differ. The ANSI C definition 

void print(char *fmt, ... ); { ... } 

replaces the pre-ANSI C definition 

103 limit 
321 list 

98 outflush 
16 outs 

17 
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ARCS 17 
va_init 17 
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void print(fmt, va_alist) char *fmt; va_dcl; { ... } 

so 1 cc's macro VARARGS uses the ANSI parameter list or the pre-ANSI 
parameter list and separate declarations depending on the setting of 
_STDC_: 

(c.h exported macros)+= 
#ifdef _STDC_ 
#define VARARGS(newlist,oldlist,olddcls) newlist 
#else 

.... 
17 18 .... 

#define VARARGS(newlist,oldlist,olddcls) oldlist olddcls 
#endif 

The definition of print from output. c shows the use of ARGS, va_ i nit, 
and VARARGS. 

(output.c exported functions)+= 
extern void print ARGS((char *, ... )); 

(output.c functions)+= 
void print VARARGS((char *fmt, ... ), 
(fmt, va_alist),char *fmt; va_dcl) { 

va_list ap; 

} 

va_init(ap, fmt); 
vprint(fmt, ap); 
va_end(ap); 

.... 
16 97 .... 

.... 
16 

This definition is verbose because it gives the same information in two 
slightly different formats, but 1 cc uses VARARGS so seldom that it's not 
worth fixing. 

c. h also includes a few general-purpose macros that fit nowhere else . 

(c.h exported macros)+= 
#define NULL ((void*)O) 

.... 
18 19 .... 

NULL is a machine-independent expression for a null pointer; in environ
ments where integers and pointers aren't the same size, f(NULL) passes 
a correct pointer where f(O) can pass more bytes or fewer in the absence 
of a prototype for f. 1 cc's generated code assumes that pointers fit in 
unsigned integers. 1 cc can, however, be compiled by other compilers for 
which this assumption is false, that is, for which pointers are larger than 
integers. Using NULL in calls avoids these kinds of errors in environments 
where pointers are wider than unsigned integers, and thus permits 1 cc 
to be compiled and used as a cross-compiler in such environments. 
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(c.h exported macros)+= 
#define NELEMS(a) ((int)(sizeof (a)/sizeof ((a)[O]))) 
#define roundup(x,n) (((x)+((n)-l))&(-((n)-1))) 

.... 
18 97 .... 

NELEMS(a) gives the number of elements in array a, and roundup(x,n) 
returns x rounded up to the next multiple of n, which must be a power 
of two. 

1.6 Syntax Specifications 

Grammars are used throughout this book to specify syntax. Examples 
include C's lexical structure and its syntax and the specifications read by 
l burg, l cc's code-generator generator. 

A grammar defines a language, which is a set of sentences composed 
of symbols from an alphabet. These symbols are called terminal sym
bols or tokens. Grammar rules, or productions, define the structure, or 
syntax, of the sentences in the language. Productions specify the ways in 
which sentences can be produced from nonterminal symbols by repeat
edly replacing a nonterminal by one of its rules. 

A production specifies a sequence of grammar symbols that can re
place a nonterminal, and a production is defined by listing the nontermi
nal, a colon, and nonterminal's replacement. A list of replacements for a 
nonterminal is given by displaying the alternatives on separate lines or 
by separating them by vertical bars (I). Optional phrases are enclosed in 
brackets ([ ... ]), braces ( { ... } ) enclose phrases that can be repeated zero 
or more times, and parentheses are used for grouping. Nonterminals ap
pear in slanted type and terminals appear in a fixed-width typewriter 
type. The notation "one of ... " is also used to specify a list of alternatives, 
all of which are terminals. When vertical bars, parentheses, brackets, or 
braces appear as terminals, they're enclosed in single quotes to avoid 
confusing their use as terminals with their use in defining productions. 

For example, the productions 

expr: 
term { ( + I - ) term } 

term: 
factor { ( * I I ) factor } 

factor: 
ID 
'(' expr ')' 

define a language of simple expressions. The nonterminals are expr, 
term, and factor, and the terminals are ID + - * I C ) . The first pro
duction says that an expr is a term followed by zero or more occurrences 
of + term or - term, and the second production is a similar specification 
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for the multiplicative operators. The last two productions specify that 
a factor is an ID or a parenthesized expr. These last two productions 
could also be written more compactly as 

factor: ID I '(' expr ')' 

Giving some alternatives on separate lines often makes grammars easier 
to read. 

Simple function calls could be added to this grammar by adding the 
production 

factor: ID ' ( ' expr { , expr } ' ) ' 

which says that a factor can also be an ID followed by a parenthesized 
list of one or more exprs separated by commas. All three productions 
for factor could be written as 

factor: ID [ ' (' expr { , expr } ' ) ' ] I ' (' expr ' ) ' 

which says that a factor is an ID optionally followed by a parenthesized 
list of comma-separated exprs, or just a parenthesized expr. 

This notation for syntax specifications is known as extended Backus
Naur form, or EBNF. Section 7.1 gives the formalities of using EBNF gram
mars to derive the sentences in a language. 

1.7 Errors 

1 cc is a large, complex program. We find and repair errors routinely. It's 
likely that errors were present when we started writing this book and 
that the act of writing added more. If you think that you've found an 
error, here's what to do. 

1. If you found the error by inspecting code in this book, you might 
not have a source file that displays the error, so start by creat
ing one. Most errors, however, are exposed when programmers try 
to compile a program they think is valid, so you probably have a 
demonstration program already. 

2. Preprocess the source file and capture the preprocessor output. 
Discard the original code. 

3. Prune your source code until it can be pruned no more without 
sending the error into hiding. We prune most error demonstrations 
to fewer than five lines. We need you to do this pruning because 
there are a lot of you and only two of us. 

4. Confirm that the source file displays the error with the distributed 
version of 1 cc. If you've changed 1 cc and the error appears only in 
your version, then you'll have to chase the error yourself, even if it 
turns out to be our fault, because we can't work on your code. 
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5. Annotate your code with comments that explain why you think that 
1 cc is wrong. If 1 cc dies with an assertion failure, please tell us 
where it died. If 1 cc crashes, please report the last part of the call 
chain if you can. If 1 cc is rejecting a program you think is valid, 
please tell us why you think it's valid, and include supporting page 
numbers in the ANSI Standard, Appendix A in The C Programming 
Language (Kernighan and Ritchie 1988), or the appropriate section 
in C: A Reference Manual (Harbison and Steele 1991). If lee silently 
generates incorrect code for some construct, please include the cor
rupt assembler code in the comments and flag the bad instructions 
if you can. 

6. Confirm that your error hasn't been fixed already. The latest ver
sion of 1 cc is always available for anonymous ftp in pub/l cc from 
ftp. cs. pri nceton. edu. A LOG file there reports what errors were 
fixed and when they were fixed. If you report an error that's been 
fixed, you might get a canned reply. 

7. Send your program in an electronic mail message addressed to 
1 cc-bugs@cs. pri nceton. edu. Please send only valid C programs; 
put all remarks in C comments so that we can process reports semi
automatically. 

Further Reading 

Most compiler texts survey the breadth of compiling algorithms and do 
not describe a production compiler, i.e., one that's used daily to compile 
production programs. This book makes the other trade-off, sacrificing 
the broad survey and showing a production compiler in-depth. These 
"breadth" and "depth" books complement one another. For example, 
when you read about 1 cc's lexical analyzer, consider scanning the ma
terial in Aho, Sethi, and Ullman (1986); Fischer and LeBlanc (1991); or 
Waite and Goos (1984) to learn more about alternatives or the underly
ing theory. Other depth books include Holub (1990) and Waite and Carter 
(1993). 

Fraser and Hanson (199lb) describe a previous version of lee, and 
include measurements of its compilation speed and the speed of its gen
erated code. This paper also describes some of 1 cc's design alternatives 
and its tracing and profiling facilities. 

This chapter tells you everything you need to know about noweb to use 
this book, but if you want to know more about the design rationale or 
implementation see Ramsey (1994). noweb is a descendant of WEB (Knuth 
1984). Knuth (1992) collects several of his papers about literate program
ming. 

21 
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The ANSI Standard (American National Standards Institute, Inc. 1990) 
is the definitive specification for the syntax and semantics of the C pro
gramming language. Unlike some other C compilers, 1 cc compiles only 
ANSI C; it does not support older features that were dropped by the 
ANSI committee. After the standard, Kernighan and Ritchie (1988) is the 
quintessential reference for C. It appeared just before the standard was 
finalized, and thus is slightly out of date. Harbison and Steele (1991) 
was published after the standard and gives the syntax for C exactly as it 
appears in the standard. Wirth (1977) describes EBNF. 



2 
Storage Management 

Complex programs allocate memory dynamically, and 1 cc is no excep
tion. In C, ma 11 oc allocates memory and free releases it. lee could use 
ma 11 oc and free, but there is a superior alternative that is more efficient, 
easier to program, and better suited for use in compilers, and it is easily 
understood in isolation. 

Calling ma 11 oc incurs the obligation of a subsequent call to free. The 
cost of this explicit deallocation can be significant. More important, it's 
easy to forget it or, worse, deallocate something that's still referenced. 

In some applications, most deallocations occur at the same time. Win
dow systems are an example. Space for scroll bars, buttons, etc., are 
allocated when the window is created and deallocated when the window 
is destroyed. A compiler, like 1 cc, is another example. 1 cc allocates 
memory in response to declarations, statements, and expressions as they 
occur within functions, but it deallocates memory only at the ends of 
statements and functions. 

Most implementations of ma 11 oc use memory-management algorithms 
that are necessarily based on the sizes of objects. Algorithms based on 
object lifetimes are more efficient - if all of the deallocations can be 
done at once. Indeed, stacklike allocation would be most efficient, but 
it can be used only if object lifetimes are nested, which is generally not 
the case in compilers and many other applications. 

This chapter describes 1 cc's storage management scheme, which is 
based on object lifetimes. In this scheme, allocation is more efficient than 
ma 11 oc, and the cost of deallocation is negligible. But the real benefit 
is that this scheme simplifies the code. Allocation is so cheap that it 
encourages simple applicative algorithms in place of more space-efficient 
but complex ones. And allocation incurs no deallocation obligation, so 
deallocation can't be forgotten. 

2.1 Memory Management Interface 

Memory is allocated from arenas, and entire arenas are deallocated at 
once. Objects with the same lifetimes are allocated from the same arena. 
The arena is identified by an arena identifier - a nonnegative integer -
when space from it is allocated or when all of it is deallocated: 
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(alloc.c exported functions}= 24 ... 
extern void *allocate ARGS((unsigned long n, unsigned a)); 
extern void deallocate ARGS((unsigned a)); 

Many allocations have the form 

struct T *p; 
p = allocate(sizeof *p, a); 

for some C structure T and arena a. The use of si zeof *p where p is 
a pointer works for any pointer type. Alternatives that depend on the 
pointer's referent type are prone to error when the code is changed. For 
example, 

p = allocate(sizeof (struct T), a); 

is correct only if p really is a pointer to a st ruct T. If p is changed to 
a pointer to another structure and the call isn't updated, a 11 ocate may 
allocate too much or too little space. The former is merely inefficient, 
but the latter is disasterous. 

This allocation idiom is so common that it deserves a macro: 

(alloc.c exported macros}= 
#define NEW(p,a) ((p) = allocate(sizeof *(p), (a))) 
#define NEWO(p,a) memset(NEW((p),(a)), 0, sizeof *(p)) 

a 11 ocate and thus NEW return a pointer to uninitialized space on the 
grounds that most clients will initialize it immediately. NEWO is used for 
those allocations that need the new space cleared, which is accomplished 
by the C library function memset. memset returns its first argument. No
tice that both NEW and NEWO evaluate p exactly once, so it's safe to use an 
expression that has side effects as an actual argument to either macro; 
e.g., NEW(a[i++]). 

Incidently, the result of sizeof has type size_t, which must be an 
unsigned integral type capable of representing the size of the largest 
object that can be declared. In practice, si ze_t is either unsigned int or 
unsigned long. The declaration for a 11 ocate uses unsigned long so that 
it can always represent the result of si zeof. 

Arrays are another common allocation, and newarray allocates enough 
uninitialized space in a given arena for m elements each of size n bytes: 

( alloc.c exported functions}+= 
extern void *newarray 

ARGS((unsigned long m, unsigned long n, unsigned a)); 

2.2 Arena Representation 

The implementation of the memory management module is: 

.... 
24 
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(alloc.c2s)= 
#include "c. h" 
(alloc.c types) 
#ifdef PURIFY 
(debugging implementation) 
#else 
(alloc.c data) 
(alloc.c functions) 
#endif 

If PURIFY is defined, the implementation is replaced in its entirety by 
one that uses ma 11 oc and free, and is suitable for finding errors. See 
Exercise 2.1 for details. 

As mentioned above, an arena is a linked list of large blocks of mem
ory. Each block begins with a header defined by: 

(alloc.c types)= 
struct block { 

} ; 

struct block *next; 
char *limit; 
char *avail; 

26 ..... 

The space immediately following the arena structure up to the location 
given by the limit field is the allocable portion of the block. avail points 
to the first free location within the block; space below avail has been 
allocated and space beginning at avail and up to limit is available. The 
next field points to the next block in the list. The implementation keeps 
an arena pointer, which points to the first block in the list with available 
space. Blocks are added to the list dynamically during allocation, as 
detailed below. Figure 2.1 shows an arena after three blocks have been 
allocated. Shading indicates allocated space. The unused space at the 
end of the first full-sized arena in Figure 2.1 is explained below. 

There are three arenas known by the integers 0-2; clients usually 
equate symbolic names to these arena identifiers for use in calls to 
allocate, deallocate, and newarray; see Section 5.12. The arena identi
fiers index an array of pointers to one-element lists, each of which holds 
a zero-length block. The first allocation in each arena causes a new block 
to be appended to the end of the appropriate list. 

(alloc.c data)= 
static struct block 

first[] = { { NULL }, { NULL }, { NULL } }, 
*arena[] = { &first[O], &first[l], &first[2] }; 

27 ..... 

The initializer for fi rst serves only to provide its size; the omitted ini
tializers cause the remaining fields of each of the three structures to be 

25 

26 allocate 
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arena[l] 

1 ::~~ I NULL I 
avail . NULL . 

fi rst[l] 

FIGURE 2.1 Arena representation. 

initialized to null pointers. While this implementation has only three 
arenas, it is easily generalized to any number of arenas by changing only 
the number of initializations for first and arena. Section 5.12 describes 
how 1 cc uses the three arenas. 

2.3 Allocating Space 

Most allocations are trivial: Round the request amount up to the proper 
alignment boundary, increment the avai 1 pointer by the amount of the 
rounded request, and return the previous value. 

(alloc.c functions)= 
void *allocate(n, a) unsigned long n; unsigned a; { 

struct block *ap; 

} 

ap = arena[a]; 
n = roundup(n, sizeof (union align)); 
while (ap->avail + n > ap->limit) { 

(get a new block 27) 
} 
ap->avail += n; 
return ap->avail - n; 

(alloc.c types)+= 
union align { 

28 ... 

..... 
25 27 ... 
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} ; 

long l; 
char *p; 
double d; 
int (*f) ARGS((void)); 

Like malloc, allocate must return a pointer suitably aligned to hold 
values of any type. The size of the union al i gn gives the minimum such 
alignment on the host machine. Its fields are those that are most likely 
to have the strictest alignment requirements. 

The while loop in the code above terminates when the block pointed to 
by ap has at least n bytes of available space. For most calls to a 11 ocate, 
this block is the one pointed to by the arena pointer pointed to by 
a 11 ocate's second argument. 

If the request cannot be satisfied from the current block, a new block 
must be allocated. As shown below, dea 11 oca te never frees a block; 
instead, it keeps the free blocks on a list that emanates from freeblocks. 
a 11 ocate checks this list before getting a new block: 

(alloc.c data)+= 
static struct block *freeblocks; 

(get a new block 2 7) = 
if ((ap->next = freeblocks) != NULL) { 

freeblocks = freeblocks->next; 
ap = ap->next; 

} else 
(allocate a new block 28) 

ap->avail = (char *)((union header *)ap + 1); 
ap->next NULL; 
arena[a] = ap; 

( alloc. c types) + = 
union header { 

struct block b; 
union align a; 

} ; 

... 
25 

26 

... 
26 

The union header ensures that ap->avai l is set to a properly aligned 
address. Once ap points to a new block, the arena pointer passed to 
a 11 ocate is set to point to this new block for subsequent allocations. If 
the new block came from freeblocks, it might be too small to hold n 
bytes, which is why there's a while loop in allocate. 

If a new block must be allocated, one is requested that is large enough 
to hold the block header and n bytes, and have 1 OK of available space 
left over: 

78 align 
26 allocate 
25 arena 
25 avail 

27 

28 deallocate 
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(allocate a new block 28) = 
{ 

} 

unsigned m = sizeof (union header) + n + 10*1024; 
ap->next = malloc(m); 
ap = ap->next; 
if (ap == NULL) { 

error("insufficient memory\n"); 
exit(l); 

} 
ap->limit = (char *)ap + m; 

27 

When a request cannot be filled in the current block, the free space at 
the end of the current block is wasted. This waste is illustrated in the 
first full-size arena in Figure 2.1. 

newarray's implementation simply calls allocate: 
.... 

(alloc.c functions)+= 26 28 
void *newarray(m, n, a) unsigned long m, n; unsigned a; { .,.. 

return allocate(m*n, a); 
} 

2.4 Deallocating Space 

An arena is deallocated by adding its blocks to the free-blocks list and 
reinitializing it to point to the appropriate one-element list that holds a 
zero-length block. The blocks are already linked together via their next 
fields, so the entire list of blocks can be added to freeb 1 ocks with simple 
pointer manipulations: 

(alloc.c functions)+= 
void deallocate(a) unsigned a; { 

arena[a]->next = freeblocks; 
freeblocks = first[a].next; 
first[a].next =NULL; 
arena[a] = &first[a]; 

} 

2.5 Strings 

.... 
28 

Strings are created for identifiers, constants, registers, and so on. Strings 
are compared often; for example, when a symbol table is searched for 
an identifier. 

The most common uses of strings are provided by the functions ex
ported by string. c: 
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(string.c exported functions)= 
extern char* string ARGS((char *str)); 
extern char *stringn ARGS((char *str, int len)); 
extern char *stringd ARGS((int n)); 

Each of these functions returns a pointer to a permanently allocated 
string. string makes a copy of the null-terminated string str, stringn 
makes a copy of the len bytes in str, and stringd converts n to its 
decimal representation and returns that string. 

These functions save exactly one copy of each distinct string, so two 
strings returned by these functions can be compared for equality by com
paring their addresses. These semantics simplify comparisons and save 
space, and stringn can handle strings with embedded null characters. 

The function string calls stri ngn and provides an example of its use: 

(string.c functions)= 
char *string(str) char *str; { 

char *s; 

for (s str; *s; s++) 

return stringn(str, s - str); 
} 

29 ..... 

st ri ngd converts its argument n into a string in a private buffer and 
calls st ri ngn to return the appropriate distinct string. 

(string.c functions)+= 
char *stringd(n) int n; { 

} 

char str[25], *s = str + sizeof (str); 
unsigned m; 

if (n == INT_MIN) 
m = (unsigned)INT_MAX + 1; 

else if (n < O) 
m = -n; 

else 
m = n; 

do 
*--s = m%10 + 'O'; 

while ((m /= 10) != O); 
if (n < 0) 

*--s = '-'; 
return stringn(s, str + sizeof (str) - s); 

.... 
29 30 ..... 

The code uses unsigned arithmetic because ANSI C permits different ma
chines to treat signed modulus on negative values differently. The code 

30 stringn 
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starts by assigning the absolute value of n to m; no two's complement 
signed integer can represent the absolute value of the most negative 
number, so this value is special-cased. The string is built backward, 
last digit first. Exercise 2.10 explores why the local array str has 25 
elements. INLMIN is defined in the standard header 1 i mi ts . h. 

stri ngn maintains the set of distinct strings by saving them in a string 
table. It saves exactly one copy of each distinct string, and it never re
moves any string from the table. The string table is an array of 1,024 
hash buckets: 

(string.c data)= 
static struct string { 

char *str; 
int len; 
struct string *link; 

} *buckets[1024J; 

Each bucket heads a list of strings that share a hash value. Each entry 
includes the length of the string (in the 1 en field) because strings can 
include null bytes. 

stri ngn adds a string to the table unless it's already there, and returns 
the address of the string. 

(string.c functions)+= 
char *stringn(str, len) char *str; int len; { 

int i; 

} 

unsigned int h; 
char *end; 
struct string *p; 

(h - hash code for str, end - 1 past end of str 31) 
for (p = buckets[h]; p; p = p->link) 

if (len == p->len) { 

} 

char *sl = str, *s2 p->str; 
do { 

if (sl == end) 
return p->str; 

} while (*sl++ == *s2++); 

(install new string str 31) 

... 
29 

h identifies the hash chain for str. stri ngn loops down this chain and 
compares str with strings of equal length. end points to the character 
one past the end of str. 

An ideal hash function would distribute strings uniformly from o to 
NELEMS(buckets)-1, which would give hash chains of equal length. The 
code 
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(h - hash code for str, end - 1 past end of str 31)= 
for Ch= 0, i = len, end= str; i > O; i--) 

h = (h<<l) + scatter[*(unsigned char *)end++]; 
h &= NELEMS(buckets)-1; 

30 

is a good approximation. scatter is a static array of 256 random num
bers, which helps distribute the hash values. Using the character pointed 
to by end as an index runs the risk that the character will be sign
extended and become a negative integer; casting end to a pointer to an 
unsigned character avoids this possibility. This fragment also leaves end 
pointing just past str's last character, which is used when comparing 
and copying the string as shown above. 

Conventional wisdom recommends that hash table sizes should be 
primes. Using a power of two makes 1 cc faster, because masking is 
faster than modulus. 

stri ngn stores new strings in chunks of permanently allocated mem
ory of at least 4K bytes. PERM identifies the permanent storage arena. 

(install new string str 31)= 
{ 

} 

static char *next, *strlimit; 
if (next + len + 1 >= strlimit) { 

int n = len + 4*1024; 

} 

next= allocate(n, PERM); 
strlimit = next + n; 

NEW(p, PERM); 
p->len = len; 
for (p->str = next; str < end; ) 

*next++ = *str++; 
*next++ = O; 
p->link = buckets[h]; 
buckets[h] = p; 
return p->str; 

30 

The static variable next points to the next free byte in the current chunk, 
and strlimit points one past the end of the chunk. The code allocates 
a new chunk, if necessary, and a new table entry. It copies str, which 
incidentally allocates space for it as it is copied by incrementing next, 
and links the new entry into the appropriate hash chain. 

Further Reading 

Storage management is a busy area of research; Section 2.5 in Knuth 
(1973a) is the definitive reference. There is a long list of techniques that 
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are designed both for general-purpose use and for specific application 
areas, including the design described in this chapter (Hanson 1990). A 
competitive alternative is "quick fit" (Weinstock and Wulf 1988). Quick-fit 
allocators maintain N free lists for the N block sizes requested most fre
quently. Usually, these sizes are small and contiguous; e.g., 8-128 bytes 
in multiples of eight bytes. Allocation is easy and fast: Take the first 
block from the appropriate free list. A block is deallocated by adding it 
to the head of its list. Requests for sizes other than one of the N favored 
sizes are handled with other algorithms, such as first fit (Knuth l 973a). 

One of the advantages of 1 cc's arena-based algorithm is that alloca
tions don't have to be paired with individual deallocations; a single deal
location frees the memory acquired by many allocations, which simplifies 
programming. Garbage collection takes this advantage one step further. 
A garbage collector periodically finds all of the storage that is in use and 
frees the rest. It does so by following all of the accessible pointers in 
the program. Appel (1991) and Wilson (1994) survey garbage-collection 
algorithms. Garbage collectors usually need help from the programming 
language, its compiler, and its run-time system in order to locate the ac
cessible memory, but there are algorithms that can cope without such 
help. Boehm and Weiser (1988) describe one such algorithm for C. It 
takes a conservative approach: Anything that looks like a pointer is taken 
to be one. As a result, the collector identifies some inaccessible memory 
as accessible and thus busy, but that's better than making the opposite 
decision. 

Storing all strings in a string table and using hashing to keep only one 
copy of any string is a scheme that's been used for years in compilers 
and related programming-language implementations, but it's rarely doc
umented. It's used in SNOBOL4 (Griswold 1972), for example, to make 
comparison fast and to make it easy to use strings as keys in associa
tive tables. Related techniques store strings in a separate string space, 
but don't bother to avoid storing multiple copies of the same string 
to simplify some string operations, such as substring and concatena
tion (Hansen 1992; Hanson 1974; McKeeman, Horning, and Wortman 
1970). 

Knuth (l 973b) is the definitive expose on hashing. Section 7.6 of Aho, 
Sethi, and Ullman (1986) describes hash functions and their use in 
compilers. 

Exercises 

2.1 Revise allocate and deallocate to use the C library functions 
ma 11 oc and free. 

2.2 The only objective way to make decisions between competitive algo
rithms and designs in 1 cc is to implement them and measure their 
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performance. 1 cc compiling itself is a reasonable benchmark. Mea
sure the performance of the arena-based algorithm against ma 11 oc 
and free as implemented in the previous exercise. 

2.3 Redefine NEW so that it does most allocations inline, i.e., so that 
it calls a 11 ocate only when there isn't enough space in the arena. 
Measure the benefit. You'll need to export the arena data structures 
to implement inline allocation. 

2.4 When a 11 ocate creates a new block, there's a good chance that this 
block is adjacent to the previous one for the arena and that they 
can be merged into one larger block. Implement this and measure 
the improvement. 

2.5 When allocate takes a block from freeblocks, it's possible that 
the block is too small. Instrument the allocator and find out how 
often this situation occurs. Is it worth fixing? 

2.6 Show that deallocate works correctly when the arena list holds 
only the zero-length block. 

2.7 deal locate never frees blocks, for example, by calling free. For 
some inputs, 1 cc's arenas will balloon temporarily, but the blocks 
allocated will never be reused. Revise dea 11 ocate to free blocks 
instead of adding them onto freeblocks. Does this change make 
1 cc run faster? 

2.8 Implement a conservative garbage collector for 1 cc or modify 1 cc to 
use an existing one. The collector described by Boehm and Weiser 
(1988) is publicly available. Most such allocators initiate a collection 
or a partial collection at every allocation, so you can simply gut 
deallocate, or make it a null macro and revise allocate to call 
the appropriate allocation function. 

2.9 Strings installed in the string table by stri ngn are never discarded. 
Is this feature a problem? Instrument stri ngn to measure the dis
tribution of the size of the string table. Suppose it gets too big; 
how would you revise the string interface to permit strings to be 
deleted? 

2.10 stri ngd formats its argument into str, which is an array of 25 char
acters. Explain why 2 5 is large enough for all modem computers 
on which 1 cc runs or for which it generates code. 

2.11 Many of the integers passed to stri ngd are small; say, in the range 
-100 to 100. Strings for these integers could be preallocated at 
compile time, and stri ngd and stringn could return pointers to 
them and thereby avoid allocations. Implement this optimization. 
Does it make 1 cc run faster? 
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allocate 26 
list 321 

stringn 30 

2.12 stri ngn allocates memory in big chunks to hold the characters in 
a string instead of calling a 11 ocate for each string. Revise st ri ngn 
so that it calls a 11 ocate for each string and measure the differences 
in both time and space. Explain any differences you find. 

2.13 The size of stringn's hash table is a power of two, which is often 
deprecated. Try a prime and measure the results. Try to design a 
better hash function and measure the results. 

2.14 stri ngn compares strings with inline code instead of, for example, 
calling memcmp. Replace the inline code with a call to memcmp and 
measure the result. Why was our decision to inline justified? 

2.15 lee makes heavy use of circularly linked lists of pointers, and the 
implementation of the module 1 i st. c exemplifies the use of the 
allocation macros. 1 i st. c exports a list element type and three 
list-manipulation functions: 

(list.c typedefs)= 
typedef struct list *List; 

(list.c exported types)= 
struct list { 

void *x; 
List link; 

} ; 

(list.c exported functions)= 
extern List append ARGS((void *x, List list)); 
extern int length ARGS((List list)); 
extern void *ltov ARGS((List *list, unsigned a)); 

A Li st holds zero or more elements stored in the x fields of the 
list structures. A Li st points to the last struct 1 i st in a list, 
and a null Li st is the empty list by definition. append adds a node 
containing x onto the end of 1 i st and returns 1 i st. 1 ength returns 
the number of elements in 1 i st. 1 tov copies then elements in 1 i st 
into a null-terminated array of pointers in the arena indicated by a, 
deallocates the list structures, and returns the array. The array has 
n + 1 elements including the terminating null element. Implement 
the list module. 
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Symbol Management 

The symbol tables are the central repository for all information within 
the compiler. All parts of the compiler communicate through these ta
bles and access the data - symbols - in them. For example, the lexical 
analyzer adds identifiers to the identifier table, and the parser adds type 
information to these identifiers. The code generators add target-specific 
data to symbol-table entries; for example, register assignments for locals 
and parameters. Symbol tables are also used to hold labels, constants, 
and types. 

Symbol tables map names into sets of symbols. Constants, identifiers, 
and label numbers are examples of names. Different names have differ
ent attributes. For example, the attributes for the identifier that names 
a local variable might include the variable's type, its location in a stack 
frame for the procedure in which it is declared, and its storage class. 
Identifiers that name members of a structure have a very different set 
of attributes, including the members' types, the structures in which they 
appear, and their locations within those structures. 

Symbols are collected into symbol tables. The symbol-table module 
manages symbols and symbol tables. 

Symbol management must deal not only with the symbols themselves, 
but must also handle the scope or visibility rules imposed by the ANSI C 
standard. The scope of an identifier is that portion of the program text in 
which the identifier is visible; that is, where it may be used in expressions, 
and so forth. In C, scopes nest. An identifier is visible at the point of its 
declaration until the end of the compound statement or parameter list 
in which it is declared. An identifier declared outside of any compound 
statement or parameter list has file scope; it is visible from the point of 
its declaration to the end of the source file in which it appears. 

A declaration for an identifier X hides a visible identifier X declared 
at an outer level. The following program illustrates this effect; the line 
numbers are for explanatory purposes and are not part of the program. 
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1 int x, y; 
2 f( int x , int a) { 
3 int b; 
4 y = x + a*b; 
5 if (y < 5) { 
6 int a; 
7 y = x + a*b; 
8 } 
9 y = x + a*b; 

10 } 

Line 1 declares the globals x and y, whose scopes begin at line 1 and 
extend through line 10. But the declaration of the parameter x in line 2 
interrupts the scope of the global x. The scopes of the parameters x and a 
begin at line 2 and extend through line 9. The scope of a is interrupted by 
the declaration of the local a in line 6. Each identifier in the expression on 
line 4 is bound to a specific declaration, and these bindings are specified 
by C's scope rules. Using x:n to denote the identifier x declared at linen, 
y is bound to y:l, x to x:2, a to a:2, and b to b:3. The bindings for the 
expression in line 7 are the same, except that a is bound to a:6. 

Declarations like those for x in line 2 and a in line 6 create a hole in the 
scopes of similarly named identifiers declared in outer scopes. For ex
ample, the scope of a:6 is lines 6-8, which is the hole in the scope of a:2, 
whose scope is lines 2-5 and 9-10. The symbol-management functions 
must accommodate this and similar situations. 

In most languages, like Pascal, there is one name space for identifiers. 
That is, there is a single set of identifiers for all purposes and, at any 
point in the program, there can be only one visible identifier of a given 
name. 

The name spaces in ANSI C categorize identifiers according to use: 
Statement labels, tags, members, and ordinary identifiers. Tags identify 
structures, unions, and enumerations. There are three separate name 
spaces for labels, tags, and identifiers, and, for each structure or union, 
there is a separate name space for its members. 

For each name space, there can be only one visible identifier of a given 
name at any point in the program. There can, however, be more than one 
visible identifier at any point in the program if each such identifier is in 
a different name space. The following artificial and confusing program 
illustrates this effect. 
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1 struct list { int x; struct list *list; } *list; 
2 walk(struct list *list) { 
3 list: 
4 pri ntf("%d\n", 1 i st->x); 
5 if ((list = list->list) != NULL) 
6 goto list; 
7 } 
8 main() { walk(list); } 

Llne 1 declares three identifiers named 1 i st, all of which are visible after 
the declaration. 1 i st is a structure tag, a field name, and a variable. 
The tag and the variable have file scope; technically, so does the field 
name, but it can be used only with the field reference operators . and 
->. Llne 2 declares a parameter 1 i st whose scope is lines 2-7. Line 3 
declares the label 1 i st, which has function scope; it is visible anywhere 
in the function wa 1 k. The uses of 1 i st in lines 4-8 determines which 
name space is used; line 4 uses ordinary identifiers, line 5 uses ordinary 
identifiers for the first two occurrences of 1 i st and members of struct 
1 i st for the rightmost occurrence of 1 i st, line 6 consults the label name 
space, and line 8 again uses the ordinary identifiers. 

Roughly speaking, there is a separate symbol table for each name 
space, and symbol tables themselves handle scope. 1 cc also uses sepa
rate symbol tables for unscoped collections, like constants. 

3.1 Representing Symbols 

The memory-allocation and string modules could be used outside of 1 cc, 
but the symbol-table module is specific to 1 cc. It manages 1 cc-specific 
symbols and symbol tables, and it implements the scope rules and name 
spaces specified by ANSI C. 

There is little about symbols themselves that is relevant to the symbol
table module, which needs only those attributes, like names, that relate 
to scope. It's simplest, however, to collect the name and all of the other 
attributes into a single symbol structure: 

(sym.c typedefs)= 
typedef struct symbol *Symbol; 

(sym.c exported types)= 
struct symbol { 

char *name; 
int scope; 
Coordinate src; 
Symbol up; 
List uses; 

38 ... 

38 ... 

37 

38 Coordinate 
34 List 
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} ; 

int sclass; 
(symbol flags 50) 
Type type; 
float ref; 
union { 

(labels 46) 
(struct types65) 
(enum constants69) 
(enum types 68) 
(constants 47) 

(function symbols 290) 
(globals 265) 
(temporaries 346) 

} u; 
Xsymbol x; 
(debugger extension) 

The fields above the uni on u apply to all kinds of symbols in all tables. 
Most of the symbol-table functions read and write only the name, scope, 
src, up, and uses fields. Those specific to constants and labels also rely 
on some of the fields in the uni on u and some of the (symbol flags) as 
detailed below. The remaining fields implement attributes that are asso
ciated with specific kinds of symbols, and are initialized and modified 
by clients of the symbol-table module. 

The name field is usually the symbol-table key. For identifiers and 
keywords that name types, it holds the name used in the source code. 
For generated identifiers, such as structures without tags, name is a digit 
string. 

The scope field classifies each symbol as a constant, label, global, pa
rameter, or local: 

(sym.c exported types)+= 
.... 
37 

enum { CONSTANTS=l, LABELS, GLOBAL, PARAM, LOCAL }; 

A local declared at nesting level k has a scope equal to LOCAL+k. 
The src field is the point in the source code that defines the symbol, 

as in a variable declaration. Its Coordinate value pinpoints the symbol's 
definition: 

(sym.c typedefs)+= 
typedef struct coord { 

char *file; 
unsigned x, y; 

} Coordinate; 

.... 
37 39 ... 

The file field is the name of the file that contains the definition, and 
y and x give the line number and character position within that line at 
which the definition occurs. 
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The up field chains together all symbols in a symbol table, starting 
with the last one installed. Traversing up this chain reveals all of the 
symbols that are in scope at the time of the traversal, as well as those 
hidden by declarations of the same identifiers in nested scopes. This 
facility may help back ends emit debugger symbol-table information, for 
example. 

1 cc has an option that causes it to keep track of every use of ev
ery symbol. When this option is specified, the uses field holds a list of 
Coordinates that identify these uses. If the option is not specified, uses 
is null. See Exercise 3.4. 

The scl ass field is the symbol's extended storage class, which may 
be AUTO, REGISTER, STATIC, or EXTERN. scl ass is TYPEDEF for typedefs 
and ENUM for enumeration constants, and it's unused and thus zero for 
constants and labels. 

The type field holds the Type for variables, functions, constants, and 
structure, union, and enumeration types. 

For variables and labels, the ref field is an approximation of the num
ber of times that variable is referenced. Section 10.3 explains how this 
approximation is computed. 

The u field is a union that supplies additional data for labels, struc
ture and union types, enumeration identifiers, enumeration types, con
stants, functions, global and static variables, and temporary variables. 
The (symbol flags) are one-bit attribute flags for each symbol. The x field 
and the (debugger extension) collect fields that are manipulated only by 
back ends, such as the register assigned to a variable or the information 
necessary to generate data for a debugger. 

The typedefs for Symbo 1 and Coordinate illustrate a convention used 
throughout 1 cc: Capitalized type names refer to structures with the sim
pler lowercase tag, or to pointers to such structures. Thus, the typedef 
Coordinate names the type struct coord and Symbol names the type 
struct symbol *. 

3.2 Representing Symbol Tables 

Symbol tables are manipulated only by the symbol-table module. It ex
ports an opaque type for tables and the tables themselves: 

(sym.c typedefs)+= 
typedef struct table *Table; 

(sym.c exported data)= 
extern Table constants; 
extern Table externals; 
extern Table globals; 
extern Table identifiers; 

... 
38 47 ..... 

42 ..... 

39 
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extern Table labels; 
extern Table types; 

Subsets of these tables implement three of the name spaces in ANSI C. 
identifiers holds the ordinary identifiers. exte rna 1 s holds the subset 
of identifiers that have been declared extern; it is used to warn about 
conflicting declarations of external identifiers. g 1 oba 1 s is the part of the 
i denti fi ers table that holds identifiers with file scope. 

Compiler-defined internal labels are stored in 1abe1 s, and type tags 
are stored in types. 

The tables themselves are lists of hash tables, one for each scope: 

(sym.c types)= 
struct table { 

}; 

int level; 
Table previous; 
struct entry { 

struct symbol sym; 
struct entry *link; 

} *buckets[256]; 
Symbol all; 

#define HASHSIZE NELEMS(((Table)O)->buckets) 

A Tab 1 e value, like identifiers, points to a tab 1 e structure that holds 
a hash table for the symbols at one scope, specifically the scope given by 
the value of the 1eve1 field. The buckets field is an array of pointers to 
the hash chains. The previous field points to the table for the enclosing 
scope. 

Entries in the hash chains hold a symbol structure and a pointer to the 
next entry on the chain. Looking up a symbol involves hashing the key 
to pick a chain and walking down the chain to the appropriate symbol. 
If the symbol isn't found, following the previous field exposes entries in 
the next enclosing scope. 

In each table structure, a 11 heads a list of all symbols in this and en
closing scopes. This list is threaded through the up fields of the symbols. 

The symbol-table module initializes all but one of the Tables it ex
ports: 

(sym.c data)= 42 .... 
static struct table 

ens { CONSTANTS }, 
ext { GLOBAL }, 
ids { GLOBAL }, 
tys { GLOBAL } ; 

Table constants =&ens; 
Table externals = &ext; 
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Table identifiers = &ids; 
Table globals = &ids; 
Table types = &tys; 
Table labels; 

gl oba 1 s always points to the identifier table at scope GLOBAL, while 
i denti fie rs points to the table at the current scope. types is described 
in Chapter 4. funcdefn creates a new labels table for each function. 

Tables for nested scopes are created dynamically and linked into the 
appropriate enclosing table: 

(sym.c functions)= 
Table table(tp, level) Table tp; int level; { 

Table new; 

} 

NEWO(new, FUNC); 
new->previous = tp; 
new->level =level; 
if (tp) 

new->all = tp->all; 
return new; 

41 .... 

All dynamically allocated tables are discarded after compiling each func
tion, so they are allocated in the FUNC arena. 

Figure 3.1 shows the four tables that emanate from i denti fi ers when 
1 cc is compiling line 7 of the example at the top of page 36. The figure's 
entry structures show only the name and up fields of their symbols and 
their 1 ink fields. The solid lines show the previous fields, which connect 
tables; the elements of buckets and the 1 ink fields, which connect en
tries; and the name fields. The dashed lines emanate from the a 11 fields 
in tables and from the up fields of symbols. 

The a 11 field is initialized to the enclosing table's 1 i st so that it is 
possible to visit all symbols in all scopes by following the symbols be
ginning at a table's a 11. This capability is used by foreach to scan a 
table and apply a given function to all symbols at a given scope . 

(sym.c functions)+= 
void foreach(tp, lev, apply, cl) Table tp; int lev; 
void (*apply) ARGS((Symbol, void*)); void *cl; { 

while (tp && tp->level > lev) 
tp = tp->previous; 

if (tp && tp->level lev) { 
Symbol p; 
Coordinate sav; 
sav = src; 

... 
41 42 .... 

for (p = tp->all; p && p->scope lev; p = p->up) { 

41 

38 Coordinate 
286 funcdefn 
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} 

src = p->src; 
(*apply)(p, cl); 

src = sav; 
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The while loop finds the table with the proper scope. If one is found, 
foreach sets the global variable src to each symbol's definition coordi
nate and calls apply with the symbol. cl is a pointer to call-specific data 
- a closure - supplied by callers of foreach, and this closure is passed 
along to apply so that it can access those data, if necessary. src is set so 
that diagnostics that might be issued by apply will refer to a meaningful 
source coordinate. 

The for loop traverses the table's all and stops when it encounters 
the end of the list or a symbol at a lower scope. a 11 is not strictly nec
essary because fo reach could traverse the hash chains, but presenting 
the symbols to apply in an order independent of hash addresses makes 
the order of the emitted code machine-independent. 

3.3 Changing Scope 

The value of the global variable level and the corresponding tables rep
resent a scope. 

(sym.c exported data)+= 
extern int level; 

(sym.c data)+= 
int level = GLOBAL; 

.... 
39 52 ... 

.... 
40 

There are more scopes than source-code compound statements because 
scopes are used to partition symbols for other purposes. For example, 
there are separate scopes for constants and for parameters. 

1eve1 is incremented upon entering a new scope. 

(sym.c functions)+= 
void enterscope() { 

++level; 
} 

.... 
41 42 ... 

At scope exit, 1eve1 is decremented, and the corresponding i denti fie rs 
and types tables are removed. 

(sym.c functions)+= 
void exitscope() { 

rmtypes(level); 

.... 
42 44 ... 
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identifiers\ 

level 6 
previous 
buckets 

all - ' 

0 

0 
a b x y 

FIGURE 3.1 Symbol tables when compiling line 7 of the example on page 36. 
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} 

if (types->level == level) 
types = types->previous; 

if (identifiers->level == level) { 
(warn if more than 12 7 identifiers) 
identifiers = identifiers->previous; 

} 
--level; 

Tables at the current scope are created only if necessary. Few scopes in C 
declare new symbols, so lazy table allocation saves time, but exi tscope 
must check levels to see if there is a table to remove. rmtypes removes 
from the type cache types with tags defined in the vanishing scope; see 
Section 4.2. 

3.4 Finding and Installing Identifiers 

i nsta 11 allocates a symbol for name and adds it to a given table at a spe
cific scope level, allocating a new table if necessary. It returns a symbol 
pointer. 

(sym.c functions)+= 
Symbol install(name, tpp, level, arena) 
char *name; Table *tpp; int level, arena; { 

Table tp = *tpp; 

} 

struct entry *p; 
unsigned h = (unsigned)name&(HASHSIZE-1); 

if (level > 0 && tp->level <level) 
tp = *tpp = table(tp, level); 

NEWO(p, arena); 
p->sym.name = name; 
p->sym.scope =level; 
p->sym.up = tp->all; 
tp->all = &p->sym; 
p->link = tp->buckets[h]; 
tp->buckets[h] = p; 
return &p->sym; 

name is a saved string, so its address can be its hash value. 

.... 
42 45 ..... 

tpp points to a table pointer. If *tpp is a table with scopes, like 
i denti fi ers, and there is not yet a table corresponding to the scope 
indicated by the argument level, install allocates a table for the scope 
indicated by 1eve1 and updates *tpp. It then allocates and zeroes a 
symbol-table entry, initializes some fields of the symbol itself, and adds 
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the entry to the hash chain. 1 eve 1 must be zero or at least as large as the 
table's scope level; a zero value for 1eve1 indicates that name should be 
installed in *tpp. i nsta 11 accepts an argument that specifies the appro
priate arena because function prototypes and thus the symbols in them 
are retained forever, even if they're declared in a nested scope. 

1 ookup searches a table for a name; it handles lookups where the 
search key is the name field of a symbol. It returns a symbol pointer 
if it succeeds and the null pointer otherwise. 

(sym.c functions)+= 
Symbol lookup(name, tp) char *name; Table tp; { 

struct entry *p; 

} 

unsigned h = (unsigned)name&(HASHSIZE-1); 

do 
for (p = tp->buckets[h]; p; p p->link) 

if (name == p->sym.name) 
return &p->sym; 

while ((tp = tp->previous) !=NULL); 
return NULL; 

... 
44 45 ..... 

The inner loop scans a hash chain, and the outer loop scans enclosing 
scopes. Comparing two strings is trivial because the string module guar
antees that two strings are identical if and only if they are the same 
string. 

3.5 Labels 

The symbol-table module also exports functions to manage labels and 
constants. These are similar to 1 ookup and i nsta 11, but there is no 
scope management for these tables, and looking up a label or constant 
installs it if necessary and thus always succeeds. Also, the search key is 
a field in the union u that is specific to labels or constants. 

Compiler-generated labels and the internal counterparts of source
language labels are named by integers. gen 1 abe 1 generates a run of these 
integers by incrementing a counter: 

(sym.c functions)+= 
int genlabel(n) int n; { 

static int label = 1; 

} 

label += n; 
return label - n; 

... 
45 46 ..... 
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gen 1 abe 1 is also used whenever a unique, anonymous name is needed, 
such as for generated identifiers like temporaries. 

A symbol is allocated for each label, and u . 1 . 1abe1 holds its label 
number: 

(labels 46) = 
struct { 

int label; 
Symbol equatedto; 

} 1; 

38 

When two or more internal labels are found to label the same location, 
the equatedto fields of such label symbols point to one of them. 

There is an internal label for each source-language label. These and 
other compiler-generated labels are kept in 1 abel s. This table is created 
once for each function (see Section 11.6) and is managed by fi ndl abe l, 
which takes a label number and returns the corresponding label sym
bol, installing and initializing it, and announcing it to the back end, if 
necessary. 

(sym.c functions)+= 
Symbol findlabel(lab) int lab; { 

struct entry *p; 

} 

unsigned h = lab&(HASHSIZE-1); 

for (p = labels->buckets[h]; p; p = p->link) 
if (lab== p->sym.u.l.label) 

return &p->sym; 
NEWO(p, FUNC); 
p->sym.name = stringd(lab); 
p->sym.scope = LABELS; 
p->sym.up = labels->all; 
labels->all = &p->sym; 
p->link = labels->buckets[h]; 
labels->buckets[h] = p; 
p->sym.generated = 1; 
p->sym.u.l.label =lab; 
(*IR->defsymbol)(&p->sym); 
return &p->sym; 

... 
45 47 .... 

generated is one of the one-bit (symbol flags), and it identifies a gen
erated symbol. Some back ends use specific formats for the names of 
generated symbols to avoid, for example, cluttering linker tables. 
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3.6 Constants 

A reference to a compile-time constant as an operand in an expression is 
made by pointing to a symbol for the constant. These symbols reside in 
the constants table. Like labels, this table is not scoped; all constants 
have a scope field equal to CONSTANTS. 

The actual value of a constant is represented by instances of the union 

(sym.c typedefs)+= 
typedef union value { 

/* signed */ char sc; 
short ss; 
int i; 
unsigned char uc; 
unsigned short us; 
unsigned int u; 
float f; 
double d; 
void *p; 

} Value; 

.... 
39 

The value is stored in the appropriate field according to its type, e.g., 
integers are stored in the i field, unsigned characters are stored in the 
uc field, etc. 

When a constant is installed in constants, its Type is stored in the 
symbol's type field; Types encode C's data types and are described in 
Chapter 4. The value is stored in u . c. v: 

(constants 47) = 
struct { 

Value v; 
Symbol loc; 

} c; 

38 

On some targets, some constants - floating-point numbers - cannot 
be stored in instructions, so the compiler generates a static variable and 
initializes it to the value of the constant. For these, u. c. l oc points to 
the symbol for the generated variable. Taken together, the type and u. c 
fields represent all that is known about a constant. 

Only one instance of any given constant appears in the constants 
table, e.g., if the constant "hello world" appea~s three times in a pro
gram, all three references point to the same symbol. constant searches 
the constant table for a given value of a given type, installing it if neces
sary, and returns the symbol pointer. Constants are never removed from 
the table. 

( sym.c functions)+= 
.... 
46 49 ..... 

Symbol constant(ty, v) Type ty; Value v; { 

38 CONSTANTS 
40 constants 
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54 Type 

160 value 
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} 

struct entry *p; 
unsigned h = v.u&(HASHSIZE-1); 

ty = unqual(ty); 
for (p = constants->buckets[h]; p; p = p->link) 

if (eqtype(ty, p->sym.type, 1)) 
(return the symbol if p's value== v 48) 

NEWO(p, PERM); 
p->sym.name = vtoa(ty, v); 
p->sym.scope = CONSTANTS; 
p->sym.type = ty; 
p->sym.sclass = STATIC; 
p->sym.u.c.v = v; 
p->link = constants->buckets[h]; 
p->sym.up = constants->all; 
constants->all = &p->sym; 
constants->buckets[h] = p; 
(announce the constant, if necessary 49) 

p->sym.defined = 1; 
return &p->sym; 

unqual returns the unqualified version of a Type, namely without const 
or volatile, and eqtype tests for type equality (see Section 4.7). If v ap
pears in the table, its symbol pointer is returned. Otherwise, a symbol is 
allocated and initialized. The name field is set to the string representation 
returned by vtoa. 

This value is useful only for the integral types and constant pointers; 
for the other types, the string returned vtoa may not reliably depict the 
value. Constants are found in the table by comparing their actual values, 
not their string representations, because some floating-point constants 
have no natural string representations. For example, the constant expres
sion (double)(float)0.3 truncates 0.3 to a machine-dependent value. 
The effect of the cast cannot be captured by a valid string constant. 

The type operator determines which union ficlds to compare. 

(sym.c macros)= 
#define equalp(x) v.x == p->sym.u.c.v.x 

(return the symbol if p's value== v 48) = 48 
switch (ty->op) { 
case CHAR: if (equalp(uc)) return &p->sym; break; 
case SHORT: if (equalp(ss)) return &p->sym; break; 
case INT: if (equalp(i)) return &p->sym; break; 
case UNSIGNED: if (equalp(u)) return &p->sym; break; 
case FLOAT: if (equalp(f)) return &p->sym; break; 
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case DOUBLE: if (equalp(d)) return &p->sym; break; 
case ARRAY: case FUNCTION: 
case POINTER: if (equalp(p)) return &p->sym; break; 
} 

constant calls defsymbol to announce to the back end those constants 
that might appear in dags: 

(announce the constant, if necessary 49) = 
if (ty->u.sym && !ty->u.sym->addressed) 

(*IR->defsymbol)(&p->sym); 

48 

The primitive types, like the integers and floating-point types, appear in 
dags only if 1 cc is so configured, which is what the addressed flag tests. 
See Sections 4.2 and 5.1. 

Integer constants abound in both the front and back ends. i ntconst 
encapsulates the idiom for installing and announcing an integer constant: 

(sym.c functions)+= 
Symbol intconst(n) int n; { 

Value v; 

v. i = n; 
return constant(inttype, v); 

} 

3. 7 Generated Variables 

.... 
47 49 ... 

The front end generates local variables for many purposes. For example, 
it generates static variables to hold out-of-line constants like strings and 
jump tables for switch statements. It generates locals to pass and return 
structures to functions and to hold the results of conditional expres
sions and switch values. geni dent allocates and initializes a generated 
identifier of a specific type, storage class, and scope: 

.... 
(sym.c functions)+= 49 50 

Symbol genident(scls, ty, lev) int scls, lev; Type ty; { ... 
Symbol p; 

NEWO(p, lev >=LOCAL? FUNC : PERM); 
p->name = stringd(genlabel(l)); 
p->scope = lev; 
p->sclass = scls; 
p->type = ty; 
p->generated = 1; 
if (lev == GLOBAL) 
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} 

(*IR->defsymbol)(p); 
return p; 

(symbol flags 50)= 

unsigned temporary:!; 
unsigned generated:!; 

50 38 ... 

The names are digit strings, and the generated flag is set. Parameters 
and locals are announced to the back end elsewhere; generated globals 
are announced here by calling the back end's defsymbo 1 interface func
tion. IR points to a data structure that connects a specific back end with 
the front; Section 5.11 explains how this binding is initialized. 

Temporaries are another kind of generated variable, and are distin
guished by a lit temporary flag: 

.... 
(sym.c functions)+= 49 50 ... 

Symbol temporary(scls, ty, lev) Type ty; int scls, lev; { 

} 

Symbol p = genident(scls, ty, lev); 

p->temporary = 1; 
return p; 

Back ends must also generate temporary locals to spill registers, for ex
ample. They cannot call temporary directly because they do not know 
about the type system. newtemp accepts a type suffix, calls btot to map 
this suffix into a representative type, and calls temporary with that type. 

(sym.c functions)+= 
Symbol newtemp(sclass, tc) int sclass, tc; { 

Symbol p = temporary(sclass, btot(tc), LOCAL); 

} 

(*IR->local)(p); 
p->defined = 1; 
return p; 

(symbol flags 50)+= 

unsigned defined:!; 

.... 
50 

.... 
50 179 38 ... 

Calls to newtemp occur during code generation, which is too late for new 
temporaries to be announced like front-end temporaries. So newtemp 
calls 1oca1 to announce them. The flag defined is lit after the symbol 
has been announced to the back end. 
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Further Reading 

1 cc's symbol-table module implements only what is necessary for C. 
Other languages need more; for example, in block-structured languages 
- those with nested procedures - more than one set of parameters and 
locals are visible at the same time. Newer object-oriented languages and 
languages with explicit scope directives have more scopes; some need 
many separate symbol tables to exist at the same time. 

Fraser and Hanson (199lb) describe the evolution of lee's symbol
table module. 

Knuth (1973b), Section 6.4, gives a detailed analysis of hashing and 
describes the characteristics of good hashing functions. Suggestions for 
good hash functions abound; the one in Aho, Sethi, and Ullman (1986), 
Section 7.6 is an example. 

Exercises 

3.1 Try a better hash function for hashing entries in symbol tables; for 
example, try the one in Aho, Sethi, and Ullman (1986), Section 7.6. 
Does it make 1 cc run faster? 

3.2 1 cc never removes entries from the constants table. When might 
this approach be a problem? Propose and implement a fix, and 
measure the benefit. Is the benefit worth the effort? 

3.3 Originally, 1 cc used a single hash table for its symbol tables (Fraser 
and Hanson 199lb). In this approach, hash chains held all of the 
symbols that hashed to that bucket, and the chains were ordered in 
decreasing order of scope values. 1 ookup simply searched a single 
hash table. i nstal 1 and enters cope were easy using this approach, 
but exits cope was more complicated because it had to scan the 
chains and remove the symbols at the current scope level. The 
present design ran faster on some computers, but it might not be 
faster than the original design on other computers. Implement the 
original design; make sure you handle accesses to global correctly. 
Which design is easier to understand? Which is faster? 

3.4 sym. c exports data and functions that help generate cross-reference 
lists for identifiers and symbol-table information for debuggers. 
The -x option causes 1 cc to set the uses field of a symbol to a 
Li st of pointers to Coordinates that identify each use of the sym
bol. sym. c exports 

(sym.c exported functions)= 52 ... 
extern void use ARGS((Symbol p, Coordinate src)); 

which appends s re to p->uses. It also exports 

51 

40 constants 
38 Coordinate 
42 enterscope 
42 exitscope 
90 global 

458 " (MIPS) 
492 " (SPARC) 
524 " (X86) 
44 install 
34 List 
45 lookup 

422 uses 
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Table 39 

use 51 
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(sym.c exported data)+= 
... 
42 

extern List loci, symbols; 

(sym.c exported functions)+= 
... 
51 

extern void locus ARGS((Table tp, Coordinate *cp)); 

loci and tables hold pointers to Coordinates and Symbols. An 
entry in symbo 1 s is the tail end of a list of symbols that are visible 
from the corresponding source coordinate in 1 oci. Following the up 
field in this symbol visits all of the symbols visible from this point 
in the source program. locus appends tp->all and cp to symbols 
and 1 oci. tp->a 11 points to the symbol most recently added to the 
table *tp, and is thus the current tail of the list of visible symbols. 
Implement use and 1 ocus; both take fewer than five lines. 



4 
Types 

Types abound in C programs. These include the types given explicitly in 
declarations and those derived as intermediate types in expressions. For 
example, the assignment in 

int *p, x; 
*p = x; 

involves three different types. x is the address of a cell that holds an 
int, so the type of the address of x - its /value - is "pointer to an int." 
The type of the value of x - its rvalue - is int, as expected from the 
declaration. Similarly, the type of p's lvalue is pointer to pointer to an 
int, the type of p's rvalue is pointer to an int, and the type of *p is int. 
1 cc must deal with all of these types when it compiles the assignment. 

1 cc implements a representation for types and a set of functions on 
that representation, which are described in this chapter. The functions 
include type constructors, which build types, and type predicates, which 
test facts about types. 1 cc must also implement type checking, which 
ensures that declarations and expressions adhere to the rules dictated 
by the language. Type checking uses the predicates described here and 
is detailed in Chapters 9 and 11. 

4.1 Representing Types 

As suggested above, C types are usually rendered in English in a prefix 
form in which a type operator is followed by its operand. For example, 
the C declarator int *p declares p to be a pointer to an int, which is a 
prefix rendition of the C type int * where pointer to is the operator and 
an int is the operand. Similarly, char *(*strings) [10] declares strings 
to be a 

pointer to 
an array of 10 

pointers to 
char, 

where operands are indented under their operators. 
There are many ways to represent this kind of prefix type specification. 

For example, some older C compilers used bit strings in which the type 
operators and the basic type were each encoded with a few bits. Bit-string 
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representations are compact and easy to manipulate, but they usually 
limit the number of basic types, the number of operators that can be 
applied, and may not be able to carry size data, which are needed for 
arrays, for example. 

1 cc represents types by linked structures that mirror their prefix spec
ifications. Type nodes are the building blocks: 

( types.c typedefs)= 
typedef struct type *Type; 

(types.c exported types)= 
struct type { 

int op; 
Type type; 
int align; 
int size; 
union { 

} ; 

(types with names or tags 55) 
(function types 63) 

} u; 
Xtype x; 

66 .... 

66 .... 

The op field holds an integer operator code, and the type field holds 
the operand. The operators are the values of the global enumeration 
constants: 

CHAR 
INT 
UNSIGNED 
SHORT 

LONG 
ENUM 
FLOAT 
DOUBLE 

ARRAY 
STRUCT 
UNION 
POINTER 

FUNCTION 
CONST 
VOLATILE 
VOID 

The CHAR, INT, UNSIGNED, SHORT, LONG, and ENUM operators define the inte
gral types, and the FLOAT and DOUBLE operators define the floating types. 
Together, these types are known as the arithmetic types. Except for ENUM 
types, these types have no operands. The operand of an ENUM type is its 
compatible integral type, i.e., the type of the enumeration identifiers. For 
1 cc, this type is always int, as explained in Section 4.6. 

The ARRAY, STRUCT, and UNION operators identify the aggregate types. 
STRUCT and UNION do not have operands; their fields are stored in an aux
iliary symbol-table entry for the structure or union tag. ARRAY's operand 
is the element type. The POINTER and FUNCTION operators define pointer 
types and function types. They take operands that give the referenced 
type and the return type. The CONST and VOLATILE operators specify 
qualified types; their operands are the unqualified versions of the types. 
The sum CONST +VOLATILE is also a type operator, and it specifies a type 
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that is both constant and volatile. The VOID operator identifies the void 
type; it has no operand. 

The a 1 i gn and size fields give the type's alignment and the size of 
objects of that type in bytes. As specified by the code-generation inter
face in Chapter 5, the size must be a multiple of the alignment. The back 
end must allocate space for a variable so that its address is a multiple 
of its type's alignment. 

The x field plays the same role for types as it does in symbols; back 
ends may define Xtype to add target-specific fields to the type structure. 
This facility is most often used to support debuggers. 

The innards of Types are revealed by exporting the declaration so that 
back ends may read the size and a 1 i gn fields and read and write the x 
fields; by convention, these are the only fields the back ends are allowed 
to inspect. The front end, however, may access all of the fields. 

The op, type, size, and a 1 i gn fields give most of the information 
needed for dealing with a type. For unqualified types with names or tags 
- the built-in types, structure and union types, and enumeration types -
the u. sym fields point to symbol-table entries that give more information 
about the types: 

(types with names or tags 55)= 54 

Symbol sym; 

The symbol-table entry gives the name of the type, and the value of 
u. sym->addressed is zero if constants of the type can be included as 
parts of instructions. u. sym->type points back to the type itself; this 
pointer is used to map tags to types, for example. There is one symbol
table entry for each structure, union, and enumeration type, one for each 
basic type, and one for all pointer types. These entries appear in the 
types table, as detailed below in Section 4.2. This representation is used 
so that the functions in sym. c can be used to manage types. 

Types can be depicted in a parenthesized prefix form that follows 
closely the English prefix form introduced above. For example, the type 
int on the MIPS is: 

(INT 4 4 ["int"]) 

The first 4 is the alignment, the second 4 is the size, and the ["int"] 
denotes a pointer to a symbol-table entry for the type name int. Other 
types are depicted similarly, for example 

(POINTER 4 4 (INT 4 4 ["int"]) ["T*"]) 

is the type pointer to an int. The type name T* represents the single 
symbol-table entry that is used for all pointer types. 

The alignments, sizes, and symbol-table pointers are omitted from 
explanations (but not from the code) when they're not needed to under
stand the topic at hand. For instance, the types given at the beginning 
of this section are: 

37 symbol 
54 Type 
41 types 

109 VOID 

55 
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(INT) 
(POINTER (INT)) 
(POINTER (ARRAY 10 (POINTER (CHAR)))) 

The last line, which depicts the type pointer to an array of 10 pointers to 
char, illustrates the convention for array types in which the number of 
elements is given instead of the size of the array. This convention is only 
a notational convenience; the size field of the array type always holds 
the actual size of the array. The number of elements can be computed by 
dividing that size by the size of the element type. Thus, the type array 
of 10 ints is more accurately depicted as 

(ARRAY 40 4 (INT 4 4 ["int"])) 

but, by convention, is usually depicted as (ARRAY 10 (INT)). An incom
plete type is one whose size is unknown and that thus has a size field 
equal to zero. These arise from declarations that omit sizes, such as 

int a[]; 
extern struct table *identifiers; 

Opaque pointers, such as pointers to lee's table structures, are incom
plete types. Sizes for incomplete types are sometimes shown when it's 
important to indicate that they are incomplete. 

4.2 Type Management 

One of the basic operations in type checking is determining whether two 
types are equivalent. This test can simplified if there is only one copy 
of any type, much the same way that string comparison is simplified by 
keeping only one copy of any string. 

type does for types what stri ngn does for strings. type manages 
typetable: 

( types.c data)= 
static struct entry { 

struct type type; 
struct entry *link; 

} *typetable[128]; 

59 ... 

Each entry structure in typetable holds a type. The function type 
searches typetab 1 e for the desired type, or constructs a new type: 

( types.c functions)= 
static Type type(op, ty, size, align, sym) 

int op, size, align; Type ty; void *sym; { 
unsigned h = (hash op and ty 57)&(NELEMS(typetable)-1); 
struct entry *tn; 

58 ... 
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} 

if (op != FUNCTION && (op != ARRAY I I size > 0)) 
(search for an existing type 57) 

NEW(tn, PERM); 
tn->type.op = op; 
tn->type.type = ty; 
tn->type.size = size; 
tn->type.align = align; 
tn->type.u.sym = sym; 
memset(&tn->type.x, 0, sizeof tn->type.x); 
tn->link = typetable[h]; 
typetable[h] = tn; 
return &tn->type; 

type always builds new types for function types and for incomplete array 
types. When type builds a new type, it initializes the fields specified by 
the arguments, clears the x field, adds the type to the appropriate hash 
chain, and returns the new Type. 

type searches typetable by using the exclusive OR of the type oper
ator and the address of the operand as the hash value, and searching 
the appropriate chain for a type with the same operator, operand, size, 
alignment, and symbol-table entry: 

(hash op and ty 57) = 
(opA((unsigned)ty>>3)) 

(search for an existing type 57) = 
for (tn = typetable[h]; tn; tn = tn->link) 

if (tn->type.op == op && tn->type.type 
&& tn->type.size == size && tn->type.align 
&& tn->type.u.sym == sym) 

return &tn->type; 

ty 
align 

56 

57 

typetable is initialized with the built-in types and the type for void*. 
These types are also the values of 14 global variables: 

( types.c exported data)= 
extern Type chartype; 
extern Type doubletype; 
extern Type floattype; 
extern Type inttype; 
extern Type longdouble; 
extern Type longtype; 
extern Type shorttype; 
extern Type signedchar; 
extern Type unsignedchar; 
extern Type unsignedlong; 

78 align 
109 ARRAY 
109 FUNCTION 

24 NEW 
97 PERM 
54 Type 
56 type 
56 typetable 

57 
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addressed 179 
align 78 

CHAR 109 
charmetri c 78 

chartype 57 
DOUBLE 109 

doublemetric 79 
doubletype 57 

FLOAT 109 
floatmetri c 79 

floattype 57 
GLOBAL 38 

install 44 
INT 109 

i ntmetri c 78 
IR 306 

longdouble 57 
longtype 57 

outofl i ne 78 
PERM 97 

SHORT 109 
shortmetric 78 

shorttype 57 
signedchar 57 

string 29 
types 41 

typetable 56 
unsignedchar 57 

UNSIGNED 109 
unsignedlong 57 

extern Type unsignedshort; 
extern Type unsignedtype; 
extern Type voidptype; 
extern Type voidtype; 

The front end uses these variables to ref er to specific types, and can 
thus avoid searching typetab 1 e for types that are known to exist. These 
variables and typetabl e are initialized by typeini t: 

.... 
( types.c functions)+= 

void typeinit() { 
(typeinit 58) 

56 59 ... 

} 

As detailed in Section 5.1, each basic type is characterized by its type 
metric, which is a triple that gives the type's size and minimum align
ment, and tells whether constants of the type can appear in dags. These 
triples are structures with size, a 1 i gn, and outofl i ne fields. 

(typeinit 58)= 59 ... 58 
#define xx(v,name,op,metrics) { \ 

Symbol p = install(string(name), &types, GLOBAL, PERM);\ 
v = type(op, 0, IR->metrics.size, IR->metrics.align, p);\ 
p->type = v; p->addressed IR->metrics.outofline; } 

xx(chartype, "char", CHAR, charmetri c); 
xx(doubletype, "double", DOUBLE, doublemetric); 
xx(floattype, "float", FLOAT, floatmetric); 
xx(i nttype, "int", INT, i ntmetri c); 
xx (1ongdoub1 e, "1 ong daub 1 e" , DOUBLE, daub 1 emet ri c) ; 
xx(longtype, "long int", INT, intmetric); 
xx(shorttype, "short", SHORT, shortmetri c); 
xx(signedchar, "signed char", CHAR, charmetric); 
xx(unsignedchar, "unsigned char", CHAR, charmetric); 
xx(unsignedlong, "unsigned long", UNSIGNED,intmetric); 
xx(unsignedshort,"unsigned short",SHORT, shortmetric); 
xx(unsignedtype, "unsigned int", UNSIGNED,intmetric); 
#undef xx 

The unsigned integral types have the same operators, sizes, and align
ments as their signed counterparts, but they have different symbol-table 
entries, so distinct types are constructed for them. Similarly, 1 cc as
sumes that long and int, and long double and double, have the same 
structure, but each has a distinct type. Comparing a type to 1 ongtype 
suffices to test if it represents the type long. IR points to the interface 
record supplied by the back end; see Section 5 .11. The type void has no 
metrics: 
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... 
(typelnit 58)+= 

{ 
58 61 58 

} 

Symbol p; 
p = install(string("void"), &types, GLOBAL, PERM); 
voidtype = type(VOID, NULL, 0, 0, p); 
p->type = voidtype; 

.... 

typelni t installs the symbol-table entries into the types table de
fined in Section 3.2. This table holds entries for all types that are 
named by identifiers or tags. The basic types are installed by typelni t 
and are never removed. But the types associated with structure, union, 
and enumeration tags must be removed from typetab 1 e when their as
sociated symbol-table entries are removed from types by exi tscope. 
exitscope calls rmtypes(lev) to remove from typetable any types 
whose u. sym->scope is greater than or equal to 1 ev: 

( types.c data)+= 
static int maxlevel; 

(types.c functions)+= 
void rmtypes(lev) int lev; { 

} 

if (maxlevel >= lev) { 
int i; 

} 

maxlevel = O; 
for (i = O; i < NELEMS(typetable); i++) { 

(remove types with u. sym->scope >= 1 ev 59) 
} 

... 
56 61 .... 

... 
58 61 .... 

The value of maxl eve 1 is the largest value of u. sym->scope for any type 
in typetable that has an associated symbol-table entry. rmtypes uses 
maxl evel to avoid scanning typetabl e in the frequently occurring case 
when none of the symbol-table entries have scopes greater than or equal 
to lev. Removing the types also recomputes maxlevel: 

(remove types with u. sym->scope >= 1 ev 59) = 59 
struct entry *tn, **tq = &typetable[i]; 
while ((tn = *tq) != NULL) 

if (tn->type.op == FUNCTION) 
tq = &tn->link; 

else if (tn->type.u.sym && tn->type.u.sym->scope >= lev) 
*tq = tn->link; 

else { 

} 

(recompute max 1 eve 1 60) 
tq = &tn->link; 

42 exitscope 
109 FUNCTION 

38 GLOBAL 
44 install 
19 NELEMS 
97 PERM 
37 scope 
29 string 
58 type!nit 
41 types 
56 typetable 

109 VOID 
58 voidtype 
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(recompute maxlevel 60)= 59 
if (tn->type.u.sym && tn->type.u.sym->scope > maxlevel) 

maxlevel = tn->type.u.sym->scope; 

Function types are treated specially because they have fields that overlap 
u. sym but themselves have no u. sym. Arrays and qualified types have no 
u. sym fields, so the last clause handles them. 

4.3 Type Predicates 

The global variables initialized by typeini t can be used to specify a 
particular type and to test for a particular type. For example, if the type 
ty is equal to i nttype, ty is type int. The is ... predicates listed below, 
implemented as macros, test for sets of types by checking for specific 
operators. Most operate on unqualified types, which are obtained by 
calling unqua 1: 

(types.c exported macros)= 60 .... 
#define isqual(t) ((t)->op >=CONST) 
#define unqual(t) (isqual(t) ? (t)->type (t)) 

( types.c exported macros)+= 
... 
60 66 .... 

#define isvolatile(t) ((t)->op == VOLATILE \ 
11 (t)->op == CONST+VOLATILE) 

#define i sconst(t) ((t)->op == CONST \ 
II (t)->op == CONST+VOLATILE) 

#define i sarray(t) (unqual(t)->op ==ARRAY) 
#define i sstruct(t) (unqual(t)->op == STRUCT \ 

II unqual(t)->op ==UNION) 
#define i suni on(t) (unqual(t)->op ==UNION) 
#define i sfunc(t) (unqual(t)->op ==FUNCTION) 
#define isptr(t) (unqual(t)->op ==POINTER) 
#define i schar(t) (unqual(t)->op ==CHAR) 
#define isint(t) (unqual(t)->op >=CHAR\ 

&& unqual(t)->op <=UNSIGNED) 
#define i sfloat(t) (unqual(t)->OP <=DOUBLE) 
#define isarith(t) (unqual(t)->op <=UNSIGNED) 
#define i sunsi gned(t) (unqual(t)->op ==UNSIGNED) 
#define i sdouble(t) (unqual(t)->op ==DOUBLE) 
#define i sscalar(t) (unqual(t)->op <=POINTER\ 

II unqual(t)->op == ENUM) 
#define i senum(t) (unqual(t)->OP == ENUM) 

The values of the type operators are defined in token. h so that the com
parisons made in the macros above yield the desired result. 
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4.4 Type Constructors 

type constructs an arbitrary type. Other functions encapsulate calls to 
type to construct specific types. For example, ptr builds a pointer type: 

( types.c functions)+= 
Type ptr(ty) Type ty; { 

} 

return type(POINTER, ty, IR->ptrmetric.size, 
IR->ptrmetric.align, pointersym); 

.... 
59 61 ..... 

which, given a type ty, returns (POINTER ty). The symbol-table entry 
associated with pointer types is assigned to poi ntersym during initial
ization, and the type for void* is initialized by calling pt r: 

(types.c data)+= 
.... 
59 

static Symbol pointersym; 

.... 
59 (typelni t 58) += 58 

pointersym = install(string("T*"), &types, GLOBAL, 
pointersym->addressed = IR->ptrmetric.outofline; 
voidptype = ptr(voidtype); 

PERM); 

While ptr builds a pointer type, deref dereferences it; that is, it returns 
the reference type. Given a type (POINTER ty), deref returns ty: 

( types.c functions)+= 
Type deref(ty) Type ty; { 

if (i sptr(ty)) 

} 

ty = ty->type; 
else 

error("type error: %s\n", "pointer expected"); 
return isenum(ty) ? unqual(ty)->type : ty; 

.... 
61 61 ..... 

de ref, like some of the other constructors below, issues errors for invalid 
operands. Technically, these kinds of tests are part of type-checking, not 
type construction, but putting these tests in the constructors simplifies 
the type-checking code and avoids oversights. The last line of deref 
handles pointers to enumerations: dereferencing a pointer to an enu
meration must return its associated unqualified integral type. unqual is 
described above. 

array(ty, n, a) builds the type (ARRAY n ty). It also arranges for 
the resulting type to have alignment a or, if a is 0, the alignment of ty. 
array also checks for illegal operands. 

(types.c functions)+= 
.... 
61 62 ..... 

Type array(ty, n, a) Type ty; int n, a; { 
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} 

if (isfunc(ty)) { 

} 

error("illegal type 'array of %t'\n", ty); 
return array(inttype, n, O); 

if (level > GLOBAL && isarray(ty) && ty->size == 0) 
error("missing array size\n"); 

if (ty->size == 0) { 
if (unqual(ty) == voidtype) 

error("illegal type 'array of %t'\n", ty); 
else if (Aflag >= 2) 

warning("declaring type 'array of %t' is _ 
undefined\n", ty); 

} else if (n > INT_MAX/ty->size) { 

} 

error("size of 'array of %t' exceeds %d bytes\n", 
ty, INT_MAX); 

n = 1; 

return type(ARRAY, ty, n*ty->size, 
a? a : ty->align, NULL); 

C does not permit arrays of functions, arrays of void, or incomplete ar
rays (those with zero length) at any scope level except GLOBAL. array 
also forbids arrays whose size is greater than INT_MAX bytes, because it 
cannot represent their sizes, and warns about declaring incomplete ar
rays of incomplete types if 1 cc's (fussy) double -A option, which sets 
Afl ag to 2, indicating that 1 cc should warn about non-ANSI usage. The 
format code %t prints an English description of the corresponding type 
argument; see Exercise 4.4. 

Array types "decay" into pointers to their element types in many con
texts, such as when an array is the type of a formal parameter. atop 
implements this decay: 

( types.c functions)+= 
Type atop(ty) Type ty; { 

if (isarray(ty)) 

} 

return ptr(ty->type); 
error("type error: %s\n", "array expected"); 
return ptr(ty); 

... 
61 62 ... 

qual and unqual, shown above, respectively construct and deconstruct 
qualified types. Given a type ty, qual checks for illegal operands and 
builds (CONST ty), (VOLATILE ty), or (CONST+VOLATILE ty). 

( types.c functions)+= 
... 
62 64 ... 

Type qual(op, ty) int op; Type ty; { 
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} 

if (isarray(ty)) 
ty = type(ARRAY, qual(op, ty->type), ty->size, 

ty->align, NULL); 
else if (isfunc(ty)) 

warning("qualified function type ignored\n"); 
else if (isconst(ty) && op == CONST 
I I isvolatile(ty) && op == VOLATILE) 

error("illegal type '%k %t'\n", op, ty); 
else { 

} 

if (isqual(ty)) { 
op += ty->op; 
ty = ty->type; 

} 
ty = type(op, ty, ty->size, ty->align, NULL); 

return ty; 

If ty is the type (ARRAY ety), the qualification applies to the element 
type, so qual (op, ty) builds (ARRAY (op ety)). If ty is already quali
fied, it's either (CONST ty->type) or (VOLATILE ty->type), and op is the 
other qualifier. In this case, qual builds (CONST+VOLATILE ty->type). 
This convention complicates the code for qua l, but makes it possible to 
describe qualified types with only one type node instead of one or two 
type nodes, thus simplifying i squa 1. 

4.5 Function Types 

The type field of a function type gives the type of the value returned by 
the function, and the u union holds a structure that gives the types of 
the arguments: 

(function types 63} = 
struct { 

unsigned oldstyle:l; 
Type *proto; 

} f; 

54 

The f.oldstyle flag distinguishes between the two kinds of function 
types: A one indicates an old-style type, which may omit the argument 
types of the arguments, and a zero indicates new-style function, which 
always includes the argument types. f. proto points to a null-terminated 
array of Types; f.proto[i] is the type of argument i+l. The f.oldstyle 
flag is needed because old-style function types may carry prototypes, 
but, as dictated by the ANSI Standard, those prototypes are not used to 
type-check actual arguments that appear in calls to such functions. This 
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anomaly appears when an old-style definition is followed by a new-style 
declaration; for example, 

int f(x,y) int x; double y; { .•. } 
extern int f(int, double); 

defines f as an old-style function and subsequently declares a prototype 
for f. The prototype must be compatible with the definition, but it's not 
used to type-check calls to f. 

func builds the type (FUNCTION ty {proto}), where ty is the type of 
the return value and the braces enclose the prototype, and it initializes 
the prototype and old-style flag: 

( types.c functions)+= 
... 
62 64 .... 

Type func(ty, proto, style) Type ty, *proto; int 
if (ty && (isarray(ty) I I isfunc(ty))) 

style; { 

} 

error("illegal return type '%t'\n", ty); 
ty = type(FUNCTION, ty, 0, 0, NULL); 
ty->u.f.proto = proto; 
ty->u.f.oldstyle = style; 
return ty; 

freturn is to function types what ptr is to pointer types. It takes a type 
(FUNCTION ty) and dereferences it to yield ty, the type of the return 
value. 

( types.c functions)+= 
Type freturn(ty) Type ty; { 

if (isfunc(ty)) 

} 

return ty->type; 
error("type error: %s\n", "function expected"); 
return inttype; 

... 
64 65 .... 

ANSI C supports functions with no arguments; such a function is de
clared with void as the argument list. For example, 

void f(void); 

declares f to be a function that takes no arguments and returns no value. 
Internally, the prototype for functions with no arguments is not empty; 
it consists of a void type and the terminating null. Thus, the type of f 
is depicted as 

(FUNCTION (VOID) {(VOID)}) 

ANSI C also supports functions with a variable number of arguments. 
spri ntf is an example; it's declared as 
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int sprintf(char *, char*, ... ); 

where the ellipsis denotes the variable portion of the argument list. The 
prototype for a variable number of arguments consists of the types of 
the declared arguments, a void type, and the terminating null. spri ntf's 
type is thus 

(FUNCTION (INT) 
{(POINTER (CHAR)) 

(POINTER (CHAR)) 
(VOID)}) 

The predicate vari adi c tests whether a function type has a variable
length argument list by looking for the type void at the end of its pro
totype: 

( types.c functions)+= 
int variadic(ty) Type ty; { 

} 

if (isfunc(ty) && ty->u.f .proto) { 
inti; 
for Ci= O; ty->u.f.proto[i]; i++) 

return i > 1 && ty->u.f.proto[i-1] == voidtype; 
} 
return O; 

.... 
64 67 ... 

A function with a variable number of arguments always has at least one 
declared argument, followed by one or more optional arguments, so the 
void at the end of the prototype can't be confused with the prototype 
for a function with no arguments, which has the one-element prototype 
{(VOID)}. 

4.6 Structure and Enumeration Types 

Structure and union types are identified by tags, and the u. sym fields of 
these types point to the symbol-table entries for these tags. The fields 
are stored in these symbol-table entries, not in the types themselves. The 
relevant field of the symbol structure is u. s: 

(struct types 65)= 
struct { 

unsigned cfields:l; 
unsigned vfields:l; 
Field flist; 

} s; 
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cfi el ds and vfi el ds are both one if the structure or union type has any 
const-qualified or volatile-qualified fields. fl i st points to a list of field 
structures threaded through their link fields: 

(types.c typedefs)+= 
typedef struct field *Field; 

(types.c exported types)+= 
struct field { 

char *name; 
Type type; 

} ; 

int offset; 
short bitsize; 
short lsb; 
Field link; 

.... 
54 

.... 
54 

name holds the field name, type is the field's type, and offset is the byte 
off set to the field in an instance of the structure. 

When a field describes a bit field, the type field is either i nttype 
or unsi gnedtype, because those are the only two types allowed for bit 
fields. The l sb field is nonzero and the following macros apply. l sb is 
the number of the least significant bit in the bit field plus one, where bit 
numbers start at zero with the least significant bit. 

(types.c exported macros)+= 
#define fieldsize(p) (p)->bitsize 
#define fieldright(p) ((p)->lsb - 1) 
#define fieldleft(p) (8*(p)->type->size - \ 

fi~ldsize(p) - fieldright(p)) 
#define fieldmask(p) (-(-(unsigned)O<<fieldsize(p))) 

.... 
60 74 ... 

fields i ze returns the bi ts i ze field, which holds the size of the bit field 
in bits. fi eldri ght is the number of bits to the right of a bit field, and is 
used to shift the field over to the least significant bits of a signed or un
signfd integer. Likewise, fieldleft is the number of bits to the left of a 
field; it is used when a signed bit field must be sign-extended. fie l dmas k 
is a mask of bi tsi ze qnes and is used to clear the extraneous bits when 
a bit field is extracted. Notice that this representation for bit fields does 
not depend on the target's endianness; the same representation is used 
for both big and little endians. 

newstruct creates anew type, (STRUCT ["tag"]) or (UNION ["tag"]), 
where tag is the tag. It's called by structdcl whenever a new structure 
or union type is declared or defined, with or without a field list. When 
a new structure or union type is created, its tag is installed in the types 
table. Tags are generated for anonymous structures and unions; that is, 
those without tags: 
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( types.c functions)+= 
Type newstruct(op, tag) int op; char *tag; { 

Symbol p; 

} 

if (*tag == O) 
tag= stringd(genlabel(l)); 

else 
(check for redefinition of tag 67) 

p = install(tag, &types, level, PERM); 
p->type = type(op, NULL, 0, 0, p); 
if (p->scope > maxlevel) 

maxlevel = p->scope; 
p->src = src; 
return p->type; 

... 
65 68 ... 

Installing a new tag in types might create an entry with a scope that 
exceeds max 1eve1, so max 1eve1 is adjusted if necessary. Structure types 
point to their symbol-table entries, which point back to the type, so that 
tags can be mapped to types and vice versa. Tags are mapped to types 
when they are used in declarators, for example; see structdcl. Types 
are mapped to tags when rmtypes removes them from the typetabl e. 

It's illegal to define the same tag more than once in the same scope, 
but it is legal to declare the same tag more than once. Giving a struc
ture declaration with fields declares and defines a structure tag; using a 
structure tag without giving its fields declares the tag. For example, 

struct employee { 
char *name; 

} 

struct date *hired; 
char ssn[9]; 

declares and defines emp 1 oyee but only declares date. When a tag is 
defined, its defined flag is lit, and defined is examined to determine if 
the tag is being redefined: 

(check for redefinition of tag 67)= 67 
if ((p = lookup(tag, types)) != NULL && (p->scope == level 
I I p->scope == PARAM && level == PARAM+l)) { 

} 

if (p->type->op == op && !p->defined) 
return p->type; 

error("redefinition of '%s' previously defined at %w\n", 
p->name, &p->src); 

Arguments and argument types have scope PARAM, and locals have scopes 
beginning at PARAM+l. ANSI C specifies that arguments and top-level 
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locals are in the same scope, so the scope test must test for a local 
tag that redefines a tag defined by an argument. This division is not 
mandated by the ANSI C Standard; it's used internally by 1 cc to separate 
parameters and locals so that foreach can visit them separately. 

newfi e 1 d adds a field with type fty to a structure type ty by allocating 
a fie 1 d structure and appending it to the field list in ty's symbol-table 
entry: 

.... 
(types.c functions}+= 67 69 

Field newfield(name, ty, fty) char *name; Type ty, fty; { .,.. 

} 

Field p, *q = &ty->u.sym->u.s.flist; 

if (name NULL) 
name= stringd(genlabel(l)); 

for (p = *q; p; q = &p->link, p *q) 
if (p->name == name) 

error("duplicate field name '%s' in '%t'\n", 
name, ty); 

NEWO(p, PERM); 
*q = p; 
p->name = name; 
p->type = fty; 
return p; 

If name is null, newfield generates a name; this capability is used by 
fields for unnamed bit fields. Field lists are searched by fieldref; see 
Exercise 4.6. 

Enumeration types are like structure and union types, except that they 
don't have fields, and their type fields give their associated integral type, 
which for 1 cc is always i nttype. The standard permits compilers to use 
any integral type that can hold all of the enumeration values, but many 
compilers always use ints; 1 cc does likewise to maintain compability. 
Enumeration types have a type field so that 1 cc could use different in
tegral types for different enumerations. Enumeration types are created 
by calling newstruct with the operator ENUM, and newstruct returns the 
type (ENUM ["tag"]). 

Like a structure or union type, the u. sym field of an enumeration type 
points to a symbol-table entry for its tag, but it uses a different compo
nent of the symbo 1 structure: 

(enum types 68) = 38 
Symbol *idlist; 

i dl i st points to a null-terminated array of Symbo 1 s for the enumeration 
constants associated with the enumeration type. These are installed in 
the identifiers table, and each one carries its value: 
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(enum constants 69)= 
int value; 

38 

The enumeration constants are not a part of the enumeration type. They 
are created, initialized, and packaged in an array as they are parsed; see 
Exercise 11.9. 

4. 7 Type-Checking Functions 

Determining when two types are compatible is the crux of type check
ing, and the functions described here help to implement ANSI C's type
checking rules. 

eqtype returns one if two types are compatible and zero otherwise . 

( types.c functions)+= 
int eqtype(tyl, ty2, ret) Type tyl, ty2; int ret; { 

if (tyl == ty2) 

} 

return 1; 
if (tyl->op != ty2->op) 

return O; 
switch (tyl->op) { 
case CHAR: case SHORT: case UNSIGNED: case INT: 
case ENUM: case UNION: case STRUCT: case DOUBLE: 

return O; 
case POINTER: 
case VOLATILE: 
case CONST: 
case ARRAY: 
case FUNCTION: 
} 

(check for compatible pointer types 70) 
case CONST+VOLATILE: 
(check for compatible qualified types 70) 
(check for compatible array types 70) 
(check for compatible function types 70) 

.... 
68 71 ... 

The third argument, ret, is the value returned when either tyl or ty2 is 
an incomplete type. 

A type is always compatible with itself. type ensures that there is only 
one instance of most types, so many tests of compatible types pass the 
first test in eqtype. Likewise, many tests of incompatible types test types 
with different operators, which are never compatible and cause eqtype 
to return zero. 

If two different types have the same operator CHAR, SHORT, UNSIGNED, 
or INT, the two types represent different types, such as unsigned short 
and signed short, and are incompatible. Similarly, two enumeration, 
structure, or union types are compatible only if they are the same type. 

The remaining cases traverse the type structures to determine compat
ibility. For example, two pointer types are compatible if their referenced 
types are compatible: 
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(check for compatible pointer types 70) = 
return eqtype(tyl->type, ty2->type, l); 

69 

Two similarly qualified types are compatible if their unqualified types 
are compatible. 

(check for compatible qualified types 70) = 
return eqtype(tyl->type, ty2->type, l); 

69 

An incomplete type is one that does not include the size of the object 
it describes. For example, the declaration 

int a[]; 

declares an array in which the size is unknown. The type is given by 
(ARRAY 0 (INT)); a size of zero identifies an incomplete type. Two 
array types are compatible if their element types are compatible and if 
their sizes, if given, are equal: 

(check for compatible array types 70)= 

if (eqtype(tyl->type, ty2->type, 1)) { 
if (tyl->size ty2->size) 

} 

return l; 
if (tyl->si ze 

return ret; 

return O; 

0 I I ty2->size == 0) 

69 

eqtype returns ret if one of the array types is incomplete but they are 
otherwise compatible. ret is always one when eqtype calls itself, and is 
usually one when called from elsewhere. Some operators, such as pointer 
comparison, insist on operands that are both incomplete types or both 
complete types; ret is 0 for those uses of eqtype. The first test handles 
the case when both arrays have unknown sizes. 

Two function types are compatible if their return types are compatible 
and if their prototypes are compatible: 

(check for compatible function types 70) = 69 

if (eqtype(tyl->type, ty2->type, 1)) { 

} 

Type *pl= tyl->u.f.proto, *p2 = ty2->u.f.proto; 
if (pl == p2) 

return l; 
if (pl && p2) { 

(check for compatible prototypes 71) 

} else { 
(check if prototype is upward compatible 71) 

} 

return O; 
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The easy case is when both functions have a prototype. The prototypes 
must both have the same number of argument types, and the unqualified 
versions of the types in each prototype must be compatible. 

(check for compatible prototypes 71)= 
for ( ; *pl && *p2; pl++, p2++) 

if (eqtype(unqual(*pl), unqual(*p2), 1) == O) 
return O; 

if (*pl == NULL && *p2 == NULL) 
return l; 

70 

The other case is more complicated. Each argument type in the one 
function type that has a prototype must be compatible with the type that 
results from applying the default argument promotions to the unqualified 
version of the type itself. Also, if the function type with a prototype has a 
variable number of arguments, the two function types are incompatible. 

(check if prototype is upward compatible 71) = 
if (variadic(pl ? tyl : ty2)) 

return O; 
if (pl == NULL) 

pl = p2; 
for ( ; *pl; pl++) { 

Type ty = unqual(*pl); 
if (promote(ty) != ty I I ty == floattype) 

return O; 
} 
return l; 

70 

The default argument promotions stipulate that floats are promoted to 
doubles and that small integers and enumerations are promoted to ints 
or unsigneds. The code above checks the float promotion explicitly, and 
calls promote for the others. promote implements the integral promo
tions: 

( types.c functions)+= 
Type promote(ty) Type ty; { 

ty = unqual(ty); 

} 

if (isunsigned(ty) I I ty == longtype) 
return ty; 

else if (isint(ty) I I isenum(ty)) 
return inttype; 

return ty; 

..... 
69 72 .... 

Two compatible types can be combined to form a new, composite type. 
This operation occurs, for example, in the C fragment 

69 eqtype 
57 floattype 
60 isenum 
60 isint 
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int x[]; 
int x[lO]; 

The first declaration associates the type (ARRAY 0 (INT)) with x. The 
second declaration forms the new type (ARRAY 10 (INT)). These two 
types are combined to form the type (ARRAY 10 (INT)), which becomes 
the type of x. Combining these two types uses the size of the second 
type in the composite type. Another example is combining a function 
type with a prototype with a function type without one. 

compose accepts two compatible types and returns the composite type. 
compose is similar in structure to eqtype and the easy cases are similar . 

... 
( types.c functions)+= 71 73 

Type compose(tyl, ty2) Type tyl, ty2; { 
if (tyl == ty2) 

} 

return tyl; 
switch (tyl->op) { 
case POINTER: 

return ptr(compose(tyl->type, ty2->type)); 
case CONST+VOLATILE: 

return qual(CONST, qual(VOLATILE, 
compose(tyl->type, ty2->type))); 

case CONST: case VOLATILE: 
return qual(tyl->op, compose(tyl->type, ty2->type)); 

case ARRAY: { (compose two array types 72) } 
case FUNCTION: { (compose two function types 72) } 
} 

... 

Two compatible array types form a new array whose size is the size 
of the complete array, if there is one. 

(compose two array types 72) = 72 

Type ty = compose(tyl->type, ty2->type); 
if (tyl->size && tyl->type->size && ty2->size == 0) 

return array(ty, tyl->size/tyl->type->size, tyl->align); 
if (ty2->size && ty2->type->size && tyl->size == 0) 

return array(ty, ty2->size/ty2->type->size, ty2->align); 
return array(ty, 0, O); 

The composite type of two compatible function types has a return type 
that is the composite type of the two return types, and argument types 
that are the composite types of the corresponding argument types. If 
one function type does not have a prototype, the composite type has the 
prototype from the other function type. 

(compose two function types 72)= 72 

Type *pl = tyl->u.f .proto, *p2 = ty2->u.f .proto; 
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Type ty = compose(tyl->type, ty2->type); 
List tlist = NULL; 
if (pl == NULL && p2 == NULL) 

return func(ty, NULL, l); 
if (pl && p2 == NULL) 

return func(ty, pl, tyl->u.f.oldstyle); 
if (p2 && pl == NULL) 

return func(ty, p2, ty2->u.f.oldstyle); 
for ( ; *pl && *p2; pl++, p2++) { 

} 

Type ty = compose(unqual(*pl), unqual(*p2)); 
if Ci sconst (*pl) I I i sconst (*p2)) 

ty = qual(CONST, ty); 
if (isvolatile(*pl) I I isvolatile(*p2)) 

ty = qual(VOLATILE, ty); 
tlist = append(ty, tlist); 

return func(ty, ltov(&tlist, PERM), O); 

This code uses the list functions append and 1 tov to maL- oe:.late Lists, 
which are lists of pointers. 

4.8 Type Mapping 

The type representation and type functions described in this chapter are 
used primarily by the front end. Back ends may inspect the size and 
a 1 i gn fields, but must not rely on the other fields. 

They may, however, have to map Types to type suffixes, which are 
used to form type-specific operators as described in Chapter 5. The type 
suffixes are a subset of the type operators. ttob maps a type to its 
corresponding type suffix: 

( types.c functions}+= 
int ttob(ty) Type ty; { 

switch (ty->op) { 
case CONST: case VOLATILE: case CONST+VOLATILE: 

return ttob(ty->type); 
case CHAR: case INT: case SHORT: case UNSIGNED: 
case VOID: case FLOAT: case DOUBLE: return ty->op; 
case POINTER: case FUNCTION: return POINTER; 
case ARRAY: case STRUCT: case UNION: return STRUCT; 
case ENUM: return INT; 
} 

} 

widen is similar, but widens all integral types to int: 

... 
72 74 ... 
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... 
66 ( types.c exported macros}+= 

#define widen(t) (isint(t) I I isenum(t) ? INT : ttob(t)) 

btot is the opposite of ttob; it maps an operator or type suffix op to 
some Type such that optype(op) == ttob(btot(op)). 

(types.c functions}+= 
Type btot(op) int op; { 

switch (optype(op)) { 

} 

case F: return floattype; 
case D: return doubletype; 
case C: return chartype; 
case S: return shorttype; 
case I: return inttype; 
case U: return unsignedtype; 
case P: return voidptype; 
} 

... 
73 

The enumeration identifiers F, D, C, ... , defined on page 82, are abbrevi
ations for the corresponding type operators. 

Further Reading 

1 cc's type representation is typical for languages in which types can 
be specified by grammars and hence represented by linked structures 
that amount to abstract syntax trees for expressions derived from those 
grammars. Aho, Sethi, and Ullman (1986) describe this approach in more 
detail and illustrate how type checking is done not only for languages 
like C but also for functional languages, such as ML (Ullman 1994). Sec
tion 6.3, particularly Exercise 6.13, in Aho, Sethi, and Ullman (1986) de
scribes how PCC, the Portable C Compiler Uohnson 1978), represented 
types with the bit strings. 

Exercises 

4.1 Give the parenthesized prefix form for the types in the following 
declarations. 

long double d; 
char ***p; 
const int *const volatile *q; 
int (*r)[10][4]; 
struct tree *(*s[])(int, struct tree*, struct tree *); 
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4.2 Give an example of a C structure definition that draws the tag re
definition diagnostic described in Section 4.6. 

4.3 Implement the predicate 

(types.c exported functions)= 75 ..... 
extern int hasproto ARGS((Type)); 

which returns one if ty includes no function types or if all of the 
function types it includes have prototypes, and zero otherwise. 
hasproto is used to warn about missing prototypes. It doesn't warn 
about missing prototypes in structure fields that are function point
ers, because it's called explicitly with the types of the fields as the 
structure is parsed. 

4.4 1 cc prints an English rendition of types in diagnostics. For example, 
the types of spri ntf, shown in Section 4.5, and of 

char *(*strings)[lO] 

are printed as 

int function(char *, char*, ... ) 
pointer to array 10 of pointer to char 

The output functions interpret the pri ntf-style code %t to print the 
next Type argument, and call 

... 
75 75 ..... ( types.c exported functions)+= 

extern void outtype ARGS((Type)); 

to do so. Implement outtype. 

4.5 types. c exports three other functions that format and print types . 

( types.c exported functions)+= 
extern void printdecl ARGS((Symbol p, 
extern void printproto ARGS((Symbol p, 
extern char *typestring ARGS((Type ty, 

... 
75 76 ..... 

Type ty)); 
Symbol args[])); 
char *id)); 

typestri ng returns a C declaration that specifies ty to be the type 
of the identifier id. For example, if ty is 

(POINTER (ARRAY 10 (POINTER (CHAR)))) 

and id is "strings", typestri ng returns "char *(*strings) [10] ". 
1 cc's -P option helps convert pre-ANSI code to ANSI C by printing 
new-style prototypes for functions and globals on the standard er
ror output. pri ntdecl prints a declaration for p assuming it has 

75 

54 Type 
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type ty (ty is usually p->type), and pri ntproto prints a declara
tion for a function p that has parameters given by the symbols in 
args. pri ntproto uses args to build a function type and then calls 
printdecl, which calls typestring. Implement these functions. 

4.6 The function 
... 
75 ( types.c exported functions)+= 

extern Field fieldref ARGS((char *name, Type ty)); 

searches ty's field list for the field given by name, and returns a 
pointer to the field structure. It returns NULL if ty doesn't have a 
field name. Implement fieldref. 

4.7 Explain why lee diagnoses that the operands of the assignment in 
the C program below have illegal types. 

struct { int x, y; } *p; 
struct { int x, y; } *q; 
main() { p = q; } 

4.8 Explain why l cc complains that the argument to f is an illegal type 
in the C program below. 

void f(struct point { int x, y; } *p) {} 
struct { int x, y; } *origin; 
main() { f(origin); } 

4.9 Explain why l cc insists that the definition of i sdi git in the C pro
gram below conflicts with the external declaration of i sdi git. 

extern int isdigit(char c); 
int isdigit(c) char c; {return c >= 'O' && c <= '9'; } 

4.10 Measurements show that the if statement in type's (search for an 
existing type) is one of lee's hot spots. Instrument lee to deter
mine the order of the tests in this conditional that gives the best 
execution time. Once you've found the best order, measure the im
provement of l cc's execution time when compiling itself. Was the 
change worthwhile? 

4.11 Structure types point to symbols that hold their field lists, and 
those symbols point back to the types. Redesign this apparently 
awkward data structure so that types are completely independent 
of symbol tables. For example, structure types could carry their 
field lists in one of the u fields, and types with tags could use an
other field to store the scope level at which they're defined. You'll 
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need to revise functions like newstruct to initialize these fields, 
and to provide functions for mapping tags to types and perhaps 
vice versa. The basic types need the data that's in their symbol
table entries, such as the addressed flag. Compare your revised 
design; is it obviously superior to the present one? Does your im
plementation duplicate functionality provided elsewhere, such as 
in the symbol-table module? 

179 addressed 
67 newstruct 
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5 
Code Generation Interface 

This chapter defines the interface between the target-independent front 
end and the target-dependent back ends. Good code-generation inter
faces are hard to design. An inadequate interface may force each back 
end to do work that could otherwise be done once in the front end. If the 
interface is too small, it may encode too little information to exploit new 
machines thoroughly. If the interface is too large, the back ends may 
be needlessly complicated. These competing demands require careful 
engineering and re-engineering as new targets expose flaws. 

lee's interface consists of a few shared data structures, 19 functions, 
most of which are simple, and a 36-operator language, which encodes 
the executable code from a source program in directed acyclic graphs, 
or dags. The front and back ends share some fields of the shared data 
structures, but other fields are private to the front or back end. 

Two of the shared data structures are described in previous chapters: 
symbo 1 in Chapter 3 and type in Chapter 4. Back ends are able to examine 
any field in either structure, but by convention they don't. This chapter 
lists the fields that back ends may examine and, to describe the entire 
interface in one place, it reviews what they represent. It omits fields that 
are logically private to the front (or back) end. 

5.1 Type Metrics 

A type metric specifies the size and alignment for a primitive type: 

(interface 78) = 
typedef struct metrics { 

unsigned char size, align, outofline; 
} Metrics; 

79 16 ... 

The outofl i ne flag controls the placements of constants of the associ
ated type. If outofl i ne is one, constants cannot appear in dags; such 
constants are placed in anonymous static variables and their values are 
accessed by fetching the variables. Each primitive type has a metric: 

(metrics 78) = 
Metrics charmetric; 
Metrics shortmetric; 
Metrics intmetric; 

79 
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Metrics floatmetric; 
Metrics doublemetric; 
Metrics ptrmetric; 
Metrics structmetric; 

ptrmetri c describes pointers of all types. The alignment of a structure 
is the maximum of the alignments of its fields and structmetri c. align, 
which thus gives the minimum alignment for structures; structmetri e's 
size field is unused. Back ends usually set outofl i ne to zero only for 
those types whose values can appear as immediate operands of instruc
tions. 

The size and alignment for characters must be one. The front end 
correctly treats signed and unsigned integers and longs as distinct types, 
but it assumes that they all share i ntmetri c. Likewise for doubles and 
long doubles. Each pointer must fit in an unsigned integer. 

5.2 Interface Records 

A cross-compiler produces code for one machine while r- .11Iling on an
other. l cc can be linked with code generators for several targets, so it 
can be used as either a native compiler or a cross-compiler. l cc's inter
face record captures everything that its front end needs to know about a 
target machine, including pointers to the interface routines, type metrics, 
and interface flags. The interface record is defined by: 

(interface 78) += 
typedef struct interface { 

(metrics 78) 
(interface flags 87) 
(interface functions 80) 

Xinterface x; 
} Interface; 

.... 
78 96 16 ..... 

l cc has a distinct instance of the interface record for each target. The x 
field is an extension in which the back end stores target-specific interface 
data and functions. The x field is private to the back end and is defined 
in confi g. h. 

The interface records hold pointers to the 19 interface functions de
scribed in the following sections. The functions defined in this chapter 
by (interface functions) are often denoted by just their name. For exam
ple, gen is used instead of the more accurate but verbose "the function 
pointed to by the gen field of the interface record." 

The interface record also holds pointers to some functions that the 
front end calls to emit symbol tables for debuggers: 

78 align 
92 gen 

402 gen 
78 intmetric 
78 Metrics 
78 outofl ine 

79 

355 Xinterface 



80 

CONSTANTS 38 
Coordinate 38 
generated 50 

GLOBAL 38 
LABELS 38 

LOCAL 38 
PARAM 38 

sclass 38 
scope 37 

structarg 292 
symbol 37 

temporary 50 
type 56 

wants_argb 88 
wants_dag 89 

CHAPTER 5 • CODE GENERA T/ON INTERFACE 

(interface functions 80) = 89 79 
"" void 

void 

void 
void 
void 
void 
void 

(*stabblock) 
(*stabend) 

(*stabfend) 
(*stabinit) 
(*stabline) 
(*stabsym) 
(*stabtype) 

ARGS((int, int, Symbol*)); 
ARGS((Coordinate *, Symbol, Coordinate** 

Symbol *, Symbol *)); 
ARGS((Symbol, int)); 
ARGS((char *, int, char*[])); 
ARGS((Coordinate *)); 
ARGS((Symbol)); 
ARGS((Symbol)); 

To save space, this book does not describe these stab functions. The 
companion diskette shows them, though some are just stubs for some 
targets. 

5.3 Symbols 

A symbol represents a variable, label, or constant; the scope field tells 
which. For variables and constants, the back end may query the type 
field to learn the data type suffix of the item. For variables and labels, the 
floating-point value of the ref field approximates the number of times 
that variable or label is referenced; a nonzero value thus indicates that 
the variable or label is referenced at least once. For labels, constants, 
and some variables, a field of the union u supplies additional data. 

Variables have a scope equal to GLOBAL, PARAM, or LOCAL+k for nesting 
level k. scl ass is STATIC, AUTO, EXTERN, or REGISTER. The name of most 
variables is the name used in the source code. For temporaries and other 
generated variables, name is a digit sequence. For global and static vari
ables, u . seg gives the logical segment in which the variable is defined. 
If the interface flag wants_dag is zero, the front end generates explicit 
temporary variables to hold common subexpressions - those used more 
than once. It sets the u. t. cse fields of these symbols to the dag nodes 
that compute the values stored in them. 

The flags temporary and generated are set for temporaries, and the 
flag generated is set for labels and other generated variables, like those 
that hold string literals. structarg identifies structure parameters when 
the interface flag wants_argb is set; the material below on wants_argb 
elaborates. 

Labels have a scope equal to LABELS. The u .1 .1 abel field is a unique 
numeric value that identifies the label, and name is the string represen
tation of that value. Labels have no type or scl ass. 

Constants have a scope equal to CONSTANTS, and an sclass equal to 
STATIC. For an integral or pointer constant, name is its string represen
tation as a C constant. For other types, name is undefined. The actual 
value of the constant is stored in the u. c. v field, which is defined on 
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page 4 7. If a variable is generated to hold the constant, u. c. 1 oc points 
to the symbol-table entry for that variable. 

Symbols have an x field with type Xsymbol, defined in config.h. It's 
an extension in which the back end stores target-specific data for the 
symbol, like the stack off set for locals. The x field is private to the back 
end, and thus its contents are not part of the interface. Chapter 13 
elaborates. 

5.4 Types 

Symbols have a type field. If the symbol represents a constant or vari
able, the type field points to a structure that describes the type of the 
item. Back ends may read the size and a 1 i gn fields of this structure to 
learn the size and alignment constraints of the type in bytes. Back ends 
may also pass the type pointer itself to predicates like i sarray and ttob 
to learn about the type without examining other fields. 

5.5 Dag Operators 

Executable code is specified by dags. A function body is a sequence, or 
forest, of dags, each of which is passed to the back end via gen. Dag 
nodes, sometimes called nodes, are defined by: 

(c.h typedefs)= 
typedef struct node *Node; 

(c.h exported types)= 
struct node { 

short op; 

} ; 

short count; 
Symbol syms[3]; 
Node kids[2]; 
Node link; 
Xnode x; 

82 ... 

The elements of kids point to the operand nodes. Some dag operators 
also take one or two symbol-table pointers as operands; these appear in 
syms. The back end may use the third syms for its own purposes; the 
front end uses it, too, but its uses are temporary and occur before dags 
are passed to the back end, as detailed in Section 12.8. 1 ink points to 
the root of the next dag in the forest. 

count records the number of times the value of this node is used or 
referred to by others. Only references from kids count; 1 ink references 

92 gen 
402 gen 
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don't count because they don't represent a use of the value of the node. 
Indeed, 1 ink is meaningful only for root nodes, which are executed for 
side effect, not value. If the interface flag wants_dag is zero, roots always 
have a zero count. The generated code for shared nodes - those whose 
count exceed one - must evaluate the node only once; the value is used 
count times. 

The x field is the back end's extension to nodes. The back end defines 
the type Xnode in confi g. h to hold the per-node data that it needs to 
generate code. Chapter 13 describes the fields. 

The op field holds a dag operator. The last character of each is a type 
suffi.x from the list in the type definition: 

(c.h exported twes)+= 
enum { 

F=FLOAT, 
D=DOUBLE, 
C=CHAR, 
S=SHORT, 
!=INT, 
U=UNSIGNED, 
P=POINTER, 
V=VOID, 
B=STRUCT 

} ; 

.... 
81 82 ..... 

For example, the generic operator ADD has the variants ADDI, ADDU, ADDP, 
ADDF, and ADDD. These suffixes are defined so that they have the values 
1-9. 

The operators are defined by 

( c.h exported t}Pes) += 
en um { (operators 82) } ; 

(opera tors 82) = 
CNST=1«4, 

CNSTC=CNST+C, 
CNSTD=CNST+D, 
CNSTF=CNST+F, 
CNSTI=CNST+I, 
CNSTP=CNST+P, 
CNSTS=CNST+S, 
CNSTU=CNST+U, 

ARG=2«4, 
ARGB=ARG+B, 
ARGD=ARG+D, 
ARGF=ARG+F, 

.... 
82 91 ..... 

82 
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ARGI=ARG+I, 
ARGP=ARG+P, 

The rest of (operators) defines the remaining operators. Table 5.I lists 
each generic operator, its valid type suffixes, and the number of kids and 
syms that it uses; multiple values for kids indicate type-specific variants, 
which are described below. The notations in the syms column give the 
number of syms values and a one-letter code that suggests their uses: IV 
indicates that syms [OJ points to a symbol for a variable, IC indicates that 
syms [OJ is a constant, and IL indicates that syms [OJ is a label. For IS, 
syms [OJ is a constant whose value is a size in bytes; 2S adds syms [lJ, 
which is a constant whose value is an alignment. For most operators, 
the type suffix denotes the type of operation to perform and the type of 
the result. Exceptions are ADDP, in which an integer operand in kids [OJ 
is added to a pointer operand in kids [lJ, and SUBP, which subtracts an 
integer in kids [lJ from a pointer in kids [OJ. The operators for assign
ment, comparison, arguments, and some calls return no result; their type 
suffixes denote the type of operation to perform. 

The leaf operators yield the address of a variable or the value of a con
stant. syms [OJ identifies the variable or constant. The unary operators 
accept and yield a number, except for INDIR, which accepts an address 
and yields the value at that address. There is no BCOMI; signed integers 
are complemented using BCOMU. The binary operators accept two num
bers and yield one. 

The type suffix for a conversion operator denotes the type of the re
sult. For example, CVUI converts an unsigned (U) to a signed integer 
(I). Conversions between unsigned and short and between unsigned and 
character are unsigned conversions; those between integer and short and 
between integer and character are signed conversions. For example, CVSU 
converts an unsigned short to an unsigned, and thus clears the high
order bits. CVSI converts a signed short to a signed integer, and thus 
propagates the short's sign to fill the high-order bits. 

The front end builds dags or otherwise composes conversions to form 
those not in the table. For example, it converts a short to a float by first 
converting it to an integer and then to a double. The I6 conversion op
erators are represented by arrows in Figure 5.1. Composed conversions 
follow the path from the source type to the destination type. 

ASGN stores the value of kids [lJ into the cell addressed by kids [OJ. 
syms [OJ and syms [lJ point to symbol-table entries for integer constants 
that give the size of the value and its alignment. These are most useful 
for ASGNB, which assigns structures and initializes automatic arrays. 

JUMPV is an unconditional jump to the address computed by kids [OJ. 
For most jumps, kids [OJ is a constant ADDRGP node, but switch state
ments compute a variable target, so kids [OJ can be an arbitrary com
putation. LABEL defines the label given by syms [OJ, and is otherwise a 
no-op. For the comparisons, syms [OJ points to a symbol-table entry for 

81 kids 
81 syms 
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syms kids Operator Type Suffixes Operati.on 

lV 0 ADDRF p address of a parameter 
lV 0 ADDRG p address of a global 
lV 0 ADDRL p address of a local 
lC 0 CNST CSIUPFD constant 

1 BCOM u bitwise complement 
1 eve IU convert from char 
1 CVD I F convert from double 
1 CVF D convert from fl oat 
1 CVI cs u D convert from int 
1 CVP u convert from pointer 
1 CVS IU convert from short 
1 cvu CSI P convert from unsigned 
1 IND IR CSI PFDB fetch 
1 NEG I FD negation 

2 ADD IUPFD addition 
2 BAND u bitwise AND 
2 BOR u bitwise inclusive OR 
2 BXOR u bitwise exclusive OR 
2 DIV IU FD division 
2 LSH IU left shift 
2 MOD IU modulus 
2 MUL IU FD multiplication 
2 RSH IU right shift 
2 SUB IUPFD subtraction 

2S 2 ASGN CSI PFDB assignment 
lL 2 EQ I FD jump if equal 
lL 2 GE IU FD jump if greater than or equal 
lL 2 GT IU FD jump if greater than 
lL 2 LE IU FD jump if less than or equal 
lL 2 LT IU FD jump if less than 
lL 2 NE I FD jump if not equal 

2S 1 ARG I PFDB argument 
1 1or2 CALL I FDBV function call 

1 RET I FD return from function 

1 JUMP v unconditional jump 
lL 0 LABEL v label definition 

TABLE 5.1 Node operators. 
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the label to jump to if the comparison is true. Signed comparisons are 
used for unsigned equals and not equals, since equality tests needn't 
special-case the sign bit. 

Function calls have a CALL node preceded by zero or more ARG nodes. 
The front end unnests function calls - it performs the inner call first, 
assigns its value to a temporary, and uses the temporary henceforth -
so ARG nodes are always associated with the next CALL node in the forest. 
If wants_dag is one, CALL nodes always appear as roots in the forest. If 
wants_dag is zero, only CALLV nodes appear as roots; other CALL nodes 
appear as right operands to ASGN nodes, which are roots. 

A CALL node's syms [OJ points to a symbol whose only nonnull field is 
type, which is the function type of the callee. 

ARG nodes establish the value computed by kids [OJ as the next ar
gument. syms [OJ and syms [lJ point to symbol-table entries for integer 
constants that give the size and alignment of the argument. 

In CALL nodes, kids [OJ computes the address of the callee. CALLB 
nodes are used for calls to functions that return structures; kids [lJ 
computes the address of a temporary local variable to hold the returned 
value. The CALLB code and the function prologue must collaborate to 
store the CALLB's kids [lJ into the callee's first local. The SPARC in
terface procedures function and 1oca1, and the CAL LB emitter illus
trate such collaboration. CALLB nodes have a count of zero because the 
front end references the temporary wherever the returned value is ref
erenced. There is no RETB; the front end uses an ASGNB to the structure 
addressed by the first local. CALLB nodes appear only if the interface flag 
wants_ca 11 b is one; see Section 5.6. In RET nodes, kids [OJ computes the 
value returned. 

Character and short-integer actual arguments are always promoted to 
the corresponding integer type even in the presence of a prototype, be
cause most machines must pass at least integers as arguments. Upon 
entry to the function, the promoted values are converted back to the 
type declared for the formal parameter. For example, the body of 

f(char c) { f(c); } 

c c 

1 1 
o-r-u-P 

1 1 1 
F s s 

FIGURE 5.1 Conversions. 
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FIGURE 5.2 Forests for f(char c) { f(c); } 

becomes the two forests shown in Figure 5.2. The solid lines are kids 
pointers and the dashed line is the 1 ink pointer. The left forest holds 
one dag, which narrows the widened actual argument to the type of the 
formal parameter. In the left dag, the left ADDRFP c refers to the formal 
parameter, and the one under the INDIRC refers to the actual argument. 
The right forest holds two dags. The first widens the formal parameter 
c to pass it as an integer, and the second calls f. 

Unsigned variants of ASGN, INDIR, ARG, CALL, and RET were omitted 
as unnecessary. Signed and unsigned integers have the same size, so 
the corresponding signed operator is used instead. Likewise, there is no 
CALLP or RETP. A pointer is returned by using CVPU and RETI. A pointer
valued function is called by using CALLI and CVUP. 

In Table 5.1, the operators listed at and following ASGN are used for 
their side effects. They appear as roots in the forest, and their reference 
counts are zero. CALLO, CALLF, and CALLI may also yield a value, in 
which case they appear as the right-hand side of an ASGN node and have 
a reference count of one. With this lone exception, all operators with side 
effects always appear as roots in the forest of dags, and they appear in 
the order in which they must be executed. The front end communicates 
all constraints on evaluation order by ordering the dags in the forest. 
lf ANSI specifies that x must be evaluated before y, then x's dag will 
appear in the forest before y's, or they will appear in the same dag with 
x in the subtree rooted by y. An example is 

inti, *p; f() { i = *p++; } 

The code for the body off generates the forest shown in Figure 5.3. The 
INDIRP fetches the value of p, and the ASGNP changes p's value to the 
sum computed by this INDIRP and 4. The ASGNI sets i to the integer 
pointed to by the original value of p. Since the INDIRP appears in the 
forest before pis changed, the INDIRI is guaranteed to use the original 
value of p. 
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FIGURE 5.3 Forest for int i, *p; f() { 

5.6 Interface Flags 

*p++; } 

The interface flags help configure the front end for a target. 

(interface flags 87) = 
unsigned little_endian:l; 

87 79 ..... 

should be one if the target is a little endian and zero if it's a big endian. 
A computer is a little endian if the least significant byte in each word has 
the smallest address of the bytes in the word. For example, little endians 
lay out the word with the 32-bit unsigned value OxAABBCCDD thus: 

where the addresses of the bytes increase from the right to the left. 
A computer is a big endian if the least significant byte in each word has 

the largest address of the bytes in the word. For example, big endians 
lay out the word with the unsigned value OxAABBCCDD thus: 

In other words, 1 cc's front end lays out a list of bit fields in the address
ing order of the bytes in an unsigned integer: from the least significant 
byte to the most significant byte on little endians and vice versa on big 
endians. ANSI permits either order, but following increasing addresses 
is the prevailing convention. 

(interface flags 87) += 
... 
87 88 79 ..... 

unsigned mulops_calls:l; 

should be zero if the hardware implements multiply, divide, and remain
der. It should be zero if the hardware leaves these operations to library 
routines. The front end unnests nested calls, so it needs to know which 
operators are emulated by calls. It might become necessary to generalize 
this feature to handle other emulated instructions, but no target so far 
has needed more. 

87 
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(interface flags 87) += 
unsigned wants_callb:l; 

... 
87 88 79 ..... 

tells the front end to emit CALLB nodes to invoke functions that return 
structures. If wants_ca 11 b is zero, the front end generates no CALLB 
nodes but implements them itself, using simpler operations: It passes 
an extra, leading, hidden argument that points to a temporary; it ends 
each structure function with an ASGNB dag that copies the return value 
to this temporary; and it has the caller use this temporary when it needs 
the structure returned. When wants_ca 11 b is one, the front end gener
ates CALLB nodes. The kids [1] field of a CALLB computes the address 
of the location at which to store the return value, and the first local of 
any function that returns a structure is assumed to hold this address. 
Back ends that set wants_cal 1 b to one must implement this convention 
by, for example, initializing the address of the first local accordingly. If 
wants_ca 11 b is zero, the back end cannot control the code for functions 
that return structure arguments, so it cannot, in general, mimic an exist
ing calling convention. In this book, the MIPS and X86 code generators 
initialize wants_ca 11 b to zero; the front end's implementation of CALLB 
happens to be compatible with the calling conventions for the MIPS . 

(interface flags 87) += 
unsigned wants_argb:l; 

... 
88 88 79 ..... 

tells the front end to emit ARGB nodes to pass structure arguments. If 
wants_argb is zero, the front end generates no ARGB nodes but imple
ments structure arguments itself using simpler operations: It builds an 
ASGNB dag that copies the structure argument to a temporary; it passes a 
pointer to the temporary; it adds an extra indirection to references to the 
parameter in the callee; and it changes the types of the callee's formals 
to reflect this convention. It also sets structarg for these parameters 
to distinguish them from bona fide structure pointers. If wants_argb is 
zero, the back end cannot control the code for structure arguments, so 
it cannot, in general, mimic an existing calling convention. In this book, 
the SPARC code generator initializes wants_argb to zero; the others ini
tialize it to one. The front end's implementation of ARGB is compatible 
with the SPARC calling convention. 

(interface flags 87) += 
unsigned left_to_right:l; 

... 
88 89 79 ..... 

tells the front end to evaluate and to present the arguments to the back 
end left to right. That is, the ARG nodes that precede the CALL appear in 
the same order as the arguments in the source code. If left_to_right 
zero, arguments are evaluated and presented right to left. ANSI permits 
either order. 
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.... 
88 79 (interface flags 87) += 

unsigned wants_dag:l; 

tells the front end to pass dags to the back end. If it's zero, the front 
end undags all nodes with reference counts exceeding one. It creates a 
temporary, assigns the node to the temporary, and uses the temporary 
wherever the node had been used. When wants_dag is zero, all refer
ence counts are thus zero or one, and only trees, which are degenerate 
dags, remain; there are no general dags. The code generators in this 
book generate code using a method that requires trees, so they initial
ize wants_dag to zero, but other code generators for l cc have generated 
code from dags. 

S. 7 Initialization 

During initialization, the front end calls 

(interface functions 80) + = 
void (*progbeg) ARGS((int argc, char *argv[])); 

.... 
80 89 79 ... 

argv[O .. argc-1] point to those program arguments that are not recog
nized by the front end, and are thus deemed target-specific. progbeg 
processes such options and initializes the back end. 

At the end of compilation, the front end calls 
.... 
89 89 79 ... (interface functions 80) += 

void (*progend) ARGS((void)); 

to give the back end an opportunity to finalize its output. On some 
targets, progend has nothing to do and is empty. 

5.8 Definitions 

Whenever the front end defines a new symbol with scope CONSTANTS, 
LABELS, or GLOBAL, or a static variable, it calls 

.... 
89 90 79 ... (interface functions 80) += 

void (*defsymbol) ARGS((Symbol)); 

to give the back end an opportunity to initialize its Xsymbol field. For 
example, the back end might want to use a different name for the sym
bol. The conventions on some targets in this book prefix an underscore 
to global names. The Xsymbol fields of symbols with scope PARAM are 
initialized by function, those with scope LOCAL+k by local, and those 
that represent address computations by address. 

A symbol is exported if it's defined in the module at hand and used 
in other modules. It's imported if it's used in the module at hand and 
defined in some other module. The front end calls 
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(interface functions 80) += 
void (*export) ARGS((Symbol)); 
void (*import) ARGS((Symbol)); 

.... 
89 90 79 ... 

to announce an exported or imported symbol. Only nonstatic variables 
and functions can be exported. The front end always calls expo rt before 
defining the symbol, but it may call import at any time, before or after 
the symbol is used. Most targets require expo rt to emit an assembler 
directive. Some require nothing from import; the MIPS back end, for 
example, has an empty import. 

.... 
90 90 79 ... (interface functions 80) += 

void (*global) ARGS((Symbol)); 

emits code to define a global variable. The front end will already have 
called segment, described below, to direct the definition to the appro
priate logical segment, and it will have set the symbol's u. seg to that 
segment. It will follow the call to global with any appropriate calls to 
the data initialization functions. g 1oba1 must emit the necessary align
ment directives and define the label. 

The front end announces local variables by calling 
.... 
90 90 79 ... (interface functions 80) += 

void (*local) ARGS((Symbol)); 

It announces temporaries likewise; these have the symbol's temporary 
flag set. local must initialize the Xsymbol field, which holds data like 
the local's stack offset or register number. 

The front end calls 
.... 
90 91 ... (interface functions 80)+= 

void (*address) ARGS((Symbol p, Symbol q, int n)); 
79 

to initialize q to a symbol that represents an address of the form x+n, 
where x is the address represented by p and n is positive or negative. 
Like defsymbol, address initializes q's Xsymbol, but it does so based 
on the values of p's Xsymbol and n. A typical address adds p's stack 
offset to n for locals and parameters, and sets q's x. name to p's x. name 
concatenated with +n or -n for other variables. For example, if n is 40 
and p points to a symbol with the source name array, and if the back 
end forms names by prefixing an underscore, then address will create 
the name _array+40, so that the addition can be done by the assembler 
instead of at run time. address accepts globals, parameters, and locals, 
and is called only after these symbols have been initialized by defsymbo l, 
function, or local. 

When the front end announces a symbol by calling one of the interface 
procedures above, it sets the symbol's defined flag after the call. This 
flag prevents the front end from announcing a symbol more than once. 

1 cc's front end manages four logical segments that separate code, 
data, and literals: 
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.... 
82 97 ... (c.h exported types)+= 

enum { CODE=l, BSS, DATA, LIT }; 

The front end emits executable code into the CODE segment, defines unini
tialized variables in the BSS segment, and it defines and initializes ini
tialized variables in the DATA segment and constants in the LIT segment. 
The front end calls 

.... 
90 91 79 ... (interface functions 80) += 

void (*segment) ARGS((int)); 

to announce a segment change. The argument is one of the segment 
codes above. segment maps the logical segments onto the segments pro
vided by the target machine. 

CODE and LIT can be mapped to read-only segments; BSS and DATA 
must be mapped to segments that can be read and written. The CODE and 
LIT segments can be mapped to the same segment and thus combined. 
Any combination of BSS, DATA, and LIT can be combined likewise. CODE 
would be combined with them only on single-segment targets. 

5.9 Constants 

The interface functions 
.... 
91 92 79 ... (interface functions 80) += 

void (*defaddress) ARGS((Symbol)); 
void (*defconst) ARGS((int ty, Value v)); 

initialize constants. defconst emits directives to define a cell and ini
tialize it to a constant value. v is the value, and ty encodes its type and 
thus which element of the Value v to access, as shown in the following 
table. 

ty v Field Type 

c v.uc character 
s v.us short 
I v. i int 
u v.u unsigned 
p v.p any pointer type 
F v.f float 
D v.d double 

The codes C, S, I, ... are identical to the type suffixes used for the oper
ators. The signed fields v. sc and v. ss can be used instead of v. uc and 
v. us, but defconst must initialize only the specified number of bits. If 

91 

47 Value 
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ty is P, v. p holds a numeric constant of some pointer type. These orig
inate in declarations like char *p=(char*)OxFO. defaddress initializes 
pointer constants that involve symbols instead of numbers. 

The defconst functions in Chapters 16-18 permit cross-compilation, 
so they compensate for different representations and byte orders. For 
example, they swap the two halves of a double if compiling for a big 
endian on a little endian or vice versa. 

In general, ANSI C compilers can't leave the encoding of floating-point 
constants to the assembler, because few assemblers implement C's casts. 
For example, the correct initialization for 

double x = (float)0.3; 

has zeros in the least significant bits. Typical assembler directives like 

.double 0.3 

can't implement casts and thus erroneously initialize x without zeros in 
the least significant bits, so most defconsts must initialize doubles by 
emitting two unsigneds. 

.... 
91 92 79 ... (interface functions 80)+= 

void (*defstring) ARGS((int n, char *s)); 

emits code to initialize a string of length 1 en to the characters in s. The 
front end converts escape sequences like \000 into the corresponding 
ASCII characters. Null bytes can be embedded ins, so they can't flag its 
end, which is why defstri ng accepts not just s but also its length. 

(interface functions 80) += 
.... 
92 92 79 .... 

void (*space) ARGS((int)); 

emits code to allocate n zero bytes. 

5.10 Functions 

The front end compiles functions into private data structures. It com
pletely consumes each function before passing any part of the function 
to the back end. This organization permits certain optimizations. For 
example, only by processing complete functions can the front end iden
tify the locals and parameters whose address is not taken; only these 
variables may be assigned to registers. 

Three interface functions and two front-end functions collaborate to 
compile a function. 

(interface functions 80)+= 
.... 
92 95 ... 79 

void (*function) ARGS((Symbol, Symbol[], Symbol[], int)); 
void (*emit) ARGS((Node)); 
Node (*gen) ARGS((Node)); 



5. 10 • FUNCTIONS 

(dag.c exported functions)= 311 .... 
extern void emitcode ARGS((void)); 
extern void gencode ARGS((Symbol[], Symbol[])); 

At the end of each function, the front end calls function to generate and 
emit code. The typical form of function is 

(typical function 93)= 

void function(Symbol f, Symbol caller[], Symbol callee[], 
int ncalls) { 
(initialize) 
gencode(caller, callee); 
(emit prologue) 
emitcode(); 
(emit epilogue) 

} 

gencode is a front-end procedure that traverses the front end's private 
structures and passes each forest of dags to the back end's gen, which 
selects code, annotates the dag to record its selection, and returns a dag 
pointer. gencode also calls local to announce new locals, blockbeg and 
blockend to announce the beginning and end of each block, and so on. 
emi tcode is a front-end procedure that traverses the private structures 
again and passes each of the pointers from gen to emit to emit the code. 

This organization offers the back-end flexibility in generating function 
prologue and epilogue code. Before calling gen code, function initializes 
the Xsymbo 1 fields of the function's parameters and does any other nec
essary per-function initializations. After calling gencode, the size of the 
procedure activation record, or frame, and the registers that need saving 
are known; this information is usually needed to emit the prologue. After 
calling emitcode to emit the code for the body of the function, function 
emits the epilogue. 

The argument f to function points to the symbol for the current func
tion, and nca 11 s is the number of calls to other functions made by the 
current function. nca 11 s helps on targets where leaf functions - those 
that make no calls - get special treatment. 

caller and callee are arrays of pointers to symbols; a null pointer 
terminates each. The symbols in caller are the function parameters as 
passed by a caller; those in ca 11 ee are the parameters as seen within the 
function. For many functions, the symbols in each array are the same, 
but they can differ in both scl ass and type. For example, in 

single(x) float x; { ... } 

a call to single passes the actual argument as a double, but x is a 
float within single. Thus, caller[O]->type is doubletype, the front
end global that represents doubles, and ca 11 ee [O]->type is fl oattype. 
And in 
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int strlen(register char *s) { ... } 

caller[O]->sclass is AUTO and callee[O]->sclass is REGISTER. Even 
without register declarations, the front end assigns frequently referenced 
parameters to the REGISTER class, and sets callee's sclass accordingly. 
To avoid thwarting the programmer's intentions, this assignment is made 
only when there are no explicit register locals. 

ca 11 er and ca 11 ee are passed to gen code. If ca 11 er [i] ->type differs 
from callee[i]->type, or the value of caller[i]->sclass differs from 
callee[i]->sclass, gencode generates an assignment of caller[i] to 
ca 11 ee [ i J . If the types are not equal, this assignment may include a con
version; for example, the assignment toxin single includes a truncation 
of a double to a float. For parameters that include register declarations, 
function must assign a register and initialize the x field accordingly, or 
change the ca 11 ee's sc 1 ass to AUTO to prevent an unnecessary assign
ment of caller[i] to callee[i]. 

function could also change the value of callee[i]->sclass from 
AUTO to REGISTER if it wished to assign a register to that parameter. The 
MIPS calling convention, for example, passes some arguments in regis
ters, so function assigns those registers to the corresponding cal 1 ees 
in leaf functions. If, however, ca 11 ee [i ]->addressed is set, the address 
of the parameter is taken in the function body, and it must be stored in 
memory on most machines. 

Most back ends define for each function activation an argument-build 
area to store the arguments to outgoing calls. The front end unnests 
calls, so the argument-build area can be used for all calls. The back end 
makes the area big enough to hold the largest argument list. When a 
function is called, the caller's argument-build area becomes the callee's 
actual arguments. 

Calls are unnested because some targets pass some arguments in reg
isters. If we try to generate code for a nested call like f(a,g(b)), and 
if arguments are evaluated and established left to right, it is hard not 
to generate code that loads a into the first argument register and then 
destroys it by loading b into the same register, because both a and b 
belong in the first argument register, but a belongs there later. 

Some calling conventions push arguments on a stack. They can handle 
nested calls, so an argument-build area is not always necessary. Unnest
ing has the advantage that stack overflow can occur only at function 
entry, which is useful on targets that require explicit prologue code to 
detect stack overflow. 

For each block, the front end first announces locals with explicit reg
ister declarations, in order of declaration, to permit programmer control 
of register assignment. Then it announces the rest, starting with those 
that it estimates to be most frequently used. It assigns REGISTER class 
to even these locals if their addresses are not taken and if they are esti
mated to be used more than twice. This announcement order and sc 1 ass 
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override collaborate to put the most promising locals in registers even if 
no registers were declared. 

If p's sclass is REGISTER, local may decline to allocate a register and 
may change scl ass to AUTO. The back end has no alternative if it has 
already assigned all available registers to more promising locals. As with 
parameters, local could assign a register to a local with sclass equal to 
AUTO and change scl ass to REGISTER, but it can do so only if the symbol's 
addressed is zero. 

Source-language blocks bracket the lifetime of locals. gencode an
nounces the beginning and end of a block by calling: 

(interface functions 80)+= 
void (*blockbeg) ARGS((Env *)); 
void (*blockend) ARGS((Env *)); 

.... 
92 79 

Env, defined in confi g. h, is target-specific. It typically includes the 
data necessary to reuse that portion of the local frame space associated 
with the block and to release any registers assigned to locals within the 
block. For example, blockbeg typically records in an Env the size of the 
frame and the registers that are busy at the beginning of the block, and 
bl ockend restores the register state and updates the stack if the new 
block has pushed deeper than the maximum depth seen so far. Chap
ter 13 elaborates. 

The front end calls gen to select code. It passes gen a forest of dags. 
For example, Figure 5.3 on page 87 shows the forest for 

inti, *p; f() { i = *p++; } 

A postorder traversal of this forest yields the linearized representation 
shown in the table below. 

Node# op count kids syms 

1 ADDRGP 2 p 
2 IND I RP 2 1 
3 CNSTI 1 4 
4 ADDP 1 2, 3 
5 ASGNP 0 1, 4 
6 ADDRGP 1 i 
7 IND I RI 1 2 
8 ASGNI 0 6, 7 

This forest consists of three dags, rooted at nodes 2, 5, and 8. The 
INDIRP node, which fetches the value of p, comes before node 5, which 
changes p, so the original value of p is available for subsequent use by 
node 7, which fetches the integer pointed to by that value. 

gen traverses the forest and selects code, but it emits nothing because 
it may be necessary to determine, for example, the registers needed be
fore the function prologue can be emitted. So gen merely annotates the 
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nodes in their x fields to identify the code selected, and returns a pointer 
that is ultimately passed to the back end's emit to output the code. Once 
the front end calls gen, it does not inspect the contents of the nodes 
again, so gen may modify them freely. 

emit emits a forest. Typically, it traverses the forest and emits code 
by switching on the opcode or some related value stored in the node by 
gen. 

5.11 Interface Binding 

The compiler option -target=narne identifies the desired target. The 
name-interface pairs for the available targets are stored in 

(interface 78) += 
typedef struct binding { 

char *name; 
Interface *ir; 

} Binding; 

extern Binding bindings[]; 

... 
79 96 16 

"" 

The front end identifies the one in the -target and stores a pointer to 
its interface record in 

(interface 78) += 
... 
96 16 

extern Interface *IR; 

Whenever the front end needs to call an interface function, or read a type 
metric or an interface flag, it uses IR. 

Back ends must define and initialize bindings, which associates names 
and interface records. For example, the back ends in this book define 
bindings in bind. c: 

(bind.c 96) = 
#include "c. h" 
extern Interface nullIR, 
extern Interface mipsebIR, 
extern Interface sparcIR, 
extern Interface x86IR; 
Binding bindings[] = { 

symbolicIR; 
mipselIR; 
solarisIR; 

"symbolic", 
"mips-irix", 
"mips-ultrix", 

&symbolicIR, 
&mipsebIR, 
&mipselIR, 

"spare-sun", &sparcIR, 
"sparc-solaris", &solarisIR, 
"x86-dos", &x86IR, 
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} ; 

"null", 
NULL, 

&nul lIR, 
NULL 

The MIPS, SPARC, and X86 interfaces are described in Chapters 16, 17, 
and 18. The interfaces nul 1 and symbo 1 i c are described in Exercises 5.2 
and 5.1. 

5.12 Upcalls 

The front and back ends are clients of each other. The front end calls on 
the back end to generate and emit code. The back end calls on the front 
end to perform output, allocate storage, interrogate types, and manage 
nodes, symbols, and strings. The front-end functions that back ends 
may call are summarized below. Some of these functions are explained in 
previous chapters, but are included here to make this summary complete. 

void *a 11 ocate Ci nt n, int a) permanently allocates n bytes in the 
arena a, which can be one of 

(c.h exported types)+= 
.... 
91 

enum { PERM=O, FUNC, STMT }; 

and returns a pointer to the first byte. The space is guaranteed to be 
aligned to suit the machine's most demanding type. Data allocated in 
PERM are deallocated at the end of compilation; data allocated in FUNC 
and STMT are deallocated after compiling functions and statements. 

(input.c exported data)= 
extern char *bp; 

103 .... 

points to the next character in the output buffer. The idiom *bp++ = c 
thus appends c to the output as shown in outs on page 16. One of the 
other output functions, described below, must be called at least once 
every 80 characters. 

(output.c exported functions)+= 
.... 
18 98 .... 

extern void fprint ARGS((int fd, char *fmt, ... )); 

prints its third and following arguments on the file descriptor fd. See 
print for formatting details. If fd is not 1 (standard output), fpri nt 
calls outfl ush to flush the output buffer for fd. 

Type freturn(Type ty) is the type of the return value for function 
type ty. 

(c.h exported macros)+= 
.... 
19 98 .... 

#define generic(op) ((op)&-15) 

26 allocate 
64 freturn 
98 outflush 
16 outs 
18 print 

97 
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is the generic version of the type-specific dag operator op. That is, the 
expression generi c(op) returns op without its type suffix. 

int gen label (int n) increments the generated-identifier counter by 
n and returns its old value. 

int istype(Type ty) are type predicates that return nonzero if type 
ty is a type shown in the table below. 

Predicate Type 

i sari th arithmetic 
i sarray array 
ischar character 
i sdoubl e double 
i senum enumeration 
i sfloat floating 
i sfunc function 
i sint integral 
isptr pointer 
isscalar scalar 
isstruct structure or union 
i sunion union 
isunsigned unsigned 

Node newnode(int op, Node l, Node r, Symbol sym) allocates a dag 
node; initializes the op field to op, kids [O] to l, kids [1] to r, and 
syms [O] to sym; and returns a pointer to the new node. 

Symbol newconst (Val u~ v, int t) installs a constant with value v 
and type suffix t into the symbol table, if necessary, and returns a pointer 
to tqe symbol-table entry. 

Symbol newtemp(i nt scl ass, int t) creates a temporary with stor
age class scl ass and a type with type suffix t, and returns a pointer 
to the symbol-table entry. The new temporary is announced by calling 
local. 

opi ndex(op) is the operator number, for operator op: 
.... 
97 98 ... (c.h exported macros)+= 

#define opindex(op) ((op)>>4) 

opi ndex is used to map the generic operators into a contiguous range of 
integers. 

(c.h exported macros)+= 
#define optype(op) ((op)&lS) 

is the type suffix for the dag operator op. 

(output.c exported functions)+= 
extern void outflush ARGS((void)); 

.... 
98 

.... 
97 99 ... 
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writes the current output buffer to the standard output, if it's not empty. 
void outs (char *s) appends string s to the output buffer for stan

dard output, and calls outfl ush if the resulting buffer pointer is within 
80 characters of the end of the buff er. 

void pri nt(char *fmt, ... ) prints its second and following argu
ments on standard output. It is like pri ntf but supports only the for
mats %c, %d, %0, %x, and %s, and it omits precision and field-width spec
ifications. print supports four 1 cc-specific format codes. %5 prints a 
string of a specified length; the next two arguments give the string and 
its length. %k prints an Fnglish rendition of the integer token code given 
by the corresponding argument, and %t prints an English rendition of a 
type. %w prints the source coordinates given by its corresponding argu
ment, which must be a pointer to a Coordinate. print calls outfl ush 
if it prints a newline character from fmt within 80 characters of the end 
of the output buffer. Each format except %c does the actual output with 
outs, which may also flush the buffer. 

int roundup(i nt n, int m) is n rounded up to the next multiple of 
m, which must be a power of two. 

char *stri ng(char *s) installs sin the string table, if necessary, and 
returns a pointer to the installed copy. 

char *stri ngd(i nt n) returns the string representation of n; stri ngd 
installs the returned string in the string table. 

( output.c exported functions)+= 
... 
98 

extern char *stringf ARGS((char * ... )); 

formats its arguments into a string, installs that string to the string table, 
and returns a pointer to the installed string. See print for formatting 
details. 

int ttob(Type ty) is the type suffix for type ty. 
int vari adi c (Type ty) is true if type ty denotes a variadic function. 

Further Reading 

Fraser and Hanson (1991a and 1992) describe the earlier versions of 
1 cc's code generation interface. This chapter is more detailed, and cor
responds to version 3.1 and above of 1 cc. 

Some compiler interfaces emit abstract machine code, which resembles 
an assembler code for a fictitious machine (Tanenbaum, van Staveren, 
and Stevenson 1982). The front end emits code for the abstract ma
chine, which the back end reads and translates it to target code. Abstract 
machines decouple the front and back ends, and make it easy to insert 
extra optimization passes, but the extra 1/0 and structure allocation and 
initialization take time. 1 cc's tightly coupled interface yields efficient, 
compact compilers, but it can complicate maintenance because changes 
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to the front end may affect the back ends. This complication is less im
portant for standardized languages like ANSI C because there will be few 
changes to the language. 

Exercises 

5.1 1 cc can be turned into a syntax and semantics checker by writing a 
null code generator whose interface record points to functions that 
do nothing. Implement this interface. 

5.2 Implement a symbolic back end that generates a trace of the inter
face functions as they are called and a readable representation of 
their arguments. As an example, the output of the symbolic back 
end that comes with 1 cc for 

is 

inti, *p; f() { i = *p++; } 

export f 
segment text 
function f type=int function(void) class=auto ... 
maxoffset=O 
node#2 ADDRGP count=2 p 
node'l INDIRP count=2 #2 
node#S CNSTI count=l 4 
node#4 ADDP count=l #1 #5 
node'3 ASGNP count=O #2 #4 4 4 
node#? ADDRGP count=l i 
node#8 INDIRI count=l #1 
node'6 ASGNI count=O #7 #8 4 4 
1: 
end f 
segment bss 
export p 
global p type=pointer to int class=auto ... 
space 4 
export i 
global i type=int class=auto scope=GLOBAL ref=lOOO 
space 4 

All of the interface routines in this back end echo their arguments 
and some provide additional information. For example, function 
computes a frame size, which it prints as the value of maxoffset 
as shown above. gen and emit collaborate to print dags as shown 
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above. gen numbers the nodes in each forest (by annotating their x 
fields), and emit prints these numbers for node operands. emit also 
identifies roots by prefixing their numbers with accents graves, as 
shown for nodes 1, 3, and 6 in the first forest above. For a LABELV 
node, emit prints a line with just the label number and a colon. 
Compare this output with the linearized representation shown on 
page 95. 

5.3 Write a code generator that simply emits the names of all identifiers 
visible to other modules, and reports those imported names that 
are not used. 

5.4 When 1 cc's interface was designed, 32-bit integers were the norm, 
so nothing was lost by having integers and longs share one metric. 
Now, many machines support 32-bit and 64-bit integers, and our 
shortcut complicates using both data types in the same code gen
erator. How would adding two new type suffixes - L for long and 
O for unsigned long - change 1 cc's interface? Consider the effect 
on the type metrics, the node operators in general, and the con
version operators in particular. Redraw Figure 5.1. Which interface 
functions would have to change? How? 

5.5 Design an abstract machine consistent with 1 cc's interface, and use 
it to separate 1 cc's front end from its back end. Write a code gen
erator that emits code for your abstract machine. Adapt 1 cc's back 
end to read your abstract machine code, rebuild the data structures 
that the back end uses now, and call the existing back end to gener
ate code. This exercise might take a month or so, but the flexibility 
to read abstract-machine code, optimize it, and write it back out 
would simplify experimenting with optimizers. 

92 emit 
393 emit 

92 gen 
402 gen 
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6 
Lexical Analysis 

The lexical analyzer reads source text and produces tokens, which are 
the basic lexical units of the language. For example, the expression 
*pt r = 5 6 ; contains 10 characters or five tokens: *, pt r, =, 5 6, and 
; . For each token, the lexical analyzer returns its token code and zero 
or more associated values. The token codes for single-character tokens, 
such as operators and separators, are the characters themselves. Defined 
constants (with values that do not collide with the numeric values of sig
nificant characters) are used for the codes of the tokens that can consist 
of one or more characters, such as identifiers and constants. 

For example, the statement *ptr = 56; yields the token stream shown 
on the left below; the associated values, if there are any, are shown on 
the right. 

'*I 
ID "ptr" symbol-table entry for "ptr" 
'=' 
ICON "56" symbol-table entry for 56 

The token codes for the operators * and = are the operators themselves, 
i.e., the numeric values of * and =, respectively, and they do not have 
associated values. The token code for the identifier ptr is the value of 
the defined constant ID, and the associated values are the saved copy 
of the identifier string itself, i.e., the string returned by stri ngn, and a 
symbol-table entry for the identifier, if there is one. Likewise, the integer 
constant 56 returns ICON, and the associated values are the string "56" 
and a symbol-table entry for the integer constant 56. 

Keywords, such as "for," are assigned their own token codes, which 
distinguish them from identifiers. 

The lexical analyzer also tracks the source coordinates for each token. 
These coordinates, defined in Section 3.1, give the file name, line number, 
and character index within the line of the first character of the token. 
Coordinates are used to pinpoint the location of errors and to remember 
where symbols are defined. 

The lexical analyzer is the only part of the compiler that looks at each 
character of the source text. It is not unusual for lexical analysis to ac
count for half the execution time of a compiler. Hence, speed is impor
tant. The lexical analyzer's main activity is moving characters, so mini
mizing the amount of character movement helps increase speed. This is 
done by dividing the lexical analyzer into two tightly coupled modules. 
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The input module, input. c, reads the input in large chunks into a buffer, 
and the recognition module, 1 ex. c, examines the characters to recognize 
tokens. 

6.1 Input 

In most programming languages, input is organized in lines. Although 
in principle, there is rarely a limit on line length, in practice, line length 
is limited. In addition, tokens cannot span line boundaries in most lan
guages, so making sure complete lines are in memory when they are 
being examined simplifies lexical analysis at little expense in capability. 
String literals are the one exception in C, but they can be handled as a 
special case. 

The input module reads the source in large chunks, usually much 
larger than individual lines, and it helps arrange for complete tokens 
to be present in the input buffer when they are being examined, except 
identifiers and string literals. To minimize the overhead of accessing the 
input, the input module exports pointers that permit direct access to the 
input buffer: 

(input.c exported data)+= 
extern unsigned char *cp; 
extern unsigned char *limit; 

... 
97 104 ... 

cp points to the current input character, so *cp is that character. limit 
points one character past the end of the characters in the input buffer, 
and *limit is always a newline character and acts as a sentinel. These 
pointers reference unsigned characters so that *cp, for example, won't 
sign-extend a character whose value is greater than 127. 

The important consequence of this design is that most of the input 
characters are accessed by *cp, and many characters are never moved. 
Only identifiers (excluding keywords) and string literals that appear in ex
ecutable code are copied out of the buffer into permanent storage. Func
tion calls are required only at line boundaries, which occur infrequently 
when compared to the number of characters in the input. Specifically, 
the lexical analyzer can use *cp++ to read a character and increment cp. 
If *cp++ is a newline character, however, it must call nextl i ne, which 
might reset cp and 1 i mi t. After calling next 1 i ne, if cp is equal to 1 i mi t, 
the end of file has been reached. 

Since *limit is always a newline, and nextl i ne must be called af
ter reading a newline, it is rarely necessary for the lexical analyzer to 
check if cp is less than 1 i mi t. next 1 i ne calls fi 11 buf when the newline 
is the character pointed to by 1 i mi t. The lexical analyzer can also call 
fi 11 buf explicitly if, for example, it wishes to ensure that an entire to
ken is present in the input buffer. Most tokens are short, less than 32 

106 fillbuf 
106 nextline 

103 
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characters, so the lexical analyzer might call fi 11 buf whenever 1 i mi t-cp 
is less than 32. 

This protocol is necessary in order for fi 11 buf to properly handle 
lines that span input buffers. In general, each input buffer ends with a 
partial line. To maintain the illusion of contiguous lines, and to reduce 
unnecessary searching, fi 11 buf moves the 1 i mi t-cp characters of the 
partial line to the memory locations preceding the characters in the input 
buffer so that they will be concatenated with the characters in the trailing 
portion of the line when the input buffer is refilled. An example clarifies 
this process: Suppose the state of the input buffer is 

cp limit 

where shading depicts the characters that have yet to be consumed and 
\n represents the newline. If fi 11 buf is called, it slides the unconsumed 
tail of the input buff er down and refills the buffer. The resulting state is 

: ·. J n-~:;:::r;~~1tl!itl\~:: 

t t 
cp 1 imit 

where the darker shading differentiates the newly read characters from 
those moved by fi 11 buf. When a call to fi 11 buf reaches the end of the 
input, the buffer's state becomes 

:::::::~' ~'\~"---~'· :::: 
t t 
cp limit 

Finally, when nextl i ne is called for the last sentinel at *limit, fi 11 buf 
sets cp equal to 1 i mi t, which indicates end of file (after the first call to 
nextl i ne). This final state is 

:·.:·.:·.:·.·.:·.:·_:l~\n ____ i::::: 
t 
cp 

1 imit 

The remaining global variables exported by input. c are: 

(input.c exported data)+= 
extern int infd; 
extern char *firstfile; 
extern char *file; 
extern char *line; 
extern int lineno; 

... 
103 
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Input is read from the file descriptor given by i nfd; the default is zero, 
which is the standard input. fi 1 e is the name of the current input file; 
line gives the location of the beginning of the current line, if it were 
to fit in the buff er; and 1 i neno is the line number of the current line. 
The coordinates f, x, y of the token that begins at cp, where f is the file 
name, are thus given by fi 1 e, cp- line, and 1 i neno, where characters in 
the line are numbered beginning with zero. 1 i ne is used only to compute 
the x coordinate, which counts tabs as single characters. fi rstfi 1 e 
gives the name of the first source file encountered in the input; it's used 
in error messages. 

The input buff er itself is hidden inside the input module: 

(input.c exported macros)= 
#define MAXLINE 512 
#define BUFSIZE 4096 

(input.c data)= 
static int bsize; 
static unsigned char buffer [MAXLINE+l + BUFSIZE~ : ; 

BUFSIZE is the size of the input buffer into which characters are read, 
and MAXLINE is the maximum number of characters allowed in an uncon
sumed tail of the input buffer. fi 11 buf must not be called if 1 i mi t-cp 
is greater than MAXLINE. The standard specifies that compilers need not 
handle lines that exceed 509 characters; l cc handles lines of arbitrary 
length, but, except for identifiers and string literals, insists that tokens 
not exceed 512 characters. 

The value of bsi ze encodes three different input states: If bsi ze is less 
than zero, no input has been read or a read error has occurred; if bsi ze 
is zero, the end of input has been reached; and bsi ze is greater than 
zero when bsi ze characters have just been read. This rather complicated 
encoding ensures that 1 cc is initialized properly and that it never tries 
to read past the end of the input. 

i nputini t initializes the input variables and fills the buffer: 

(input.c functions)= 
void inputinit() { 

} 

limit= cp = &buffer[MAXLINE+l]; 
bsize = -1; 
lineno = O; 
file = NULL; 
(refill buffer 106) 
nextl i ne(); 

106 .... 

next 1 i ne is called whenever *cp++ reads a newline. If cp is greater than 
or equal to 1 i mi t, the input buff er is empty. 

105 

104 file 
106 fillbuf 
104 fi rstfi le 
104 infd 
103 limit 
104 line 
104 lineno 
106 nextline 
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bsize 105 
buffer 105 

BUFSIZE 105 
infd 104 

inputinit 105 
limit 103 
line 104 

lineno 104 
MAX LINE 105 
resynch 125 
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(input.c functions)+= 
void nextline() { 

do { 
if (cp >= limit) { 

(refill buffer 106) 
if (cp == limit) 

return; 
} else 

lineno++; 

... 
105 106 ... 

for (line= (char *)cp; *cp==' ' I I *cp=='\t'; cp++) 

} 

} while (*cp == '\n' && cp ==limit); 
if (*cp == '#') { 

resynch(); 
nextl i ne(); 

} 

If cp is still equal to 1 i mi t after filling the buffer, the end of the file has 
been reached. The do-while loop advances cp to the first nonwhite-space 
character in the line, treating sentinel newlines as white space. The last 
four lines of next 1 i ne check for resynchronization directives emitted by 
the preprocessor; see Exercise 6.2. i nput!ni t and next 1 i ne call fi 11 buf 
to refill the input buffer: 

(refill buffer 106)= 
fillbuf(); 
if (cp >= limit) 

cp = limit; 

105 106 

If the input is exhausted, cp will still be greater than or equal to 1 i mi t 
when fi 11 buf returns, which leaves these variables set as shown in the 
last diagram on page 104. fi 11 buf does all of the buffer management 
and the actual input: 

(input.c functions)+= 
void fillbuf() { 

if (bsize == 0) 
return; 

if (cp >= limit) 
cp = &buffer[MAXLINE+l]; 

else 
(move the tail portion 107) 

bsize = read(infd, &buffer[MAXLINE+l], 
if (bsize < 0) { 

error("read error\n"); 
exit(l); 

... 
106 

BUFSIZE); 
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} 

} 
limit= &buffer[MAXLINE+l+bsize]; 
*limit= '\n'; 

fi 11 buf reads the BUFSIZE (or fewer) characters into the buffer begin
ning at position MAXLINE+l, resets 1 imi t, and stores the sentinel newline. 
If the input buffer is empty when fi 11 buf is called, cp is reset to point 
to the first new character. Otherwise, the tail 1 i mi t-cp characters are 
moved so that the last character is in buffer[MAXLINE], and is thus ad
jacent to the newly read characters. 

(move the tail portion 107) = 
{ 

} 

int n = limit - cp; 
unsigned char *s = &buffer[MAXLINE+l] - n; 
line= (char *)s - ((char *)cp - line); 
while (cp < limit) 

*s++ = *cp++; 
cp = &buffer[MAXLINE+l] - n; 

106 

Notice the computation of 1 i ne: It accounts for the portion of the current 
line that has already been consumed, so that cp-1 i ne gives the correct 
index of the character *cp. 

6.2 Recognizing Tokens 

There are two principal techniques for recognizing tokens: building a 
finite automaton or writing an ad hoc recognizer by hand. The lexical 
structure of most programming languages can be described by regular 
expressions, and such expressions can be used to construct a determin
istic finite automaton that recognizes and returns tokens. The advantage 
of this approach is that it can be automated. For example, LEX is a pro
gram that takes a lexical specification, given as regular expressions, and 
generates an automaton and an appropriate interpreting program. 

The lexical structure of most languages is simple enough that lexical 
analyzers can be constructed easily by hand. In addition, automatically 
generated analyzers, such as those produced by LEX, tend to be large 
and slower than analyzers built by hand. Tools like LEX are very use
ful, however, for one-shot programs and for applications with complex 
lexical structures. 

For C, tokens fall into the six classes defined by the following EBNF 
grammar: 

105 bsize 
105 buffer 
105 BUFSIZE 
106 fillbuf 
103 limit 
104 line 
105 MAXLINE 

107 
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token: 
keyword 
identifier 
constant 
string-literal 
operator 
punctuator 

punctuator: 
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one of [ ] ( ) { } * , : = ; ... 
White space - blanks, tabs, newlines, and comments - separates some 
tokens, such as adjacent identifiers, but is otherwise ignored except in 
string literals. 

The lexical analyzer exports two functions and four variables: 

(lex.c exported functions)= 
extern int getchr ARGS((void)); 
extern int gettok ARGS((void)); 

(lex.c exported data)= 
extern int t; 
extern char *token; 
extern Symbol tsym; 
extern Coordinate src; 

gettok returns the next token. getchr returns, but does not consume, 
the next nonwhite-space character. The values returned by gettok are 
the characters themselves (for single-character tokens), enumeration con
stants (such as IF) for the keywords, and the following defined constants 
for the others: 

ID identifiers 
FCON floating constants 
ICON integer constants 
SCON string constants 
!NCR ++ 
DECR 
DE REF -> 
ANDAND && 
OROR 11 
LEQ <= 
EQL 
NEQ != 
GEQ >= 
RSHIFT >> 
LSHIFT << 
ELLIPSIS 
EOI end of input 
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These constants are defined by 

(lex.c exported types)= 
enum { 
#define xx(a,b,c,d,e,f,g) a=b, 
#define yy(a,b,c,d,e,f ,g) 
#include "token.h" 

LAST 
} ; 

where token. h is a file with 2 56 lines like 

( token.h 109) = 109 .... 
yy(O, 0, 0, 0, 0, 0, 0) 
xx(FLOAT, 1, 0, 0, 0, CHAR, "float") 
xx(DOUBLE, 2, 0, 0, 0, CHAR, "double") 
xx(CHAR, 3' 0, 0, 0, CHAR, "char") 
xx(SHORT, 4, 0, 0, 0, CHAR, "short") 
xx(INT, 5, 0, 0, 0, CHAR, "int") 
xx(UNSIGNED, 6, 0, 0, 0, CHAR, "unsi · .~d") 
xx(POINTER, 7, 0, 0, 0, 0, O) 
xx(VOID, 8, 0, 0, 0, CHAR, "void") 
xx(STRUCT, 9, 0, 0, 0, CHAR, "struct") 
xx(UNION, 10, 0, 0, 0, CHAR, "union") 192 addtree 
xx(FUNCTION, 11, 0, 0, 0, 0, O) 149 AND 
xx(ARRAY, 12, 0, 0, 0, 0, O) 193 cmptree 

xx(ENUM, 13, 0, 0, 0, CHAR, "enum") 149 OR 

xx(LONG, 14, 0, 0, 0, CHAR, "long") 
xx(CONST, 15, 0, 0, 0, CHAR, "const") 
xx(VOLATILE, 16, 0, 0, 0, CHAR, "volatile") 

( token.h 109) += 
... 

109 
yy(O, 42, 13, MUL, multree,ID, "*") 

yy(O, 43, 12, ADD, addtree,ID, "+") 

yy(O, 44, 1, 0, 0, I I II'") 
' ' yy(O, 45, 12, SUB, subtree,ID, "-") 

yy(O, 46, 0, 0, 0, I I II•") 
' yy(O, 47, 13, DIV, multree, '/', "/") 

xx(DECR, 48, 0, SUB, subtree,ID, II --") 

xx(DEREF, 49, 0, 0, 0, DEREF, "->") 

xx(ANDAND, 50, 5' AND, andtree,ANDAND, "&&") 
xx(OROR, 51, 4, OR, andtree,OROR, "11 ") 
xx(LEQ, 52, 10, LE, cmptree,LEQ, "<=") 

token. h uses macros to collect everything about each token or symbolic 
constant into one place. Each line in token. h gives seven values of inter-
est for the token as arguments to either xx or yy. The token codes are 



110 

DECR 109 
gettok 111 

src 108 
Symbol 37 

token. h 109 
token 108 

tsym 108 
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given by the values in the second column. token. h is read to define sym
bols, build arrays indexed by token, and so forth, and using it guarantees 
that such definitions are synchronized with one another. This technique 
is common in assembler language programming. 

Single-character tokens have yy lines and multicharacter tokens and 
other definitions have xx lines. The first column in xx is the enumeration 
identifier. The other columns give the identifier or character value, the 
precedence if the token is an operator (Section 8.3), the generic opera
tor (Section 5.5), the tree-building function (Section 9.4), the token's set 
(Section 7.6), and the string representation. 

These columns are extracted for different purposes by defining the xx 
and yy macros and including token. h again. The enumeration definition 
above illustrates this technique; it defines xx so that each expansion de
fines one member of the enumeration. For example, the xx line for DECR 
expands to 

DECR=48, 

and thus defines DECR to an enumeration constant with the value 48. yy 
is defined to have no replacement, which effectively ignores the yy lines. 

The global variable t is often used to hold the current token, so most 
calls to gettok use the idiom 

t = gettok(); 

token, tsym, and src hold the values associated with the current token, 
if there are any. token is the source text for the token itself, and tsym is 
a Symbol for some tokens, such as identifiers and constants. src is the 
source coordinate for the current token. 

gettok could return a structure containing the token code and the 
associated values, or a pointer to such a structure. Since most calls to 
gettok examine only the token code, this kind of encapsulation does 
not add significant capability. Also, gettok is the most frequently called 
function in the compiler; a simple interface makes the code easier to 
read. 

gettok recognizes a token by switching on its first character, which 
classifies the token, and consuming subsequent characters that make up 
the token. For some tokens, these characters are given by one or more 
of the sets defined by map. map [ c] is a mask that classifies character c 
as a member of one or more of six sets: 

(lex.c types)= 
enum { BLANK=Ol, NEWLINE=02, LETTER=04, 

DIGIT=OlO, HEX=020, OTHER=040 }; 

(lex.c data)= 
static unsigned char map[256] { (map initializer) } ; 

117 .... 
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map[c]&BLANK is nonzero if c is a white-space character other than a 
newline. Newlines are excluded because hitting one requires gettok to 
call next line. The other values identify other subsets of characters: 
NEWLINE is the set consisting of just the newline character, LETTER is the 
set of upper- and lowercase letters, DIGIT is the set of digits 0-9, HEX is 
the set of digits 0-9, a-f, and A-F, and OTHER is the set that holds the 
rest of the ASCII characters that are in the source and execution character 
sets specified by the standard. If map [ c] is zero, c is not guaranteed to 
be acceptable to all ANSI C compilers, which, somewhat surprisingly, is 
the case for$,@, and '. 

gettok is a large function, but the switch statement that dispatches 
on the token's first character divides it into manageable pieces: 

(lex.c macros)= 
#define MAXTOKEN 32 

(lex. c functions)= 
int gettok() { 

} 

for (; ;) { 

} 

register unsigned char *rep 
(skip white space 112) 

if (limit - rep < MAXTOKEN) { 
cp = rep; 
fillbuf(); 
rep = cp; 

} 
src.file = file; 
src.x = (char *)rep - line; 
src.y = lineno; 
cp = rep + 1; 
switch (*rep++) { 
(gettok cases 112) 

default: 

} 

if ((map[cp[-l]]&BLANK) 
(illegal character) 

117 ... 

cp; 

O) 

gettok begins by skipping over white space and then checking that there 
is at least one token in the input buffer. If there isn't, calling fi 11 buf 
ensures that there is. MAXTOKEN applies to all tokens except identifiers, 
string literals, and numeric constants; occurrences of these tokens that 
are longer than MAXTOKEN characters are handled explicitly in the code 
for those tokens. The standard permits compilers to limit string literals 
to 509 characters and identifiers to 31 characters. lee increases these 

110 BLANK 
110 DIGIT 
104 file 
106 fillbuf 
110 HEX 
110 LETTER 
103 limit 
104 line 
104 lineno 
110 map 
110 NEWLINE 
106 nextline 
110 OTHER 

111 
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limits to 4,096 (BUFSIZE) and 512 (MAXLINE) to accommodate programs 
that emit C programs, because these emitted programs may contain long 
identifiers. 

Instead of using cp as suggested in Section 6.1, gettok copies cp to 
the register variable rep upon entry, and uses rep in token recogni
tion. gettok copies rep back to cp before it returns, and before calls 
to nextl i ne and fi 11 buf. Using rep improves performance and makes 
scanning loops compact and fast. For example, white space is elided by 

(skip white space 112) = 

while (map[*rcp]&BLANK) 
rep++; 

111 

Using a register variable to index map generates efficient code where it 
counts. These kinds of scans examine every character in the input, and 
they examine characters by accessing the input buffer directly. Some 
optimizing compilers can make similar improvements locally, but not 
across potentially aliased assignments and calls to other, irrelevant func
tions. 

Each of the sections below describes one of the cases in (gettok 
cases). The cases omitted from this book are 

(gettok cases 112)= 

case '/': (comment or/) 
112 111 .... 

case 'L': (wide-character constants) 
(cases for two-character operators) 
(cases for one-character operators and punctuation) 

gettok calls next l i ne when it trips over a newline or one of its syn-
onyms: 

(gettok cases 112)+= 

case '\n': case '\v': case '\r': case '\f': 
nextl i ne(); 
if ((end ofinput112)) { 

tsym = NULL; 
return EOI; 

} 

continue; 

(end of input 112)= 

cp == limit 

... 
112 113 111 .... 

112 124 

When control reaches this case, cp points to the character that follows 
the newline; when nextl i ne returns, cp still points to that character, and 
cp is less than limit. End of file is the exception: here, cp equals limit. 
Testing for this condition is rarely needed, because *cp will always be a 
newline, which terminates the scans for most tokens. 
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The sections below describe the remaining cases. Recognizing the to
kens themselves is relatively straightforward; computing the associated 
values for some token is what complicates each case. 

6.3 Recognizing Keywords 

There are 28 keywords: 

keyword: one of 
auto double int struct 
break else long switch 
char extern return union 
con st float short unsigned 
continue for signed void 
default goto sizeof volatile 
do if static while 

Keywords could be recognized through a look-up in a table in which each 
keyword entry carries its token code and each built-in type entry carries 
its type. Instead, keywords are recognized by a hard-coded decision tree, 
which is faster than searching a table and nearly as simple. The cases 
for the lowercase letters that begin keywords make explicit tests for the 
keywords, which are possible because the entire token must appear in 
the input buffer. For example, the case for i is 

(gettok cases 112) += 
case 'i': 

if (rcp[O] == 'f' 
&& !(map[rcp[l]]&(DIGITILETTER))) { 

cp = rep + 1; 
return IF; 

} 
if (rcp[O] == 'n' 
&& rcp[l] == 't' 
&& !(map[rcp[2]]&(DIGITILETTER))) { 

cp = rep + 2; 

} 

tsym = inttype->u.sym; 
return INT; 

goto id; 

.... 
112 114 111 ... 

id labels the code in the next section that scans identifiers. If the token 
is if or int, cp is updated and the appropriate token code is returned; 
otherwise, the token is an identifier. For int, tsym holds the symbol
table entry for the type int. The cases for the characters abcdefgl rsuvw 
are similar, and were generated automatically by a short program. 

110 DIGIT 
109 INT 
110 LETTER 
110 map 
111 rep 
108 tsym 

113 
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The code generated for these fragments is short and fast. For example, 
on most machines, int is recognized by less than a dozen instructions, 
many fewer than are executed when a table is searched for keywords, 
even if perfect hashing is used. 

6.4 Recognizing Identifiers 

The syntax for identifiers is 

identifier: 
nondigit { nondigit I digit } 

digit: 
one of 0 1 2 3 4 5 6 7 8 9 

nondigit: 
one of_ 
a b c d e f g h i j k l m 
n o p q r s t u v w x y z 
A B C D E F G H I J K L M 
N 0 P Q R S T U V W X Y Z 

The code echoes this syntax, but must also cope with the possibility of 
identifiers that are longer than MAXTOKEN characters and thus might be 
split across input buffers. 

(gettok cases 112)+= 

case 'h': case I j I: case 'k': case 'm': case 
case 'p': case 'q': case 'x': case 'y': case 
case 'A': case 'B': case '(': case 'D': case 
case 'G': case 'H': case 'I': case I JI: case 
case 'M': case 'N': case 'O': case 'P': case 
case 'S': case 'T': case 'U': case 'V': case 
case 'Y': case 'Z': case I I• 

id: 
(ensure there are at least MAXLINE characters 115) 

token = (char *)rep - 1; 
while (map[*rcp]&(DIGITILETTER)) 

rep++; 

'n': 
'z': 
'E': 
'K': 
'Q': 
'W': 

token= stringn(token, (char *)rep - token); 
(tsym -- type named by token 115) 
cp = rep; 
return ID; 

... 
113 116 111 ..... 
case 'o': 

case 'F': 

case 'R': 
case 'X': 

All identifiers are saved in the string table. At the entry to this and all 
cases, both cp and rep have been incremented past the first character 
of the token. If the input buffer holds less than MAXLINE characters, 
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ep is backed up one character to point to the identifier's first charac
ter, fi 11 buf is called to replenish the input buffer, and cp and rep are 
adjusted to point to the identifier's second character as before: 

(ensure there are at least MAXLINE characters 115)= 
if (limit - rep < MAXLINE) { 

ep = rep - 1; 
fillbuf(); 
rep = ++ep; 

} 

114 116 120 

A typedef makes an identifier a synonym for a type, and these names 
are installed in the i denti fie rs table. gettok thus sets tsym to the 
symbol-table entry for token, if there is one: 

(tsym - type named by token 115)= 114 
tsym = lookup(token, identifiers); 

If token names a type, tsym is set to the symbol-table entry for that type, 
and tsym->sel ass will be equal to TYPEDEF. Otherwise, tsym is null or 
the identifier isn't a type name. The macro 

(lex.c exported macros)= 
#define istypename(t,tsym) (kind[t] == CHAR \ 

I I t == ID && tsym && tsym->selass == TYPEDEF) 

encapsulates testing if the current token is a type name: A type name is 
either one of the keywords that names a type, such as int, or an identifier 
that is a typedef for a type. The global variables t and tsym are the only 
valid arguments to i stypename. 

6.5 Recognizing Numbers 

There are four kinds of numeric constants in ANSI C: 

constant: 
floating-constant 
integer-constant 
enumeration-constant 
character-constant 

enumeration-constant: 
identifier 

The code for identifiers shown in the previous section handles enumera
tion constants, and the code in Section 6.6 handles character constants. 
The lexical analyzer returns the token code ID and sets tsym to the 
symbol-table entry for the enumeration constant. The caller checks for 

109 CHAR 
106 fillbuf 
111 gettok 

115 

41 identifiers 
143 kind 
103 limit 
45 lookup 

105 MAXLINE 
111 rep 
108 token 
108 tsym 
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an enumeration constant and uses the appropriate integer in its place; 
the code in Section 8.8 is an instance of this convention. 

There are three kinds of integer constants: 

integer-constant: 
decimal-constant [ integer-suffix ] 
octal-constant [ integer-suffix ] 
hexadecimal-constant [ integer-suffix ] 

integer-suffix: 
unsigned-suffix [long-suffix] 
long-suffix [ unsigned-suffix ] 

unsigned-suffix: u I U 

Jong-suffix: 1 I L 

The first few characters of the integer constant help identify its kind . ... 
(gettok cases 112) += 114 119 

case 'O': case '1': case '2': case '3': case '4': 
case '5': case '6': case '7': case '8': case '9': { 

unsigned int n = O; 
(ensure there are at JeastMAXLINE characters 115) 

token = (char *)rep - 1; 

... 

if (*token == 'O' && (*rep == 'x' I I *rep == 'X')) { 
(hexadecimal constant) 

} 

} else if (*token == 'O') { 
(octal constant) 

} else { 
(decimal constant 117) 

} 
return ICON; 

111 

As for identifiers, this case begins by insuring that the input buffer holds 
at least MAXLINE characters, which permits the code to look ahead, as the 
test for hexadecimal constants illustrates. 

The fragments for the three kinds of integer constant set n to the value 
of the constant. They must not only recognize the constant, but also 
ensure that the constant is within the range of representable integers. 

Recognizing decimal constants illustrates this processing. The syntax 
for decimal constants is: 

decimal-constant: 
nonzero-digit { digit } 

nonzero-digit: 
one of 1 2 3 4 5 6 7 8 9 

The code accumulates the decimal value in n by repeated multiplications: 
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(decimal constant 117) = 116 

int overflow = O; 
for (n =*token - 'O'; map[*rcp]&DIGIT; ) { 

int d =*rep++ - 'O'; 

} 

if (n > ((unsigned)UINT_MAX - d)/10) 
overflow = 1; 

else 
n = lO*n + d; 

(check for floating constant 117) 

cp = rep; 
tsym = icon(n, overflow, 10); 

At each step, overflow will occur if 10 * n + d > UINT _MAX, where UINLMAX 
is the value of the largest representable unsigned number. Rearranging 
this equation gives the test shown above, which looks before it leaps into 
computing the new value of n. overflow is set to one if the constant 
overflows. icon handles the optional suffixes. 

A decimal constant is the prefix of a floating constant if the next char
acter is a period or an exponent indicator: 

(check for floating constant 117)= 

if (*rep == '.' I I *rep == 'e' I I *rep 
cp = rep; 

} 

tsym = fcon(); 
return FCON ; 

117 
IE I) { 

fcon is similar to icon; it recognizes the suffix of a floating constant. 
overflow will be one when a floating constant has a whole part that 
exceeds UINT _MAX, but neither n nor overflow is passed to fcon, which 
reexamines token to check for floating overflow. 

i con recognizes the optional U and L suffixes (in either case), warns 
about values that overflow, initializes a symbol to the appropriate type 
and value, and returns a pointer to the symbol 

.... 
110 (lex.c data)+= 

static struct symbol tval; 

tval serves only to provide the type and value of a constant to gettok's 
caller. The caller must lift the relevant data before the next call to gettok . 

.... 
(lex.c functions)+= 111 119 

static Symbol icon(n, overflow, base) 
unsigned n; int overflow, base; { 

if ((*cp=='u' I l*cp=='U') && (cp[l]=='l' I lcp[l]=='L') 
I I (*cp=='l' I l*cp=='L') && (cp[l]=='u' I lcp[l]=='U')) { 

tval.type = unsignedlong; 

... 

110 DIGIT 
120 fcon 
111 gettok 
110 map 
111 rep 
37 symbol 

108 token 
108 tsym 

57 unsignedlong 
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} 

cp += 2; 
} else if (*cp == 'u' I I *cp 'U') { 

tval.type = unsignedtype; 
cp += 1; 

} else if (*cp == 'l' I I *cp == 'L') { 
if (n > (unsigned)LONG_MAX) 

tval.type unsignedlong; 
else 

tval.type longtype; 
cp += 1; 

} else if (base == 10 && n > (unsigned)LONG_MAX) 
tval.type = unsignedlong; 

else if (n > (unsigned)INT_MAX) 
tval.type unsignedtype; 

else 
tval.type inttype; 

if (overflow) { 

} 

warning("overflow in constant '%5'\n", token, 
(char*)cp - token); 

n = LONG_MAX; 

(set tval 's value 118) 
ppnumber("integer"); 
return &tval; 

If both U and L appear, n is an unsigned long, and if only U appears, 
n is an unsigned. If only L appears, n is a long unless it's too big, in 
which case it's an unsigned long. n is also an unsigned long if it's an 
unsuffixed decimal constant and it's too big to be a long. Unsuffixed 
octal and hexadecimal constants are ints unless they're too big, in which 
case they're unsigneds. The format code %S prints a string like pri ntf's 
%s, but consumes an additional argument that specifies the length of the 
string. It can thus print strings that aren't terminated by a null character. 

The types int, long, and unsigned are different types, but 1 cc insists 
that they all have the same size. This constraint simplifies the tests 
shown above and the code that sets tva l's value: 

(settval 's value 118)= 118 
if (isunsigned(tval.type)) 

tval.u.c.v.u n; 
else 

tval.u.c.v.i n; 

Relaxing this constraint would complicate this code and the tests above. 
For example, the standard specifies that the type of an unsuffixed dec
imal constant is int, long, or unsigned long, depending on its value. In 
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l cc, ints and longs can accommodate the same range of integers, so an 
unsuffixed decimal constant is either int or unsigned. 

A numeric constant is formed from a preprocessing number, which is 
the numeric constant recognized by the C preprocessor. Unfortunately, 
the standard specifies preprocessing numbers that are a superset of the 
integer and floating constants; that is, a valid preprocessing number may 
not be a valid numeric constant. 12 3 . 4 . 5 is an example. The prepro
cessor deals with such numbers too, but it may pass them on to the 
compiler, which must treat them as single tokens and thus must catch 
preprocessing numbers that aren't valid constants. 

The syntax of a preprocessing number is 

pp-number: 
[ . ] digit { digit I . I nondigit I E sign I e sign } 

sign: - I+ 

Valid numeric constants are prefixes of preprocessing numbers, so the 
processing in icon and fcon might conclude successfully without con
suming the complete preprocessing number, which is an error. ppnumber 
is called from icon, and fcon and checks for this case. 

(lex.c functions)+= 
static void ppnumber(which) char *which; { 

unsigned char *rep= cp--; 

... 
117 120 ... 

for ( ; (map[*cp]&(DIGITILETTER)) I I *cp == I I, . ' cp++) 

} 

if ((cp[OJ 'E' 11 cp[O] 'e') 
&& (cp[l] '-' 11 cp[l] == '+')) 

cp++; 
if (cp > rep) 

error("'%S' is a preprocessing number but an _ 
invalid %s constant\n", token, 
(char*)cp-token, which); 

ppnumber backs up one character and skips over the characters that may 
comprise a preprocessing number; if it scans past the end of the numeric 
token, there's an error. 

fcon recognizes the suffix of floating constants and is called in two 
places. One of the calls is shown above in (check for floating constant). 
The other call is from the gettok case for '. ': 

(gettok cases 112) += 
case '.': 

if (rcp[O] == '.' && rcp[l] 
cp += 2; 
return ELLIPSIS; 

... 
116 122 111 ... 

I•') { 
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} 
if ((map[*rcp]&DIGIT) == 0) 

return '.'; 
(ensure there are at JeastMAXLINE characters 115} 
cp = rep - 1; 
token = (char *)cp; 
tsym = fcon () ; 
return FCON; 

The syntax for floating constants is 

floating-constant: 
fractional-constant [ exponent-part ] [ floating-suffix ] 
digit-sequence exponent-part [floating-suffix] 

fractional-constant: 
[ digit-sequence ] . digit-sequence 
digit-sequence . 

exponent-part: 
e [ sign ] digit-sequence 
E [ sign ] digit-sequence 

digit-sequence: 
digit { digit } 

floating-suffix: 
one off l F L 

fcon recognizes a floating-constant, converts the token to a double value, 
and determines tva l's type and value: 

(lex.c functions}+= 
static Symbol fcon() { 

} 

(scan past a floating constant 121} 
errno = O; 
tval.u.c.v.d = strtod(token, NULL); 
if (errno == ERANGE) 

(warn about overflow120} 
(set tva l's type and value 121} 
ppnumber("floating"); 
return &tval; 

.... 
119 

(warn about overflow120}= 120 121 
warning("overflow in floating constant '%5'\n", token, 

(char*)cp - token); 

strtod is a C library function that interprets its first string argument as 
a floating constant and returns the corresponding double value. If the 
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constant is out of range, strtod sets the global variable errno to ERANGE 
as stipulated by the ANSI C specification for the C library. 

A floating constant follows the syntax shown above, and is recognized 
by: 

(scan past a floating constant121}= 
if(*cp=='.') 

(scan past a run of digits 121} 
if (*cp == 'e' I I *cp == 'E') { 

} 

if (*++cp == '-' I I *cp == '+') 
cp++; 

if (map[*cp]&DIGIT) 
(scan past a run of digits 121} 

else 
error("invalid floating constant '%5'\n", token, 

(char*)cp - token); 

(scan past a run of digits 121}= 
do 

cp++; 
while (map[*cp]&DIGIT); 

120 

121 

As dictated by the syntax, an exponent indicator must be followed by at 
least one digit. 

A floating constant may have an F or L suffix (but not both); these 
specify the types float and long double, respectively. 

(set tval 's type and value 121}= 
if (*cp == 'f' I I *cp == 'F') { 

++cp; 
if (tval.u.c.v.d > FLT_MAX) 

(warn about overflow 120} 
tval.type = floattype; 
tval.u.c.v.f = tval.u.c.v.d; 

} else if (*cp == 'l' I I *cp == 'L') { 
cp++; 
tval.type = longdouble; 

} else 
tval.type = doubletype; 

6.6 Recognizing Character Constants and Strings 

120 

Recognizing character constants and string literals is complicated by es
cape sequences like \n, \034, \xFF, and\", and by wide-character con
stants. 1 cc implements so-called wide characters as normal ASCII char-

121 
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acters, and thus uses unsigned char for the type wchar _t. The syntax 
is 

character-constant: 
[ L ] ' c-char { c-char } ' 

c-char: 
any character except ' , \, or newline 
escape-sequence 

escape-sequence: 
one of\' \" \?\\\a \b \f \n \r \t \v 
\ octal-digit [ octal-digit [ octal-digit ] ] 
\x hexadecimal-digit { hexadecimal-digit } 

string-literal: 
[ L ] " { s-char } " 

s-char: 
any character except ", \, or newline 
escape-sequence 

String literals can span more than one line if a backslash immediately 
precedes the newline. Adjacent string literals are automatically concate
nated together to form a single literal. In a proper ANSI C implemen
tation, this line splicing and string literal concatenation is done by the 
preprocessor, and the compiler sees only single, uninterrupted string lit
erals. 1 cc implements line splicing and concatenation for string literals 
anyway, so that it can be used with pre-ANSI preprocessors. 

Implementing these features means that string literals can be longer 
than MAXLINE characters, so (ensure there are at leastMAXLINE characters) 
cannot be used to ensure that a sequence of adjacent entire string literals 
appears in the input buffer. Instead, the code must detect the newline 
at 1 i mi t and call nextl i ne explicitly, and it must copy the literal into a 
private buffer. 

(gettok cases 112)+= 
scan: 
case '\' ' : case ' " ' : { 

static char cbuf[BUFSIZE+l]; 
char *s = cbuf; 
int nbad = O; 
*s++ = *--cp; 
do { 

cp++; 
(scan one string literal 123) 
if (*cp == cbuf[O]) 

cp++; 
else 

.... 
119 111 
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} 

error("mi ssi ng %c\n", cbuf[O]): 
} while (cbuf[O] == "" && getchr() ""); 
*s++ = O; 
if (s >= &cbuf[sizeof cbuf]) 

error("%s literal too long\n", 
cbuf[O] == '"' ? "string" : "character"); 

(warn about non-ANSI literal.s) 
(set tval and return ICON or SCON 123) 

The outer do-while loop gathers up adjacent string literals, which are 
identified by their leading double quote character, into cbuf, and reports 
those that are too long. The leading character also determines the type 
of the associated value and gettok's return value: 

(set tval and return ICON or SCON 123)= 

token = cbuf; 
tsym = &tval; 
if (cbuf[O] == '"') { 

tval.type = array(chartype, s - cbuf - 1, O); 
tval.u.c.v.p = cbuf + 1; 
return SCON; 

} else { 
if (s - cbuf > 3) 

123 

warning("excess characters in multibyte character_ 
literal '%5' ignored\n", token, (char*)cp-token); 

else if Cs - cbuf <= 2) 

} 

error("missing '\n"); 
tval.type = inttype; 
tval.u.c.v.i = cbuf[l]; 
return ICON; 

String literals can contain null characters as the result of the escape se
quence \0, so the length of the literal is given by its type: Ann-character 
literal has the type (ARRAY n (CHAR)) (n does not include the double 
quotes). gettok's callers, such as primary, call stri ngn when they want 
to save the string literal referenced by tval. 

The code below, which scans a string literal or character constant, 
copes with four situations: newlines at 1 i mi t, escape sequences, non
ANSI characters, and literals that exceed the size of cbuf. 

(scan one string literal 123) = 
while (*cp != cbuf[O]) { 

int c; 
if (map[*cp]&NEWLINE) { 

if ( cp < 1 i mi t) 
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} 

} 

break; 
cp++; 
nextl i ne(); 
if ((end of input112}) 

break; 
continue; 

c = *cp++; 
if (c == '\\') { 

if (map[*cp]&NEWLINE) { 
if (cp < limit) 

break; 
cp++; 
nextline(); 

} 
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if (limit - cp < MAXTOKEN) 
fillbuf(); 

c = backslash(cbuf[O]); 
} else if (map[c] == O) 

nbad++; 
if (s < &cbuf[sizeof cbuf] - 2) 

*s++ = c; 

If *limit is a newline, it serves only to terminate the buffer, and is thus 
ignored unless there's no more input. Other newlines (those for which 
cp is less than 1 i mi t) and the one at the end of file terminate the while 
loop without advancing cp. backslash interprets the escape sequences 
described above; see Exercise 6.10. nbad counts the number of non-ANSI 
characters that appear in the literal; 1 cc's -A -A option causes warn
ings about literals that contain such characters or that are longer than 
ANSI's 509-character guarantee. 

Further Reading 

The input module is based on the design described by Waite (1986). The 
difference is that Waite's algorithm moves one partial line instead of 
potentially several partial lines or tokens, and does so after scanning 
the first newline in the buffer. But this operation overwrites storage 
before the buffer when a partial line is longer than a fixed maximum. 
The algorithm above avoids this problem, but at the per-token cost of 
comparing 1 i mi t-cp with MAXTOKEN. 

Lexical analyzers can be generated from a regular-expression specifi
cation of the lexical structure of the language. LEX (Lesk 1975), which 
is available on UNIX, is perhaps the best known example. Schreiner and 
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Friedman (1985) use LEX in their sample compilers, and Holub (1990) de
tails an implementation of a similar tool. More recent generators, such 
as fl ex, re2c (Bumbulis and Cowan 1993), and Eli's scanner genera
tor (Gray et al. 1992; Heuring 1986), produce lexical analyzers that are 
much faster and smaller than those produced by LEX. On some comput
ers, EU and re2c produce lexical analyzers that are faster than 1 cc's. EU 
originated some of the techniques used in 1 cc's gettok. 

A "perfect" hash function is one that maps each word from a known 
set into a different hash number (Cichelli 1980; Jaeschke and Osterburg 
1980; Sager 1985). Some compilers use perfect hashing for keywords, 
but the hashing itself usually takes more instructions than 1 cc uses to 
recognize keywords. 

lee relies on the library function strtod to convert the string repre
sentation of a floating constant to its corresponding double value. Doing 
this conversion as accurately as possible is complicated; Clinger (1990) 
shows that it may require arithmetic of arbitrary precision in some cases. 
Many implementations of st rtod are based on Clinger's algorithm. The 
opposite problem - converting a double to its string representation -
is just as laborious. Steele and White (1990) give the gory details. 

Exercises 

6.1 What happens if a line longer than BUFSIZE characters appears in 
the input? Are zero-length lines handled properly? 

6.2 The C preprocessor emits lines of the form 

# n "file" 
#line n "file" 
#1 i ne n 

These lines are used to reset the current line number and file name 
to n and file, respectively, so that error messages ref er to the correct 
file. In the third form, the current file name remains unchanged. 
re synch, called by next 1 i ne, recognizes these lines and resets fi 1 e 
and 1 i neno accordingly. Implement re synch. 

6.3 In many implementations of C, the preprocessor runs as a separate 
program with its output passed along as the input to the compiler. 
Implement the preprocessor as an integral part of input. c, and 
measure the resulting improvement. Be warned: Writing a prepro
cessor is a big job with many pitfalls. The only definitive specifica
tion for the preprocessor is the ANSI standard. 

6.4 Implement the fragments omitted from gettok. 

105 BUFSIZE 
104 file 
111 gettok 
104 lineno 
106 nextline 
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6.5 What happens when lee reads an identifier longer than MAXLINE 
characters? 

6.6 Implement int get ch r (void). 

6. 7 Try perfect hashing for the keywords. Does it beat the current im
plementation? 

6.8 The syntax for octal constants is 

octal-constant: 
O { octal-digit } 

octal-digit: 
one of O 1 2 3 4 5 6 7 

Write (octal constant). Be careful; an octal constant is a valid prefix 
of a floating constant, and octal constants can overflow. 

6.9 The syntax for hexadecimal constants is 

hexadecimal-constant: 
( Ox I OX ) hexadecimal-digit { hexadecimal-digit } 

hexadecimal-digit: 
one of 0 1 2 3 4 5 6 7 a b c d e f A B C D E F 

Write (hexadecimal constant). Don't forget to handle overflow. 

6.10 Implement 

(lex.c prototypes)= 
static int backslash ARGS((int q)); 

which interprets a single escape sequence beginning at cp. q is 
either a single or double quote, and thus distinguishes between 
character constants and string literals. 

6.11 Implement the code for (wide-character constants). Remember that 
wchar _t is unsigned char, so the value of the constant L '\377' 
is 255, not -1. 

6.12 Reimplement the lexical analyzer using LEX or an equivalent pro
gram generator, and compare the two implementations. Which is 
faster? Smaller? Which is easier to understand? Modify? 

6.13 How many instructions is (skip whitespace) onyourmachine? How 
many would it be if it used cp instead of rep? 

6.14 Write a program to generate the (gettok cases) for the C keywords. 

6.15 lee assumes that int and long (signed and unsigned) have the same 
size. Revise i con to remove this regrettable assumption. 



7 
Parsing 

The lexical analyzer described in Chapter 6 provides a stream of tokens 
to the parser. The parser confirms that the input conforms to the syn
tax of the language, and builds an internal representation of the input 
source program. Subsequent phases of 1 cc traverse this representation 
to generate code for a specific target machine. 

1 cc uses a recursive-descent parser. It's a straightforward application 
of classical parsing techniques for constructing parsers by hand. This 
approach produces a small and efficient compiler, and is suitable for 
languages as simple as C or Pascal. Indeed, many commercial compilers 
are constructed using these techniques. 

For more complex languages, however, techniques that use parser gen
erators might be preferable. For example, C is in the class of languages 
that can be recognized by recursive-descent parsers, but other languages, 
like ADA, are not. For those languages, more powerful parsers, such as 
bottom-up parsers, must be used. Construction of these kinds of parsers 
by hand is too difficult; automatic methods must be used. 

The remainder of this chapter lays the groundwork in formal language 
theory, syntax-directed translation, and error handling that the code in 
subsequent chapters implements. 

7.1 Languages and Grammars 

EBNF grammars, like those shown in the previous chapters, are µsed to 
define languages. Most languages of any interest, such as programming 
languages, are infinite. Grammars are a way to define infinite sets with 
finite specifications. 

Productions give the rules for producing the sentences in a language 
by repeatedly replacing a nonterminal with the right-hand side of one of 
its productions. For example, the EBNF grammar 

expr: 
expr+ expr 
ID 

defines a language of simple expressions. The nonterminal expr is the 
start nonterminal. Sentences in this language are derived by starting 
with expr and replacing a nonterminal by the right-hand side of one of 
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the rules for the selected nonterminal. In this example, there are only 
two rules, so one possible replacement is 

expr ==> expr + expr 

This operation is a derivation step, and a sequence of such steps that ends 
in a sentence is a derivation. At each step, one nonterminal is replaced 
by one of its right-hand sides. For example, the sentence ID+ID+ID can 
be obtained by the following derivation. 

expr ==> expr+ expr 
==> expr+ ID 
==> expr + expr + ID 
==> ID+ expr+ ID 
==> ID+ID+ID 

In the first step, the production 

expr: expr + expr 

is applied to replace expr by the right-hand side of this rule. In the sec
ond step, the rule expr: ID is applied to the rightmost occurrence of expr. 
The next three steps apply these rules to arrive at the sentence ID+ID+ID. 
Each of the steps in a derivation yields a sentential form, which is a string 
of terminals and nonterminals. Sentential forms differ from sentences 
in that they can include both terminals and nonterminals; sentences con
tain just terminals. 

At each step in a derivation, any of the nonterminals in the sentential 
form can be replaced by the right-hand side of one of its rules. If, at each 
step, the leftmost nonterminal is replaced, the derivation is a le~most 
derivation. For example, 

expr ==> expr+ expr 
==> ID+ expr 
==> ID + expr + expr 
==> ID+ ID+ expr 
==> ID+ID+ID 

is a leftmost derivation for the sentence ID+ID+ID. Parsers reconstruct a 
derivation for a given sentence, i.e., the input C program. 1 cc's parser is 
a top-down parser that reconstructs the leftmost derivation of its input. 

7 .2 Ambiguity and Parse Trees 

Consider the language defined by the following grammar. 
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expr expr 

/i~ /i~ 
expr + expr expr + expr 

/i~ i i /i~ 
expr + expr c a expr + expr 

i i i i 
a b b c 

FIGURE 7.1 Two parse trees for a+b+c. 

expr: 
expr+ expr 
expr * expr 
ID 

Assuming a, b, and c are identifiers, a+b, a+b+c, and a+b*c are sentences 
in this language. 

A derivation can be written as described above or shown pictorially by 
a parse tree. For example, a leftmost derivation for a+b+c is 

expr ==> expr + expr 
==> ex.pr+ ex.pr+ expr 
==> a + expr + expr 
==> a+ b + expr 
==> a+b+c 

and the corresponding parse tree is the one on the left in Figure 7.1. 
A parse tree is a tree with its nodes labelled with nonterminals and 
its leaves labelled with terminals; the root of the tree is labelled with 
the start symbol. If a node is labelled with nonterminal A and its im
mediate off spring are labelled, left to right, with X 1, X2, ... , Xn, then 
A: X1X2 .. . Xn is a production. 

If a sentence has more than one parse tree, which is equivalent to 
having more than one leftmost derivation, the language is ambiguous. 
For example, a+b+c has another leftmost derivation in addition to the 
one shown above, and the resulting parse tree is the one shown on the 
right in Figure 7.1. 

The problem in this example is that the normal left-associativity of 
+ is not captured by the grammar. The correct interpretation, which 
corresponds to (a+b)+c, is given by the derivation above, and is shown 
in Figure 7.l's left tree. 

This problem can be solved by rewriting the grammar to use EBNF's 
repetition construct so that a+b+c has only one derivation, which can be 
interpreted as (a+b)+c: 
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expr: 
expr { + expr } 
expr { * expr } 
ID 
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With this change, there is only one leftmost derivation for a+b+c, but 
understanding that derivation requires understanding how to apply EBNF 
productions involving repetitions. A production of the form 

A:~ { oc} 

says that A derives ~ followed by zero or more occurrences of oc. This 
language is also specified by the grammar 

A:~ X 

X: EI ocX 

X derives the empty string, denoted by E, or oc followed by X. One 
application of A's production followed by repeated applications of X's 
productions thus derives ~ fallowed by zero or more occurrences of oc. 
EBNF's repetition construct is an abbreviation for a hidden nonterminal 
like X, but these nonterminals must be included in parse trees. It's easi
est to do so by rewriting the grammar to include them. Adding them to 
the expression grammar yields 

expr: 
exprX 
expr Y 
ID 

X:E I+ exprX 

Y: EI* expr Y 

With this change, there's only one leftmost derivation for a+b+c: 

expr ~ exprX 
~ ax 
~ a+ expr X 
~ a+bX 
~ a+b+exprX 
~ a+b+cX 
~ a+b+C€ 

The parser can interpret this derivation as is appropriate for the oper
ators involved; here, it would choose the left-associative interpretation, 
but it could also choose the other interpretation for right-associative op
erators. 

The operator * has the same problem, which can be fixed in a way 
similar to that suggested above. In addition, * typically has a higher 
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precedence than +, so the grammar should help arrive at the correct in
terpretation for sentences like a+b*c. For example, the revised grammar 
given above does not work; the derivation for a+b*c is 

expr ==> exprX 
==> ax 
==> a+ expr Y 
==> a+ b Y 
==> a+b*exprY 
==> a+b+cY 
==> a+b+ci: 

The fourth derivation step can cause the expression to be interpreted as 
(a+b)*c instead of a+(b*c). 

The higher precedence of * can be accommodated by introducing a 
separate nonterminal that derives sentences involving *, and arranging 
for occurrences of this nonterminal to appear as the operands to +: 

expr: termX 

term: ID Y 

X:i: I+ termX 

Y:t:l*IDY 

With this grammar, the only leftmost derivation for a+b*c is 

expr ==> termX 
==> aYX 
==> at:X 
==> a i: + termX 
==> at:+b YX 
==> ai:+b*cYX 
==> ai:+b*ci:X 
==> at:+b*C£€ 

term derives a sentential form that includes b*c, which can be inter
preted as the right-hand operand of the sum. As detailed in Chapter 8, 
this approach can be generalized to handle an arbitrary number of prece
dence levels and both right- and left-associative operators. 

The grammar manipulations described above are usually omitted, and 
the appropriate EBNF grammar is written directly. For example, the ex
pression grammar shown in Section 1.6 completes the expression gram
mar shown here. 

Other ambiguities can be handled by rewriting the grammar, but it's 
often easier to resolve them in an ad hoc fashion by simply choosing 
one of the possible interpretations and writing the code to treat other 
interpretations as errors. An example is the dangling-else ambiguity in 
the if statement: 
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stmt: 
if ( expr) stmt 
if ( expr) stmt else stmt 

Nested if statements have two derivations: one in which the else part is 
associated with the outermost if, and one in which the else is associated 
with the innermost if, which is the usual interpretation. As shown in 
Chapter 10, this ambiguity is handled by parsing the else part as soon 
as it's seen, which has the effect of choosing the latter interpretation. 

7 .3 Top-Down Parsing 

Grammars define the rules for generating the sentences in a language. 
These rules can also be used to recognize sentences. As suggested above, 
a parser is a program that recognizes a sentence in a given language by 
reconstructing the derivation for the sentence. During the recognition 
process, the parser reconstructs the parse tree for the sentence, which is 
equivalent to recognizing the derivation. In practice, most parsers do not 
construct an explicit tree. Instead, they construct an equivalent internal 
representation or simply perform some semantic processing at the points 
at which a node would have otherwise been created. 

All practical parsers read their input from left to right, but different 
kinds of parsers construct parse trees differently. Top-down parsers 
reconstruct a leftmost derivation for a sentence by beginning with the 
start nonterminal and guessing at the next derivation step. The next 
token in the input is used to help select the production to apply as the 
next derivation step. For example, the grammar 

S: c Ad 

A: ab 
a 

defines the language {cabd, cad}. Suppose a parser for this language is 
presented with the input cad. The c suggests the application of the (one 
and only) production for S, and the initial step in the derivation is 

S ~ cAd 

and, since the token c matches the first symbol in the selected produc
tion, the input is advanced by one token. For the next step, the parser 
must choose and apply a production for A. The next input token is a, 
so the first production for A is a plausible choice, and the derivation 
becomes 

S ~ cAd 
~ cab d 
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Again, the input is advanced since the input a matches the a in the pro
duction for A. At this point, the parser is stuck because the next input 
token, d, does not match the next symbol in the current derivation step, 
b. The problem is that the wrong production for A was chosen. The 
parser backs up to the previous step, backing up the input that was con
sumed in the erroneous step, and applies the other production for A: 

S => cAd 
=> cad 

The input, which was backed up to the a, matches the remainder of the 
symbols in the derivation step, and the parser announces success. 

As illustrated by this simple example, a top-down parser uses the next 
input token to select an applicable production, and consumes input to
kens as long as they match terminals in the derivation step. When a non
terminal is encountered in the right-hand side of a derivation, the next 
derivation step is made. This example also illustrates a pitfall of top
down parsing: applying the wrong production and having to backtrack 
to a previous step. For even a moderately complicated language, such 
backtracking could cause many steps to be reversed. More important, 
most of the side effects that can occur in derivation steps are difficult 
and costly to undo. Backing up the input an arbitrary distance and un
doing symbol-table insertions are examples. Also, such backtracking can 
make recognition very slow; in the worst case, the running time can be 
exponential in the number of tokens in the input. 

Top-down parsing techniques are practical only in cases where back
tracking can be avoided completely. This constraint restricts top-down 
parsers to languages in which the appropriate production for the next 
derivation step can be chosen correctly by looking at just the next to
ken in the input. Fortunately, many programming languages, including 
C, satisfy this constraint. 

A common technique for implementing top-down parsers is to write 
a parsing function for each nonterminal in the grammar, and to call that 
function when a production for the nonterminal is to be applied. Natu
rally, parsing functions must be recursive, since they might be applied 
recursively. That is, there might be a derivation of the form 

A => ... => ocA/3 => ... 

where oc and f3 are strings of grammar symbols. Top-down parsers writ
ten using this strategy are called recursive-descent parsers because they 
emulate a descent of the parse tree by calling recursive functions at each 
node. 

The derivation is not constructed explicitly. The call stack that han
dles the calls to recursive functions records the state of the derivation 
implicitly. For each nonterminal, the corresponding function encodes 
the right-hand side of each production as a sequence of comparisons 
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and calls. Terminals appearing in a production become comparisons of 
the token expected with the current input token, and nonterminals in the 
production become calls to the corresponding functions. For example, 
assuming that gettok returns the appropriate tokens for the language 
above, the function for the production S: c A d is 

int S(void) { 

} 

if (t == 'c') { 
t = gettok(); 
if (A() == 0) 

return 1; 
if Ct == 'd') { 

t = gettok(); 
return 1; 

} else 
return O; 

} else 
return O; 

A and S return one if they recognize sentences derivable from A and 
S, and they return zero otherwise. Parsing is initiated by main calling 
gettok to get the first token, and then calling S: 

int t; 
void main(void) { 

t = gettok(); 
if (SO == 0) 

} 

error("syntax error\n"); 
if (t != EOI) 

error("syntax error\n"); 

EOI is the token code for the end of input; the input is valid only if all 
of it is a sentence in the language. 

7 .4 FIRST and FOLLOW Sets 

In order to write the parsing functions for each nonterminal in a gram
mar, it must be possible to select the appropriate production by looking 
at just the next token in the input. Given a string of grammar symbols 
oc, FIRST(oc) is the set of terminals that begin all sentences derived from 
oc. The FIRST sets help select the appropriate production in a derivation 
step. 

Suppose the grammar contains the productions A: oc and A: {3, and 
the next derivation step is the replacement of A by the right-hand side 
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of one of its productions. The parsing function for A is called, and it 
must select the appropriate production. If the next token is in FIRST(ex), 
the production A: ex is selected, and if the next token is in FIRST(/3), A: f3 
is selected. If the next token is not in FIRST(ex) u FIRST(/3), there is a 
syntax error. Clearly, FIRST(ex) and FIRST(/3) cannot intersect. 

When ex is simply a nonterminal, FIRST(ex) is the set of terminals 
that begin sentences derivable from that nonterminal. Given a grammar, 
FIRST sets for each grammar symbol X can be computed by inspecting 
the productions. This inspection is an iterative process; it is repeated 
until nothing new is added to any of the FIRST sets. 

If Xis a terminal a, FIRST(X) is {a}. If X is a nonterminal and there 
is a production X: aex, where a is a terminal, a is added to FIRST(X). If 
there are productions of the form X: [ex] or X: {ex}, E and FIRST(ex) are 
added to FIRST(X); E is added because these €-productions can derive 
the empty string. If there are productions of the form 

X: ex1 
ex2 

then 
FIRST(exi) u FIRST(ex2) u ... u FIRST(exk) 

is added to FIRST(X). If there is a production of the form X: Y1 Y2 ... Yk, 
where Yi are grammar symbols, then FIRST(Y1 Y2 ... Yk) is added to 
FIRST(X). 

FIRST(Y1 Y2 ... Yk) depends on the FIRST sets for Y1 through Yk. All 
of the elements of FIRST(Yi) except E are added to FIRST(Y1Y2 ... Yk), 
which is initially empty. If FIRST(Yi) contains E, all of the elements of 
FIRST(Y2) except E are also added. This process is repeated, adding all 
of the elements of FIRST(Yd except E if FIRST(Yi-i) contains E. The 
resulting effect is that FIRST(Y1 Y2 ... Yk) contains the elements of the 
FIRST sets for the transparent Yis, where a FIRST set is transparent if 
it contains E. If all of the FIRST sets for Y1 through Yk contain E, E is 
added to FIRST(Y1 Y2 ... Yk). 

Consider the grammar for simple expressions given in Section 1.6: 

expr: 
term { + term } 
term { - term } 

term: 
factor { * factor } 
factor { I factor } 

factor: 
ID 
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This grammar has been rewritten to express alternatives as separate pro
ductions given on separate lines. FIRST ( expr) is equal to 

FIRST (term { + term } ) u FIRST (term { - term } ) 

which cannot be computed until the value of FIRST ( tenn) is known. Like
wise, FIRST (term) is 

FIRST(factor { *factor}) u FIRST(factor { /factor}) 

FIRST(factor), however, is easy to compute because all of the produc
tions for factor start with terminals: 

FIRST(factor) = FIRST( ID) u FIRST( ID ' (' expr { , expr} ') ') 
u FIRST ( ' (' expr ') ' ) 

{ID (} 

Now FIRST(term) can be computed and is {ID (}; FIRST(expr) is also 
{ID (}. 

There is one case in which the FIRST sets are not enough to determine 
which production to apply. Suppose a grammar contains the productions 

X: AB 
c 

Normally, the appropriate production would be selected depending on 
whether the next token is in FIRST(AB) or FIRST(C). Suppose, how
ever, that FIRST(AB) contains E, meaning that AB can derive the empty 
sentence. Then selecting the appropriate production depends not only 
on FIRST(AB) and FIRST(C), but also on the tokens that can follow X. 
This set of tokens is the FOLLOW set for X; that is, FOLLOW(X) is the 
set of terminals that can immediately follow nonterminal X in any sen
tential form. The FOLLOW sets give the "right context" for the non
terminal symbols, and are used in error detection as well as in struc
turing the grammar so that it is suitable for recursive-descent parsing. 
In this example, the first production is selected if the next token is in 
FIRST(AB) u FOLLOW(X), and second production is selected if the next 
token is in FIRST(C). Of course, FIRST(AB) u FOLLOW(X) must be dis
joint from FIRST(C). 

FOLLOW sets are harder to compute than FIRST sets, primarily be
cause it is necessary to inspect all productions in which a nonterminal is 
used instead of just the productions that define the nonterminal. For all 
productions of the form X: ocY/3, FIRST(/3) - {E} is added to FOLLOW(Y). 
If FIRST(/3) is transparent - if it contains E - FOLLOW(X) is added 
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to FOLLOW(Y). For all productions of the form X: ocY, FOUOW(X) is 
added to FOLLOW(Y). As for computing FIRST sets, computing FOLLOW 
sets is an iterative process; it is repeated until nothing new is added to 
any FOLLOW set. The end-of-file marker, -1, is included in the FOLLOW 
set of the start symbol. 

Here's how the FOUOW sets are computed for the expression gram
mar. Since expr is the start symbol, FOLLOW ( expr) contains -1. expr 
appears in only the productions for factor, so 

FOLLOW(expr) = {-1} u FIRST( { , expr} ') ') u FIRST(')') 

= {, ) -1} 

FIRST ( ') ') contributes ) to FOLLOW ( expr), but FIRST ( { , expr } ) con
tains €, so FIRST( { , expr} ') ') contributes ) as well. 

term appears in two places in the two productions for expr, so 

FOLLOW(term) = FOLLOW(expr) 

u FIRST( { + term } ) u FIRST( { - term } ) 

{, ) -I + -} 

Similarly, factor appears twice in each of the production:. for term: 

FOUOW(factor) = FOLLOW(term) 

u FIRST ( { * factor } ) u FIRST( { I factor } ) 

{' ) -I + - * /} 

7 .5 Writing Parsing Functions 

Equipped with an EBNF grammar for a language and the FIRST and FOL
LOW sets for each nonterminal, writing parsing functions amounts to 
translating the productions for each nonterminal into executable code. 
The idea is to write a function X for each nonterminal X, using the pro
ductions for X as a guide to writing the code for X. 

The- rules for this translation are derived from the possible forms for 
the productions in the grammar. For each form of production, ex, T(ex) 
denotes the translation - the code - for ex. At any point during parsing, 
the global variable t contains the current token as read by the lexical 
analyzer. Input is advanced by calling gettok. 

Given the production, X: ex, Xis 

X() { T(ex) } 

The right column of Table 7.1 gives T(ex) for each form of production 
component ex listed in the left column where 

D( ) _ { (FIRST(ex) - {€}) u FOLLOW(X) if€ E FIRST(ex) 
ex - FIRST(ex) otherwise 
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T(oc) 

if Ct== A) t = gettokC); 
else error 

nonterminal X X () ; 

oc1 I oc2 I · · · I °'k if Ct E D(oci)) T(oci) 

[oc] 

{ oc} 

else if Ct E D(oc2)) T(oc2) 

else if Ct E D(ock)) T(ock) 
else error 

T(oc1) T(oc2) · · · T(ock) 

if Ct E D(oc)) T(oc) 

while Ct E D(oc)) T(oc) 

TABLE 7.1 Parsing function translations. 

There are, of course, other code sequences that are equivalent to those 
given in Table 7.1. For example, a switch statement is often used for 
T(a1 I £X2 I · · · I <Xk). Also, rote application of the sequences given 
in Table 7.1 sometimes leads to redundant code, which can be improved 
by simple transformations. For example, the body of the parsing func
tion for 

parameter-list: [ ID { , ID } ] 

is derived by applying the rules in Table 7.1 in the following seven steps. 

1. T (parameter-list) 

2. T([ ID { , ID} ]) 

3. if Ct == ID) { T(ID { , ID } ) } 

4. if Ct == ID) { 

} 

if Ct== ID) t = gettokC); 
else errorC"missing identifier\n"); 
T({,ID}) 

5. if Ct == ID) { 

} 

if Ct== ID) t = gettokC); 
else errorC"missing identifier\n"); 
while Ct == ', ') { T(, ID)} 

6. if Ct == ID) { 
if Ct== ID) t = gettokC); 
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} 

else errorC"missing identifier\n"); 
while Ct == ', ') { 

} 

if Ct== ', ') t = gettokC); 
else errorC"missing ,\n"); 
T(ID) 

7. if Ct == ID) { 

} 

if Ct== ID) t = gettokC); 
else errorC"missing identifier\n"); 
while Ct == ', ') { 

} 

if Ct== ', ') t = gettokC); 
else errorC"missing ,\n"); 
if Ct== ID) t = gettokC); 
else errorC"missing identifier\n"); 

The test in the second if statement in step 4, t == ID, i redundant; it 
must be true if control reaches that if statement. Similarly, the test for a 
comma in the first if statement in the while loop in step 6 is unnecessary. 
This function can be simplified to 

void parameter_listCvoid) { 
if Ct == ID) { 

t = gettok(); 
while Ct== ',') { 

t = gettok(); 
if Ct== ID) t = gettokC); 
else errorC"missing identifier\n"); 

} 
} 

} 

Left factoring is often taken into account when the parsing function is 
written instead of rewriting the grammar and adding new nonterminals 
as described above. For example, A: DC/3 I DC)' is equivalent to A: DC(/3 I y), 
so the code for T(DC/3 I DC)') can be written directly as 

T(DC) T(/3 I y) 

In a few cases, DC appears as a common prefix in several productions, 
and involves significant semantic processing. In such cases, introducing 
a new nonterminal and left factoring the relevant productions encapsu
lates that processing in a single parsing function. 
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7 .6 Handling Syntax Errors 

The FIRST and FOLLOW sets and subsets thereof are used not only to 
guide parsing decisions but also for detecting errors. There are two ma
jor types of errors: syntax errors and semantic errors. The former occur 
when the input is not a sentence in the language. The latter occur when 
the input is a sentence, but is meaningless. For example, the expression 
x = 6 is syntactically correct, but if x is not declared, the expression is 
semantically incorrect. 

Semantic errors are detected and handled by each parsing function in 
accordance with the semantics of the specific construct. Such errors are 
described along with the implementation of the functions. 

Syntax errors can be handled in a systematic fashion regardless of 
the context in which they occur. Detecting syntax errors is relatively 
easy; such errors occur at the error indications in the translations shown 
in Table 7.1. Recovering from syntax errors is more difficult, however. 
Since it is unreasonable to stop parsing after the first syntax error, most 
of the effort in error handling is devoted to recovering from errors so 
that parsing can continue. 

A syntax error indicates the presence of a sentence that is not in the 
language. Recovering from a syntax error is possible only if the erro
neous input can be converted to a sentence by making appropriate as
sumptions about missing tokens or by ignoring some of the input. Un
fortunately, choosing the appropriate course of action is nontrivial. Poor 
choices may cause the parser to get completely out of step and cause syn
tax errors to cascade even if the subsequent input is syntactically cor
rect. Even worse, naive error recovery may fail to make forward progress 
through the input. 

The structure of recursive-descent parsers assists in choosing the ap
propriate error-recovery strategy. The parser is composed of many pars
ing functions, each of which contributes a small part to the overall goal 
of parsing the input. Thus the major goal is split into many subgoals, 
each handled by calling on other parsing functions. In order to continue 
parsing, each function is written to guarantee that the next token in the 
input can legally follow its nonterminal in a sentential form. If an error 
is detected, the parsing function reports the error and discards tokens 
until it encounters one that can legally follow its nonterminal. 

One approach to implementing this technique is to have X, the pars
ing function for the nonterminal X, ignore input until it encounters a 
token in FOLLOW(X). The goal is to resynchronize the parser at a point 
in the input from which it can continue. After advancing to a token in 
FOLLOW(X), it will appear that all is well to X's caller. One problem 
with this naive approach is that it doesn't account for the particular sen
tential form in which this occurrence of X appears. When X appears 
in the sentential form cxX/3, X should ignore tokens in D(/3), which is 
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often smaller than FOUOW(X). If X stops discarding tokens when it 
finds one in FOUOW(X) but not in D(/3), it is stopping too early and its 
caller will announce another syntax error unnecessarily. Thus, parsing 
functions use sets like D(/3) whenever they are readily known, and use 
FOUOW(X) otherwise. For example, when exprO, one of the parsing 
functions for expressions, is called to parse the third expression in the 
for statement, the set {; ) } is used when it recovers from a syntax error 
in the expression. 

This strategy is encapsulated in the functions exported by error. c. 

( error.c exported functions)= 
extern void test ARGS((int tok, char set[])); 

141 ..... 

checks if the next token is equal to tok; if it isn't, a message is issued and 
tokens are skipped until one in { tok} u set is encountered. set is the 
set of tokens that should not be skipped, and ensures that the amount 
of input skipped is limited. A set is simply a null-terminated array of 
token codes. 

(error.c functions)= 
void test(tok, set) int tok; char set[]; { 

if (t == tok) 

} 

t = gettok(); 
else { 

} 

expect(tok); 
skipto(tok, set); 
if (t == tok) 

t = gettok(); 

142 ..... 

test issues messages by calling expect and skips tokens by calling 
skipto, both of which are described below. 

The strategy embodied in test works well when the compiler is faced 
with errors for which skipping some of the input is an appropriate action. 
It does not work well, however, when an expected token is missing from 
the input. In those cases, a more effective strategy is to issue a message, 
pretend the expected token was present, and continue parsing. This 
scheme effectively inserts missing tokens, and it works well because such 
errors are almost always caused by the omission of tokens that have 
only simple syntactic functions, such as semicolons and commas. This 
strategy is implemented by 

... 
141 143 ..... (error.c exported functions)+= 

extern void expect ARGS((int tok)); 

which checks if the next token, which is the current value of t, is equal 
to tok and, if so, advances the input. 

142 expect 
156 exprO 
361 set 
144 skipto 

141 
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gettok 111 

test 141 
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(error.c functions)+= 
void expect(tok) int tok; { 

if (t == tok) 

} 

t = gettok(); 
else { 

} 

error("syntax error; found"); 
printtoken(); 
fprint(2, "expecting '%k'\n", tok); 

.... 
141 142 ... 

The first test is, of course, never true when expect is called from test; 
that call is made to issue the diagnostic. expect is also called from other 
parsing functions whenever a specific token is expected, and it consumes 
that token. If the expected token is missing, expect issues a diagnostic 
and returns without advancing the input, as if the expected token had 
been present. 

expect calls error to begin the message, and it calls the static function 
pri nttoken to print the current token (i.e., the token given by t and 
token), and fpri nt to conclude the message. As an example of expect's 
effect, the input "int x [ 5 ; " draws the diagnostic 

syntax error; found ';' expecting ']' 

Error messages are initiated by calling error, which is called with a 
pri ntf-style format string and arguments. In addition to the message, 
error prints the coordinates of the current token set by gettok and 
keeps a count of the number of error messages issued in errcnt. 

(error.c functions}+= 
void error VARARGS((char *fmt, ... ), 
(fmt, va_alist),char *fmt; va__dcl) { 

va__list ap; 

} 

if (errcnt++ >= errlimit) { 
errcnt = -1; 

} 

error("too many errors\n"); 
exit(l); 

va__init(ap, fmt); 
if (firstfile !=file && firstfile && *firstfile) 

fprint(2, "%s: ", firstfile); 
fprint(2, "%w: ", &src); 
vfprint(2, fmt, ap); 
va_end(ap); 

.... 
142 144 ... 
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( error.c data)= 143 ..... 
int errcnt = O; 
int errlimit = 20; 

If errcnt gets too big, error terminates execution. warning, which issues 
warning diagnostics, is similar, but it doesn't increment errcnt. fatal 
is similar to error, but terminates compilation after issuing the error 
message. fatal is called only for bona fide compiler bugs. 

The last error-handling function is ... 
141 (error.c exported functions)+= 

extern void skipto ARGS((int tok, char set[])); 

which discards tokens until a token t is found that is equal to tok or for 
which kind [t] is in the null-terminated array set. The array 

(error.c exported data)= 
extern char kind[]; 

is indexed by token codes, and partitions them into sets. lt's defined 
by including token. h and extracting its sixth column, as ~8cribed on 
page 109: 

(error.c data)+= 
char kind[] = { 
#define xx(a,b,c,d,e,f,g) f, 
#define yy(a,b,c,d,e,f,g) f, 
#include "token.h" 
} ; 

... 
143 

kind[t] is a token code that denotes a set of which t is a member. 
For example, the code ID is used to denote the set FIRST(expression) 
for the expression defined in Section 8.3. Thus, kind [t] is equal to ID 
for every t E FIRST(expression). The test kind[t]==ID determines if 
the token tis in FIRST(expression), so passing the array {ID,O} as the 
second argument to ski pto causes it to skip tokens until it finds one in 
FIRST (expression). 

The following table summarizes the values in kind. The token code on 
the left denotes the set composed of itself and the tokens on the right. 

ID FCON ICON SCON SIZEOF & ++ -- * + - - ( ! 
CHAR FLOAT DOUBLE SHORT INT UNSIGNED SIGNED 

VOID STRUCT UNION ENUM LONG CONST VOLATILE 
STATIC EXTERN AUTO REGISTER TYPEDEF 
IF BREAK CASE CONTINUE DEFAULT DO ELSE 

FOR GOTO RETURN SWITCH WHILE { 

For tokens not mentioned in this table, kind [t] is equal tot; for example, 
kind ['} '] is equal to '} '. The sets defined by kind are related to FIRST 
sets described in Section 7.4 as follows. 

142 error 
361 set 
144 skipto 
109 token.h 

143 
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kind[ID] 
kind[ID] u kind[IF] 
kind[CHAR] u kind[STATIC] 
kind [STATIC] 

FIRST (expression) 
FIRST(statement) 

c FIRST(declaration) 
c FIRST(parameter) 

The nonterminals listed above are defined in Chapters 8, 10, and 11. 
Since ski pto's second argument is an array, it can represent supersets 

of these sets when the additional tokens have kind values equal to them
selves, as exemplified above by}. These supersets are related to FOLLOW 
sets in some cases. For example, a statement must be followed by a } or 
a token in FIRST(statement). The parsing function for statement thus 
passes skipto an array that holds IF, ID, and}. 

As ski pto discards tokens, it announces the first eight and the last 
one it discards: 

(error.c functions}+= 
void skipto(tok, set) int tok; char set[]; { 

int n; 

} 

char *s; 

for (n = O; t != EOI && t != tok; t = gettok()) { 
for (s = set; *s && kind[t] != *s; s++) 

} 

if (kind[t] == *s) 
break; 

if (n++ == 0) 
error("skipping"); 

if (n <= 8) 
printtoken(); 

else if (n == 9) 
fprint(2, " ... "); 

if (n > 8) { 

} 

fprint(2, "up to"); 
pri nttoken () ; 

if (n > 0) 
fprint(2, "\n"); 

.... 
142 

ski pto discards nothing and issues no diagnostic if tis equal to tok or 
is in kind[t]. Suppose bug.c holds only the one line 

fprint(2, "expecting '%k'\n", tok); 

The syntax error in this example is that this line must be inside a func
tion. The call to fpri nt looks like the beginning of a function definition, 
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but 1 cc soon discovers the error. test calls expect and ski pto to issue 
the diagnostic 

bug.c:l: syntax error; found '2' expecting ')' 
bug.c:l: skipping '2' ',' " expecting '%k'\12" ',' 'tok' 

Notice that the right parenthesis was not discarded. 

Further Reading 

There are many books that describe the theory and practice of com
piler construction, including Aho, Sethi, and Ullman (1986), Fischer and 
LeBlanc (1991), and Waite and Goos (1984). Davie and Morrison (1981) 
and Wirth (1976) describe the design and implementation of recursive
descent compilers. 

A bottom-up parser reconstructs a rightmost derivation of its input, 
and builds parse trees from the leaves to the roots. Bottom-up parsers 
are often used in compilers because they accept a larger class of lan
guages and because the grammars are sometimes easier to write. Most 
bottom-up parsers use a variant of LR parsing, which is surveyed by Aho 
and Johnson (1974) and covered in detail by Aho, Sethi, and Ullman 
(1986). In addition, many parser generators have been constructed. 
These programs accept a syntactic specification of the language, usu
ally in a form like that shown in Exercise 7.2, and produce a parsing 
program. YACC (Johnson 1975) is the parser generator used on UNIX. 
YACC and LEX work together, often simplifying compiler implementa
tion considerably. Aho, Sethi, and Ullman (1986), Kernighan and Pike 
(1984), and Schreiner and Friedman (1985) contain several examples of 
the use of YACC and LEX. Holub (1990) describes the implementation of 
another parser generator. 

Other parser generators are based on attribute grammars; Waite and 
Goos (1984) describe attribute grammars and related parser generators. 

The error-handling techniques used in 1 cc are like those advocated 
by Stirling (1985) and used by Wirth (1976). Burke and Fisher (1987) 
describe perhaps the best approach to handling errors for LR and LL 
parser tables. 

Exercises 

7.1 Using the lexical-analyzer and the symbol-table modules from the 
previous chapters, cobble together a parser that recognizes expres
sions defined by the grammar below and prints their parse trees. 

142 expect 
144 skipto 
141 test 
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expr: 
term { + term } 
term { - term } 

term: 
factor { * factor } 
factor { / factor } 

factor: 
ID 
ID ' (' expr { , expr } ' ) ' 
'(' expr ')' 
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7.2 Write a program that computes the FIRST and FOUOW sets for an 
EBNF grammar and reports conflicts that interfere with recursive
descent parsing of the language. Design an input representation for 
the grammar that is close in the form to EBNF. For example, sup
pose grammars are given in free format where nonterminals are in 
lowercase with embedded - signs, terminals are in uppercase or en
closed in single or double quotes, and productions are terminated 
by semicolons. For example, the grammar in the previous exercise 
could appear as 

expr 

term 

factor 

term { ( '+' I ' - ' ) term } 

factor { ( '*' I '/' ) term} 

ID [ '(' expr { , expr} ')' J 
'(' expr ')' 

Give an EBNF specification for the syntax of the input, and write 
a recursive-descent parser to recognize it using the techniques de
scribed in this chapter. 
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Expressions 

C expressions form a sublanguage for which the parsing functions are 
relatively straightforward to write. This makes them a good starting 
point for describing 1 cc's eight modules that collaborate to parse and 
analyze the input program. These functions build an internal represen
tation for the input program that consists of the abstract syntax trees 
and the code lists described in Section 1.3. 

Four of these modules cooperate in parsing, analyzing, and represent
ing expressions. expr. c implements the parsing functions that recognize 
and translate expressions. tree. c implements low-level functions that 
manage trees, which are the internal, intermediate representation for ex
pressions. enode. c implements type-checking functions that ensure the 
semantic validity of expressions, and it exports functions that build and 
manipulate trees. simp. c implements functions that perform tree trans
formations, such as constant folding. 

Broadly speaking, this chapter focuses on tree. c and expr. c, and it 
describes the shape of the abstract syntax trees used to represent ex
pressions. Much of this explanation is a top-down tour of the parsing 
functions that build trees. Chapter 9 describes the meaning of these 
trees as they relate to the semantics of C; most of that explanation is a 
bottom-up tour of the semantics functions that type-check trees as they 
are built. This chapter's last section is the exception to this general struc
ture; the functions it describes handle both the shape and meaning of 
the leaf nodes in abstract syntax trees, which are the nodes for constants 
and identifiers. 

8.1 Representing Expressions 

In addition to recognizing and analyzing expressions, the compiler must 
build an intermediate representation of them from which it can check 
their validity and generate code. Abstract syntax trees, or simply trees, 
are often used to represent expressions. Abstract syntax trees are parse 
trees without nodes for the nonterminals and nodes for useless termi
nals. In such trees, nodes represent operators and their off spring repre
sent the operands. For example, the tree for (a+b)+b*(a+b) is shown in 
Figure 8.1. There are no nodes for the nonterminals involved in parsing 
this expression, and there are no nodes for the tokens C and ) . There 
are no nodes for the tokens + and * because the nodes contain operators 
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ADD+I 

/~ 
ADD+I MUL+I 

I\ /~ 
INDIR+I INDIR+I INDIR+I ADD+I 

i i i I\ 
ADDRG+P ADDRG+P ADDRG+P INDIR+I INDIR+I 

a b b i i 
ADDRG+P ADDRG+P 

a b 

FIGURE 8.1 Abstract syntax tree for (a+b)+b*(a+b). 

(ADD+I and MUL+I) that represent operator-specific information. Nodes 
labelled with the operator ADDRG+P represent computing the address of 
the identifier given by their operands. 

Trees often contain operators that do not appear in the source lan
guage. The INDIR+I nodes, for example, fetch the integers at the ad
dresses specified by their operands, but there's no explicit "fetch" op
erator in C. Other examples include conversion operators, which arise 
because of implicit conversions, and operators that are introduced as 
the result of semantic rules. Some of these operators do not have any 
corresponding operation at runtime; they are introduced only to facili
tate compilation. 

Uke types, trees can be written in a parenthesized prefix notation; for 
example, the tree for the expression (a+b)+b*(a+b) shown in Figure 8.1 
can be written as 

(ADD+I 

) 

(ADD+I (INDIR+I (ADDRG+P a)) (INDIR+I (ADDRG+P b))) 
(MUL+I 

(INDIR+I (ADDRG+P b)) 
(ADD+I (INDIR+I (ADDRG+P a)) (INDIR+I (ADDRG+P b))) 

) 

Parsing an expression yields a tree whose nodes are defined by 

(tree.c typedefs)= 
typedef struct tree *Tree; 

(tree.c exported types}= 
struct tree { 

int op; 
Type type; 
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} ; 

Tree kids[2]; 
Node node; 
union { 

(u fields for Tree variants 168) 
} u; 

The op field holds a code for the operator, the type field points to a Type 
for the type of the result computed by the node at runtime, and kids 
point to the operands. The node field is used to build dags from trees 
as detailed in Section 12.2. Trees for some operators have additional 
information tucked away in the fields of their u unions. 

The operators form a superset of the node operators described in 
Chapter 5 and listed in Table 5.1 (page 84), but they are written differ
ently to emphasize their use in trees. An operator is formed by adding 
a type suffix to a generic operator; for example, ADD+! denotes integer 
addition. The + is omitted when referring to the corresponding node 
operator ADDI; this convention helps distinguish between trees and dags 
in figures and in prose. The type suffixes are listed in Section 5.5, and 
Table 5.1 gives the allowable suffixes for each operator. 

Table 8.1 lists the six operators that appear in trees in addition to 
those shown in Table 5.1. AND, OR, and NOT represent expressions involv
ing the &&, I I, and ! operators. Comma expressions yield RIGHT trees; 
by definition, RIGHT evaluates its arguments left to right, and its value 
is the value of its rightmost operand. RIGHT is also used to build trees 
that logically have more than two operands, such as the COND operator, 
which represents conditional expressions of the form c ? e1 : e2. The 
first operand of a COND tree is c and the second is a RIGHT tree that holds 
e1 and e2. RIGHT trees are also used for expressions such as e++. These 
operators are used only by the front end and thus do not need - and 
must not have - type suffixes. The FIELD operator identifies a reference 
to a bit field. 

While trees and dags share many of the same operators, the rules con
cerning the number of operands and symbols, summarized in Table 5.1, 
apply only to dags. The front end is not constrained by these rules when 

syms 

lV 

kids 

2 
2 
1 
2 

1or2 
1 

Operator 

AND 
OR 
NOT 
COND 
RIGHT 
FIELD 

Operation 

logical And 
logical Or 
logical Not 
conditional expression 
composition 
bit-field access 

TABLE 8.1 Tree operators. 

81 kids 
315 node 

54 Type 

149 
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NEWO 24 
STMT 97 

CHAPTER 8 • EXPRESSIONS 

it builds trees, and it often uses additional operands and symbols in trees 
that do not appear in dags. For example, when it builds the tree for the 
arguments in a function call, it uses the kids [1] fields in ARG nodes to 
build what amounts to a list of arguments, the trees for which are stored 
in the kids [OJ fields. 

A tree is allocated, initialized, and returned by 

( tree.c functions)= 
Tree tree(op, type, left, right) 
int op; Type type; Tree left, right; { 

Tree p; 

} 

NEWO(p, where); 
p->Op = op; 
p->type = type; 
p->kids[OJ left; 
p->kids[l] = right; 
return p; 

( tree.c data)= 
static int where = STMT; 

150 .... 

155 .... 

Trees are allocated in the allocation arena indicated by where, which is 
almost always the STMT arena. Data allocated in STMT is deallocated most 
frequently, possibly after every statement is parsed. In some cases, how
ever, an expression's tree must be saved beyond the compilation of the 
current statement. The increment expression in a for loop is an exam
ple. These expressions are parsed by calling texpr with an argument 
that specifies the allocation arena: 

... 
( tree.c functions)+= 150 155 .... 

Tree texpr(f, tok, a) Tree (*f) ARGS((int)); int tok, a; { 

} 

int save = where; 
Tree p; 

where = a; 
p = (*f)(tok); 
where = save; 
return p; 

texpr saves where, sets it to a, calls the parsing function (*f) (tok), 
restores the saved value of where, and returns the tree returned by *f. 

The remaining functions in tree. c construct, test, or otherwise ma
nipulate trees and operators. These are all applicative - they build new 
trees instead of modifying existing ones, which is necessary because the 
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front end builds dags for a few operators instead of trees. rightkid(p) 
returns the rightmost non-RIGHT operand of a nested series of RIGHT 
trees. retype(p, ty) returns p if p->type == ty or a copy of p with type 
ty. hascal l(p) is one if p contains a CALL tree and zero otherwise. 

generic(op) returns the generic flavor of op, optype(op) returns op's 
type suffix, and opindex(op) returns op's operator index, which is the 
generic operator mapped into a contiguous range of integers suitable for 
use as an index. 

8.2 Parsing Expressions 

C has 41 operators distributed in 15 levels of precedence. Beginning 
with an EBNF grammar that contains a nonterminal for each precedence 
level, as suggested in Section 7.2, and deriving the parsing functions 
is a correct approach, but cumbersome at best. There is an important 
simplification to this process that reduces the size of both the grammar 
and the resulting code. 

Consider the following simplification of the grammar from Section 7.4, 
which is for a small subset of C expressions. 

expr: term { + term } 

term: factor { * factor } 

factor: ID I ' C ' expr ' ) ' 

Parsing functions can be written directly from this grammar using the 
translations given in Table 7 .1. For example, the steps in deriving and 
simplifying the body of the parsing function expr (without semantics) 
for ex.pr are 

T(expr) 
T(term { + term } ) 
T( term) T ( { + term } ) 
term(); T({ +term}) 
term(); while (t == '+') { T(+ term)} 
term(); while (t == '+') { T(+) T(term)} 
term(); whi 1 e (t == '+') { t = gettok(); T(term) } 
term(); while (t == '+') { t = gettok(); term(); } 

Likewise, the body of the parsing function term for term is 

factor(); while Ct== '*') { t = gettok(); factor(); } 

factor is the basis case, and it handles the elementary expressions: 

void factor(void) { 
if (t == ID) 

97 generic 
171 hascall 

98 opindex 
98 optype 

171 retype 
149 RIGHT 
171 ri ghtki d 

151 
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prec 155 

t = gettok(); 
else if (t == '(') { 

t = gettok(); 
expr(); 
expect(')'); 

} else 
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error("unrecognized expression\n"); 
} 

There are two precedence levels in this example. In general, for n 
precedence levels there are n+ 1 nonterminals; one for each level and one 
for the basis case in which further division is impossible. Consequently, 
there are n + 1 functions - one for each nonterminal. If the binary 
operators are all left-associative, these functions are very similar. As 
illustrated by the bodies for expr and term above, the only essential 
differences are the operators expected and the function to be called; 
function k calls function k + l. 

This similarity can be exploited to replace functions 1 through n by a 
single function and a table of operators ordered according to increasing 
precedence. 1 cc stores the precedences in an array indexed by token 
code; Table 8.2 lists the precedence and associativity for all of the C 
operators. prec [t] is the precedence of the operator with token code 
t; for example, prec [ '+' J is 12 and prec [LEQ] is 10. Using prec and 
assuming that the only operators are +, -, *, /, and %, then expr and 
term given above can be replaced by the single function 

void expr(int k) { 
if (k > 13) 

factor(); 
else { 

} 
} 

expr(k + 1); 
while (prec[t] == k) { 

t = gettok(); 
expr(k + 1); 

} 

The 13 comes from Table 8.2; the binary operators + and - have prece
dence 12 and*,/, and% each have precedence 13. When k exceeds 13, 
expr calls factor to parse the productions for factor. Expression pars
ing for this restricted grammar begins by calling expr(12), and the call 
to expr in factor must be changed to expr(12). 

expr and factor can be used for any expression grammar of the form 

expr: expr ® expr I factor 
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Precedence Associativity Operators Purpose Parsed By 

1 left composition expr 
2 right = += -= *= assignment exprl 

I= %= &= "= I= 
<<= >>= 

3 right ?: conditional expr2 
4 left 11 logical or expr3 
5 left && logical and expr3 
6 left I bitwise OR expr3 
7 left II bitwise XOR expr3 
8 left & bitwise AND expr3 
9 left != equality expr3 

10 left < > <= >= relational expr3 
11 left << >> shifting expr3 
12 left + - additive expr3 
13 left * I % multiplicative expr3 
14 * & - + ! - unary prefix unary 

++ --
si zeof type-cast 

15 ++ -- unary suffix postfix 

TABLE8.2 Operator precedences, associativities, and parsing functions. 

where ® denotes binary, left-associative operators. Adding operators is 
accomplished by appropriately initializing prec. 

The while loop in expr handles left-associative operators, which are 
specified in EBNF by productions like those for ex.pr and term. Right
associative operators, like assignment, are specified in EBNF by produc
tions like 

asgn: expr = asgn 

They can also be handled using this approach by simply calling expr(k) 
instead of expr(k + 1) in the while loop in expr. Assuming all opera
tors at each precedence level have the same associativity, the decision 
of whether to call expr with k or k + 1 can be encoded in a table, han
dled by writing separate parsing functions for left- and right-associative 
operators, or making explicit tests for each kind of operator. 

Unary operators can also be handled using this technique. Fortunately, 
the unary operators in C have the highest precedence, so they appear in 
function n + 1, as does factor in the example above. Otherwise, upon 
entry, expr would have to check for the occurrence of unary operators 
at the kth level. 

Using this technique also simplifies the grammar for expressions, be
cause most of the nonterminals for the intermediate precedence levels 
can be omitted. 

157 exprl 
159 expr2 
162 expr3 
155 expr 
166 postfix 
155 prec 
164 unary 

153 
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8.3 Parsing C Expressions 

The complete syntax for C expressions is 

expression: 
assignment-expression { , assignment-expression } 

assignment-expression: 
conditional-expression 
unary-expression assign-operator assignment-expression 

assign-operator: 
one of= += -= *= /= %= <<= >>= &= A= I= 

conditional-expression: 
binary-expression [ ? expression : conditional-expression ] 

binary-expression: 
unary-expression { binary-operator unary-expression } 

binary-operator: 
one of I I && ' I ' A & == ! = < > <= >= << >> + - * I % 

unary-expression: 
postfix-expression 
unary-opera tor unary-expression 
' ( ' type-name ' ) ' unary-expression 
s i zeof unary-expression 
s i zeof ' ( ' type-name ' ) ' 

unary-opera tor: 
one of ++ -- & * + - - ! 

postfix-expression: 
primary-expression { postfix-operator } 

postfix-operator: 
' [ ' expression ' ] ' 
' (' [ assignment-expression { , assignment-expression } ] ') ' 
. identifier 
-> identifier 
++ 

primary-expression: 
identifer 
constant 
string-literal 
' ( ' expression ' ) ' 

There are seven parsing functions for expressions corresponding to the 
expression nonterminals in this grammar. The parsing function for 
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binary-expression uses the techniques described in Section 8.2 to han
dle all the binary operators, which have precedences between 4 and 13 
inclusive (see Table 8.2). 

Each of these functions parses the applicable expression, builds a tree 
to represent the expression, type-checks the tree, and returns it. Three 
arrays, each indexed by token code, guide the operation of these func
tions. prec[t], mentioned in Section 8.2, gives the precedence of the 
operator denoted by token code t. oper[t] is the generic tree operator 
that corresponds to token t, and optree[t] points to a function that 
builds a tree for the operator denoted by t. For example, prec [ '+'] is 
12, aper [ '+'] is ADD, and optree [ '+'] is addtree, which, like most of 
the functions referred to by optree and like optree itself, is in enode. c. 
prec and aper are defined by including token. h and extracting its third 
and fourth columns: 

( tree.c data)+= 
static char prec[] = { 
#define xx(a,b,c,d,e,f,g) c, 
#define yy(a,b,c,d,e,f,g) c, 
#include "token.h" 
} ; 
static int aper[] = { 
#define xx(a,b,c,d,e,f,g) d, 
#define yy(a,b,c,d,e,f,g) d, 
#include "token.h" 
}; 

token. h is described in Section 6.2. 

... 
150 169 ... 

Each function is derived using the rules described in Section 7.5. Code 
to build and check the trees is interleaved with the parsing code. Tue 
code for expression is typical and is also the simplest: 

( tree.c functions}+= 
Tree expr(tok) int tok; 

static char stop[] 
Tree p = exprl(O); 

while Ct == ', ') { 
Tree q; 
t = gettok(); 

{ 

{ IF I ID' I} I ' 0 } ; 

q pointer(exprl(O)); 

} 

p = tree(RIGHT, q->type, root(value(p)), q); 
} 
(test for correct termination 156} 
return p; 

... 
150 156 ... 

192 addtree 
157 exprl 
191 optree 
174 pointer 
149 RIGHT 
109 token .h 
150 tree 
160 value 

155 
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exprl 157 
expr 155 

pointer 174 
RIGHT 149 
test 141 

value 160 
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expr begins by calling exprl, which parses an assignment-expression and 
returns the tree; it's described in Section 8.4. The while loop corresponds 
to the 

{ , assignment-expression} 

portion of the production for assignment-expression, and it builds a 
RIGHT tree for each comma operator. The functions pointer and value 
check for semantic correctness or return transformations of their argu
ment trees, and are described below. Exercise 12.9 describes root, which 
is called with trees that will be executed only for their side effect. 

expr's argument, if nonzero, is the code for the token that should 
follow this occurrence of an expression. 

(test for correct termination 156) = 155 157 
if (tok) 

test(tok, stop); 

If tok is nonzero, but the expression is followed by something else, test 
skips input up to the next occurrence of tok or a token in stop, which 
is the set toku { IF ID '}' } (see Section 7.6). This convention, which 
is used by several parsing functions, helps detect and handle errors. An 
expression must be followed by one of the tokens in its FOLLOW set. 
But for most uses, there's only one token that can follow expression. For 
example, the increment expression in a for loop must be followed by a 
right parenthesis. So, instead of checking for any token in the FOLLOW 
set, exp r checks for one of the tokens in the FOLLOW set, which is more 
precise. In contexts where more than one token can follow expression, 
expr(O) is used and the caller checks the legality of the next token. 

Statement-level expressions, such as assignments and function calls, 
are executed for their side effects: 

(tree.c functions)+= 
Tree exprO(tok) int tok; { 

return root(expr(tok)); 
} 

.... 
155 157 ..... 

exprO calls expr to parse the expression, and passes the resulting tree 
to root, which returns only the tree that has a side effect. For exam
ple, the statement a + f() includes a useless addition, which lee is free 
to eliminate (even if the addition would overflow). Given the tree for 
this expression, root returns the tree for f (). root is described in Exer
cise 12.9. 

8.4 Assignment Expressions 

The right recursion in the second production for assignment-expression 
makes assignment right-associative; multiple assignments like a = b = e 
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are interpreted as a = (b = c). Using the production 

assignment-expression: 
unary-expression { assign-operator conditional-expression } 

instead would be incorrect because it leads to a left-associative interpre
tation of multiple assignments like (a = b) = c. This interpretation is 
incorrect because the result of an assignment is not an lvalue. 

exprl parses assignments. 

(tree.c functions)+= 
Tree exprl(tok) int tok; { 

} 

static char stop[] = { IF, ID, 0 }; 
Tree p = expr2(); 

if (t == '=' 
I I (prec[t] >= 6 && prec[t] <= 8) 
I I (prec[t] >= 11 && prec[t] <= 13)) { 

int op = t; 
t = gettok(); 
if (oper[op] == ASGN) 

p = asgntree(ASGN, p, value(exprl(O))); 
else 

(augmented assignment 158) 
} 
(test for correct termination 156) 
return p; 

expr2 parses conditional-expressions: 

conditional-expression: 

... 
156 158 ..... 

binary-expression [ ? expression : conditional-expression ] 

The code for exprl doesn't follow the grammar precisely; expr2 is called 
for both productions, even though unary should be called for the second 
production. expr2 ultimately calls unary, so the code above recognizes 
all correct expressions, but it also recognizes incorrect ones. Incorrect 
expressions are caught by the semantic analysis in asgntree. The ad
vantage of this approach is that it handles errors more gracefully. For 
example, in a + b = c, a + b is not a unary-expression, so a more strict 
parser would signal an error at the + and might signal other errors be
cause it didn't parse the expression completely. l cc will accept the ex
pression with no syntax errors, but will complain that the left-hand side 
of the assignment isn't an lvalue. 

The first if statement in exprl tests for an assignment (=) or the ini
tial character of the augmented-assignment operators (see Table 8.2). 

197 asgntree 
159 expr2 
155 oper 
155 prec 
164 unary 
160 value 

157 
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asgntree 197 
expect 142 
exprl 157 
expr3 162 

oper 155 
optree 191 
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oper [op] will be the corresponding generic tree operator for these char
acters, for example, oper [ '+' J is ADD. exprl handles augmented assign
ments, such as +=, by recognizing the two tokens that make up the aug
mented assignment operator: 

(augmented assignment 158)= 
{ 

expect('='); 
p = incr(op, p, exprl(O)); 

} 

157 

Each augmented assignment operator is one token, but this code appears 
to treat them as two tokens; expr3, described below, avoids this erro
neous interpretation by recognizing tokens like + as binary operators 
only when they aren't immediately followed by an equals sign. Thus, 
exprl correctly interprets a += bas an augmented assignment and lets 
expr3 discover the error in a + = b. 

i ncr builds trees for expressions of form v ®= e for any binary oper
ator®, lvalue v, and rvalue e. 

( tree.c functions)+= 
.... 

157 159 ..... 
Tree incr(op, v, e) int op; Tree v, e; { 

return asgntree(ASGN, v, (*optree[op])(oper[op], v, e)); 
} 

i ncr is one place where the front end builds a dag instead of a tree. For 
example, Figure 8.2 shows the tree returned by i ncr for *f() += b. *f() 
must be evaluated only once, but the lvalue it computes is used twice -
once for the rvalue and once as the target of the assignment. Building 
only one tree for *f() reflects these semantics. Ultimately, these kinds 
of trees require temporaries, which are generated when the trees are 
converted into nodes; Chapter 12 explains. 

These dags could have been avoided by using additional tree opera
tors for augmented assignments. Doing this would increase the number 

CALL+P 

i 
ADDRG+P 

f 

INDIR+I 

i 
ADDRG+P 

b 

FIGURE 8.2 Tree for *f() += b. 
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of tree operators, and it might complicate the semantic analyses for the 
binary operators involved. For example, addtree, the function that per
forms the semantic analysis for +, might have to cope with both + and 
+=. There are several other situations in which it's useful to permit dags; 
an example occurs in dealing with nested functions, which is described 
in Section 9.3. 

8.5 Conditional Expressions 

The syntax of conditional expressions is 

conditional-expression: 
binary-expression [ ? expression : conditional-expression ] 

The value of a conditional expression is the value of expression if binary
expression is nonzero; otherwise it's the value of the third operand, 
which itself can be a conditional-expression. expr2 does the parsing: 

( tree.c functions)+= 
static Tree expr2() { 

Tree p = expr3(4); 

if Ct == '?') { 
Tree l, r; 
Coordinate pts[2]; 
if (Aflag > 1 && isfunc(p->type)) 

.... 
158 160 ... 

warning("%s used in a conditional expression\n", 

} 

} 

funcname(p)); 
p = pointer(p); 
t = gettok(); 
pts[O] = src; 
1 = pointer(expr(':')); 
pts[l] = src; 
r = pointer(expr2()); 
p = condtree(p, l, r); 
if (events.points) 

(plant event hooks for?:) 

return p; 

expr2 begins by calling expr3 to parse a binary-expression begipning at 
precedence level 4, and concludes by calling condtree to build the COND 
tree (shown in Figure 9.6). 

A common error in both if statements and conditional expressions is 
to use a function name instead of a function call; for example, using the 

I ' 

192 addtree 
62 Aflag 

149 COND 

159 

200 condtree 
38 Coordinate 

162 expr3 
155 expr 

60 isfunc 
174 pointer 
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COND 149 
condtree 200 

consttree 193 
NOT 149 

OR 149 
ri ghtki d 171 
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expression test ? a : b instead of test(a,b) ? a : b. Both of these 
expressions are legal, but the first one is rarely what the programmer 
intended. 1 cc's -A option causes 1 cc to warn about this and similarly 
suspicious usage. Afl ag records the number of -A options specified; 
multiple occurrences elicit more warnings. 

1 cc includes facilities for executing event hooks at various points in 
the source program that correspond to branches in the flow of con
trol. This facility is used, for example, to inject trees that implement 
expression-level profiling, and to inject data for source-level debuggers. 
The operator ? : is one of the three that alter flow of control. The param
eters to the functions that plant hooks include the source coordinates of 
the then and else parts of the expression, which is why these coordinates 
are saved in pts [OJ and pts [1] in the code above. 

Conditional expressions are also used to convert a relational, which is 
represented only by flow of control, to a value. For example, a = b < c 
sets a to one if b < c and to zero otherwise. This conversion is imple
mented by va 1 ue, which builds a COND tree c.orresponding to the expres
sion c ? 1 : 0. 

.... 
( tree.c functions)+= 159 162 

Tree value(p) Tree p; { 

} 

int op= generic(rightkid(p)->op); 

if (op==AND 11 op==OR 11 op==NOT 11 op==EQ 11 op==NE 
I I op== LE I I OP==L T I I OP== GE I I op==GT) 

p = condtree(p, consttree(l, inttype), 
consttree(O, inttype)); 

return p; 

... 

1 cc's interface could have specified two flavors of comparison opera
tors: one that's used in conditional contexts, in which there is always a 
jump, and one that's used in value contexts like a = b < c, and yields 
a zero or one. An advantage of this design is that 1 cc could then use 
instructions that capture the outcome of a comparison and avoid the 
jumps implied in c ? 1 : O. But only those targets that have these in
structions and that penalize jumps severely would benefit from this al
ternative, and the rest would pay for the increased operator vocabulary. 
Specifying only the conditional form of the comparison operators is an 
example of favoring retargetability over flexibility. 

8.6 Binary Expressions 

Expressions involving all the binary operators with precedences 4-13 (see 
Table 8.2) are defined by the productions 
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binary-expression: 
unary-expression { binary-operator unary-expression } 

binary-operator: 
one of I I && ' I ' A & == ! = < > <= >= << >> + - * I % 

and are parsed by one function, as described in Section 8.2. Using that 
approach, the parsing function - without its tree-building code - for 
binary-expression is 

void expr3(k) int k; { 
if (k > 13) 

unary(); 

} 

else { 

} 

expr3(k + 1); 
while (prec[t] k) { 

} 

t = gettok(); 
expr3(k + 1); 

where unary is the parsing function for unary-expression. This function 
parses binary-expression correctly, but does more work than is neces
sary. The call expr3(4) in expr2 is the only external call to expr3 outside 
of expr3 itself. Thus, there are 10 recursive calls to expr3 (5) through 
expr3(14) before the first call to unary. These 10 calls unwind from 
highest to lowest precedence as the source expression is parsed. The 
while loop is not entered until the call with a k equal to prec [t], where 
tis the token that follows the expression parsed by unary. Many of the 
recursive calls to expr3 serve only to test if their k is equal to prec [t]; 
only one succeeds. 

For example, here's the sequence of calls for the expression a I b: 

expr3(4) 
expr3(5) 
expr3(6) 

expr3(7) 
expr3(8) 
expr3(9) 

expr3(10) 
expr3(11) 

expr3(12) 
expr3(13) 

expr3(14) 
unary() 

expr3(7) 

159 expr2 
162 expr3 
164 unary 

161 
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expr3(14) 
unary() 

Of the calls leading up the first call to unary (which parses the a), only 
expr3 (6) does useful work after unary returns. And none of the recur
sive calls from within the while loop leading to the second call to unary 
(which parses b) do useful work. 

This sequence reveals the overall effect of the calls to expr3: parse 
a unary-expression, then parse binary-expressions at precedence levels 
13, 12, ... , 4. The recursion can be replaced by counting from 14 down 
to k. Since nothing interesting happens until the precedence is equal to 
prec [t], counting can begin there: 

void expr3(k) int k; { 
int kl; 

} 

unary(); 
for (kl= prec[t]; kl>= k; kl--) 

while (prec[t] == kl) { 
t = gettok(); 
expr3(kl + l); 

} 

This transformation also benefits the one remaining recursive call to 
expr3 by eliminating most of the recursion in that call. Now, the se
quence of calls for a I b is 

expr3(4) 
unary() 
expr3(7) 
unary() 

Adding the code to validate and build the trees and to solve two remain
ing minor problems (augmented assignments and the && and I I opera
tors) yields the final version of expr3: 

( tree.c functions)+= 
static Tree expr3(k) int k; { 

int kl; 
Tree p =unary(); 

for (kl= prec[t]; kl>= k; kl--) 
while (prec[t] == kl && *cp != '=') { 

Tree r, l; 
Coordinate pt; 
int op = t; 
t = gettok(); 
pt = src; 

... 
160 164 ... 



8. 7 • UNARY AND POSTFIX EXPRESSIONS 

} 

} 

p = pointer(p); 
if (op == ANDAND I I op == OROR) { 

r = pointer(expr3(kl)); 
if (events.points) 

(plant event hooks for && I I) 
} else 

r = pointer(expr3(kl + 1)); 
p (*optree[op])(oper[op], p, r); 

return p; 

Like conditional expressions, the && and I I operators alter flow of control 
and thus must provide for event hooks. 

Technically, the && and 11 operators are left-associative, and their right 
operands are evaluated only if necessary. It simplifies node generation if 
they are treated as right-associative during parsing. Each operator is the 
sole occupant of its precedence level, so, for example, making && right 
associative simply yields a right-heavy ANDAND tree instead of a left-heavy 
one. As detailed in Section 12.3, this apparent error is not only repaired 
during node generation, but leads to better code for the short-circuit 
evaluation of && and 11 than left-heavy trees. Making 11 right-associative 
requires calling expr3(4) instead of expr3(5) in the while loop. For&&, 
expr3(5) must be called instead of expr3(6). Calling expr3(kl) instead 
of expr3(kl+l) for these two operators makes the appropriate calls. 

The last problem is augmented assignment. exprl recognizes the 
augmented-assignment operators by recognizing two-token sequences. 
But these operators are single tokens, not two-token sequences; for ex
ample,+= is the token for additive assignment, and+ =is a syntax error. 
exprl's approach is correct only if+ =is never recognized as+=. expr3 
guarantees this condition by doing just the opposite: a binary operator 
is recognized only when it is not followed immediately by an equals sign. 
Thus, the + in a + = b is not recognized as a binary operator, and 1 cc 
detects the syntax error. 

8. 7 Unary and Postfix Expressions 

The remaining functions handle the productions 

unary-expression: 
postfix-expression 
unary-operator unary-expression 
' C' type-name ') ' unary-expression 
si zeof unary-expression 
si zeof 'C' type-name ')' 

109 ANDAND 
157 exprl 
162 expr3 
155 oper 
191 optree 
109 OROR 
174 pointer 

163 



164 

DECR 109 
expr 155 

istypename 115 
postfix 166 
primary 167 

tsym 108 
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unary-operator: 
one of++ -- & * + - - ! 

postfix-expression: 
primary-expression { postfix-operator} 

postfix-operator: 
' [ ' expression ' J ' 
' (' [ assignment-expression { , assignment-expression } ] ') ' 
. identifier 
-> identifier 
++ 

and the productions for primary-expression, which are given in the next 
section. The parsing components of these functions are simple because 
these productions are simple. The parsing function for unary-expression 
is an example: most of the unary operators are parsed by consuming the 
operator, parsing the operand, and building the tree. 

(tree.c functions)+= 
static Tree unary() { 

Tree p; 

} 

switch (t) { 
case '*'. (p +- unary165) (indirection 179) break; 
case '&': (p +- unary165) (address of 179) break; 
case '+': (p +- unary165) (affirmation) break; 
case I - ': (p +- unary165) (negation 178) break; 
case I -·: (p +- unary165) (complement) break; 
case I! I: (p +- unary165) (logical not) break; 
case !NCR: (p +- unary165) (preincrement 165) break; 
case DECR: (p +- unary165) (predecrement) break; 
case SIZEOF: t = gettok(); { (sizeof165) } break; 
case '(': 

t = gettok(); 
if (istypename(t, tsym)) { 

(type cast180) 
} else 

p = postfix(expr(')')); 
break; 

default: 
p = postfix(primary()); 

} 
return p; 

... 
162 166 ... 
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(p -- umuy165)= 164 
t = gettok(); p =unary(); 

Most of the fragments perform semantic checks, which are described 
in the next chapter. Three are simple enough to dispose of here. The 
expression ++e is semantically equivalent to the augmented assignment 
e += 1, so i nc r can build the tree for unary ++: 

(preincrementl65)= 164 
p = incr(INCR, pointer(p), consttree(l, inttype)); 

Predecrement is similar. 
si zeof ' (' type-name ') ' is a constant of type si ze_t that gives the 

number of bytes occupied by an instance of type-name. In lee, si ze_t 
is unsigned. Similarly, the unary-expression in si zeof unary-expression 
serves only to provide a type whose size is desired; the unary-expression 
is not evaluated at runtime. Most of the effort in parsing si zeof goes 
into distinguishing between these two forms of sizeof and finding the 
appropriate type. Notice that the parentheses are required if the operand 
is a type-name. 

(sizeof165)= 
Type ty; 
p = NULL; 
if Ct == I (') { 

t = gettok(): 
if (istypename(t, tsym)) { 

ty = typename(); 
expect(')'); 

} else { 

} 

p = postfix(expr(')')); 
ty = p->type; 

} else { 

} 

p = unary(): 
ty = p->type; 

if (isfunc(ty) I I ty->size == 0) 
error("invalid type argument '%t' to 'sizeof'\n", ty); 

else if (p && rightkid(p)->OP == FIELD) 
error("'sizeof' applied to a bit field\n"); 

p = consttree(ty->size, unsignedtype); 

164 

As the code suggests, si zeof cannot be applied to functions, incomplete 
types, or those derived from bit fields. 

In unary and in (sizeof), a left parenthesis is a primary-expression or, 
if the next token is a type name, the beginning of a type cast. 

165 

193 consttree 
142 expect 
155 expr 
149 FIELD 
158 incr 
60 i sfunc 

115 i stypename 
174 pointer 
166 postfix 
171 ri ghtki d 
108 tsym 
309 typename 
164 unary 

58 unsignedtype 
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If a left parenthesis does not introduce a type cast, it's too late to let 
primary parse the parenthesized expression, so unary must handle it. 
This is why postfix expects its caller to call primary and pass it the 
resulting tree instead of calling primary itself: 

(tree.c functions)+= 
static Tree postfix(p) Tree p; { 

} 

for (;;) 
switch (t) { 
case !NCR: (postincrement 166) break; 
case DECR: (postdecrement) break; 
case '[': (subscriptl81) break; 
case'(': (calls186) break; 
case ' ' · (struct. field) break; 
case DEREF: (pointer-> field 182) break; 
default: 

return p; 
} 

... 
164 167 ..... 

Again, most of the fragments in postfix check the semantics of the 
operand and build the appropriate tree as detailed in the next chapter, 
but the tree for postincrement (and postdecrement) can be built by i ncr: 

(postincrement 166) = 
p = tree(RIGHT, p->type, 

tree(RIGHT, p->type, 
p, 
incr(t, p, consttree(l, inttype))), 

p); 
t = gettok(); 

166 

The tree for postfix ++ is a dag because it must increment the operand 
but return the previous value. For example, the expression i ++ builds 
the tree shown in Figure 8.3. The two RIGHT operators in this tree ensure 
the proper order of evaluation. The value of the entire expression is the 
rvalue of i, and the lower RIGHT tree ensures that this value is computed 
and saved before i is incremented by the ASGN+I tree. The construction 
is identical for p++ where p is a pointer - the addition takes care of 
incrementing p by the size of its referent. 

8.8 Primary Expressions 

The last parsing function for expressions is primary. It parses 

primary-expression: 
identifier 
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constant 
string-literal 
' ( ' expression ' ) ' 

which is analogous to factor in the simple expression grammars de
scribed in Section 8.2. All that's left to handle are constants and identi
fiers: 

... 
(tree.c functions)+= 166 168 

static Tree primary() { 
Tree p; 

} 

switch (t) { 
case ICON: 
case FCON: 
case SCON: 
case ID: 
default: 

(numeric constants 167) break; 
(string constants 168) break; 
(an identifierl70) break; 

} 

error("illegal expression\n"); 
p = consttree(O, inttype); 

t = gettok(); 
return p; 

... 

CNST trees hold the values of integer and floating constants in their u. v 
fields: 

(numeric constants 167) = 167 
p = tree(CNST + ttob(tsym->type), tsym->type, NULL, NULL); 
p->u.v = tsym->u.c.v; 

RIGHT 

/ 
RIGHT 

~ 
INDIR+I ASGN+I 

i~~ 
ADDRG+P ADD+! 

~ 

FIGURE 8.3 Tree for i ++. 

CNST+I 
1 
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(u fields for Tree variants 168) = 
Value v; 

168 149 ..... 

String constants are abbreviations for read-only variables initialized to 
the value of the string constant: 

(string constants 168) = 167 
tsym->u.c.v.p = stringn(tsym->u.c.v.p, tsym->type->size); 
tsym = constant(tsym->type, tsym->u.c.v); 
if (tsym->u.c.loc ==NULL) 

tsym->u.c.loc = genident(STATIC, tsym->type, GLOBAL); 
p = idtree(tsym->u.c.loc); 

The generated variable and its initialization are emitted at the end of 
the compilation by fi na 1 i ze. The tree for strings is the tree for the 
generated identifier. 

i dt ree (p) builds a tree for accessing the identifier indicated by the 
symbol-table entry p. Identifiers are categorized by their scopes and life
times (parameters, automatic locals, and statics, including globals) and 
their types (arrays, functions, and nonarray objects). i dtree uses an 
identifier's scope and storage class to determine its addressing operator, 
then uses its type to determine the shape of the tree that accesses it, and 
stores a pointer to the symbol-table entry in the tree's u. sym field: 

... 
(u fields forTree variants 168)+= 

Symbol sym; 
168 183 149 

( tree.c functions)+= 
Tree idtree(p) Symbol p; { 

int op; 
Tree e; 
Type ty = p->type? unqual(p->type) 

p->ref += refine; 
if (p->scope == GLOBAL 

voidtype; 

I I p->sclass == STATIC I I p->sclass EXTERN) 
op = ADDRG+P; 

else if (p->scope == PARAM) { 
op = ADDRF+P; 
if (isstruct(p->type) && !IR->wants_argb) 

(return a tree for a struct parameter 170) 
} else 

op = ADDRL+P; 
if (isarray(ty) I I isfunc(ty)) { 

e = tree(op, p->type, NULL, NULL); 
e->u.sym = p; 

} else { 

..... 

... 
167 169 ..... 
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} 

} 

e = tree(op, ptr(p->type), NULL, NULL); 
e->u.sym = p; 
e = rvalue(e); 

return e; 

(tree.c data)+= 
float refine = 1.0; 

... 
155 

p->ref is an estimate of the number of references to the identifier de
scribed by p; other functions can adjust the weight of one reference to 
p by changing refi nc. All external, static, and global identifiers are ad
dressed with ADDRG operators; parameters are addressed with ADDRF; and 
locals are addressed with ADDRL. 

Arrays and functions cannot be used as lvalues or rvalues, so ref er
ences to them have only the appropriate addressing operators. Trees for 
other types refer to the identifiers' rvalues; an example is th~ tree for i's 
rvalue in Figure 8.3. rvalue adds the INDIR: 

( tree.c functions)+= 
Tree rvalue(p) Tree p; { 

Type ty = deref(p->type); 

ty = unqual(ty); 

... 
168 169 ... 

return tree(INDIR + (isunsigned(ty) ? I ttob(ty)), 
ty, p, NULL); 

} 

rva 1 ue can be called with any tree that represents a pointer value. 
1va1 ue, however, must be called with only trees that represent an rvalue 
- the contents of an addressable location. The INDIR tree added by 
rva 1 ue also signals that a tree is a valid lvalue, and the address is ex
posed by tearing off the IND IR. 1va1 ue implements this check and trans
formation: 

(tree.c functions)+= 
Tree lvalue(p) Tree p; { 

} 

if (generic(p->op) != INDIR) { 
error("lvalue required\n"); 
return value(p); 

} else if (unqual(p->type) == voidtype) 
warning('"%t' used as an lvalue\n", p->type); 

return p->kids[O]; 

... 
169 173 ... 

The tree for a structure parameter also depends on the value of the 
interface field wants_argb. If wants_argb is 1, the code shown above 

169 

61 deref 
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builds the appropriate tree, which has the form (INDIR+B (ADDRF+P x)) 
for parameter x. If wants_argb is zero, the front end implements struc
ture arguments by copying them at a call and passing pointers to the 
copies. Thus, a reference to a structure parameter needs another indi
rection to access the structure itself: 

(return a tree for a struct parameter 170) = 
{ 

} 

e = tree(op, ptr(ptr(p->type)), NULL, NULL); 
e->u.sym = p; 
return rvalue(rvalue(e)); 

For a parameter x, this code builds the tree 

(INDIR+B (INDIR+P (ADDRF+P X))) 

168 

i dt ree is used wherever a tree for an identifier is needed, such as for 
string constants (above) and for identifiers: 

(an identifierI70)= 167 
if (tsym == NULL) 

(undeclared identifier) 
if (xref) 

use(tsym, src); 
if (tsym->sclass == ENUM) 

p = consttree(tsym->u.value, inttype); 
else { 

} 

if (tsym->sclass == TYPEDEF) 
error("illegal use of type name '%s'\n", tsym->name); 

p = idtree(tsym); 

If tsym is null, the identifier is undeclared, which draws a diagnostic 
unless it's a function call (see Exercise 8.5). Enumeration identifiers are 
synonyms for constants and yield trees for the constants, not for the 
identifiers. 

Further Reading 

Handling n levels of precedence with one parsing function instead of 
n parsing functions is well known folklore in compiler circles, but there 
are few explanations of the technique. Hanson (1985) describes the tech
nique used as it is used in 1 cc. Holzmann (1988) used a similar technique 
in his image manipulation language, pico. The technique is technically 
equivalent to the one used in BCPL (Richards and Whitby-Strevens 1979), 
but the operators and their precedences and associativities are spread 
throughout the BCPL code instead of being encapsulated in tables. 
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Exercises 

8.1 Implement 

( tree.c exported functions)= 
extern Tree retype ARGS((Tree p, Type ty)); 

171 ... 
which returns p if p->type == ty or a copy of p with type ty. Recall 
that all tree-manipulation functions are applicative. 

8.2 Implement 

( tree.c exported functions)+= 
.... 

171 171 ... 
extern Tree rightkid ARGS((Tree p)); 

which returns the rightmost non-RIGHT operand of a nested series 
of RIGHT trees rooted at p. Don't forget that RIGHT nodes can have 
one or two operands (but not zero). 

8.3 Implement 

( tree.c exported functions)+= 
.... 

171 
extern int hascall ARGS((Tree p)); 

which returns one if p contains a CALL tree and zero otherwise. 
Don't forget about the interface flag mulops_calls. 

8.4 Reimplement expr3 the straightforward way shown at the begin
ning of Section 8.6, and measure its performance. Is the savings 
gained by removing the recursive calls worth the effort? 

8.5 Complete the code for (undeclared identifier) used on page 170. If 
the identifier is used as a function, which is legal, supply an im
plicit declaration for the identifier at the current scope and in the 
externals table. Otherwise, the undeclared identifier is an error, 
but it's useful to supply an implicit declaration for it anyway so 
that compilation can proceed. 

8.6 As explained in Section 8.4, the trees returned by i ncr are dags. 
Add new tree operators for the augmented assignment operators 
and rewrite i ncr to use them and thus avoid the dags. You'll need 
to change 1 i stnodes, and you might have to change the semantics 
functions in enode. c. 

171 

162 expr3 
40 externals 

158 incr 
318 listnodes 
87 mulops_calls 

149 RIGHT 
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172 

9 
Expression Semantics 

Expressions must be both syntactically and semantically correct. The 
parsing functions described in the previous chapter handle the syntac
tic issues and some of the simpler semantic issues, such as building the 
trees for constants and identifiers. This chapter describes the semantic 
analyses that must be done to build trees for expressions. These analy
ses must deal with three separate subproblems of approximately equal 
difficulty: implicit conversions, type checking, and order of evaluation. 

Implicit conversions are conversions that do not appear in the source 
program and that must be added by the compiler in order to adhere to 
the semantic rules of the standard. For example, in a + b, if a is an int 
and bis a float, a + bis semantically correct, but an implicit conversion 
must be added to convert a's value to a float. 

Type-checking confirms that the types of an operator's operands are 
legal, determines the type of the result, and computes the type-specific 
operator that must be used. For example, type checking a + b verifies 
that the types of a and b are legal combinations of the arithmetic types, 
and uses the types of a and b to determine the type of the result, which is 
one of numeric types. It also determines which type-specific addition is 
required. In the a + b example, type checking is handed the equivalent 
of (float)a + b, and determines that floating addition is required. 

The compiler must generate trees that obey the standard's rules for 
the order of evaluation. For many operators, the order of evaluation is 
unspecified. For example, in a [ i ++ J = i, it is unspecified whether i is 
incremented before or after the assignment. The order of evaluation is 
specified for a few operators; for example, in f() && g(), f must be 
called before g; if f returns zero, g must not be called. Similarly, f must 
be called before gin (f(), g()). As suggested in expr, RIGHT trees have 
a well defined order of evaluation and can be used to force a specific 
order of evaluation. 

9.1 Conversions 

Conversion functions accept one or more types and return a resulting 
type, or accept a tree and perhaps a type and return a tree with the 
appropriate conversion. promote(Type ty) is an example of the former 
kind of conversion: It implements the integral promotions. It widens 
an integral type ty to int, unsigned, or long, if necessary. As stipulated 
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by the standard, the integral promotions preserve value, including sign. 
They are not unsigned preserving. For example, an unsigned char is 
promoted to an int, not an unsigned int. A small integral type (or a bit 
field) is promoted to int if int can represent all the values of the smaller 
type. Otherwise, the small integral type is promoted to unsigned int. In 
1 cc, int must always represent the values of the smaller integral types, 
which is why the final if statement in promote returns i nttype. 

bi nary implements the usual arithmetic conversions; it takes two arith
metic types and returns the type of the result for any binary arithmetic 
operator: 

( tree.c functions)+= 
Type binary(xty, yty) Type xty, yty; { 

if (isdouble(xty) I I isdouble(yty)) 
return doubletype; 

} 

if (xty == floattype I I yty == floattype) 
return floattype; 

if (isunsigned(xty) I I isunsigned(yty)) 
return unsignedtype; 

return inttype; 

.... 
169 174 .... 

1 cc assumes that doubles and long doubles are the same size and that 
longs and ints (both unsigned and signed) are also the same size. These 
assumptions simplify the standard's specification of the usual arithmetic 
conversions and thus simplify bi nary. The list below summarizes the 
standard's specification in the more general case, when a long double is 
bigger than a double, and a long is bigger than an unsigned int: 

long double 
double 
float 
unsigned long int 
long int 
unsigned int 
int 

The type of the operand that appears highest in this list is the type to 
which the other operand is converted. If none of these types apply, the 
operands are converted to ints. 1 cc's assumptions collapse the first two 
types to the first if statement in bi nary, and the second if statement 
handles floats. The third if statement handles the four integer types 
because 1 cc's signed long cannot represent all unsigned values. 

pointer is an example of the second kind of conversion function that 
takes a tree and returns a tree, possibly converted. Array and func
tion types decay into pointers when used in expressions: (ARRAY T) and 
(POINTER T) decay into (FUNCTION T) and (POINTER (FUNCTION T)). 

173 
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174 pointer 
71 promote 
58 unsignedtype 
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(tree.c functions}+= 
Tree pointer(p) Tree p; { 

if (isarray(p->type)) 

} 

p = retype(p, atop(p->type)); 
else if (isfunc(p->type)) 

p = retype(p, ptr(p->type)); 
return p; 

.... 
173 174 ..... 

rva 1 ue, 1va1 ue, and va 1 ue can also be viewed as conversions. cond is 
the inverse of va 1 ue; it takes a tree that might represent a value and 
turns it into a tree for a conditional by adding a comparison with zero: 

( tree.c functions}+= 
Tree cond(p) Tree p; { 

int op= generic(rightkid(p)->op); 

if (op == AND I I op == OR I I op == NOT 
I I op == EQ I I op == NE 
I I op == LE I I op == LT I I op == GE I I op == GT) 

return p; 
p = pointer(p); 
p = cast(p, promote(p->type)); 

.... 
174 175 ..... 

return (*optree[NEQ])(NE, p, consttree(O, inttype)); 
} 

A conditional has no value; it's used only in a context in which its out
come affects the flow of control, such as in an if statement. cond returns 
a tree whose outcome is true when the value is nonzero. 

cond calls cast to convert its argument to the basic type given by its 
promoted type. cast implements the conversions depicted in Figure 9.1. 
Each arrow in Figure 9.1 represents one of the conversion operators. For 
example, the arrow from I to D represents conversion from integer to 
double, CVI+D, and the opposite arrow represents conversion from dou
ble to integer, CVD+I. The C above the I denotes signed characters and 
the C above the U denotes unsigned characters; similar comments apply 
to the two occurrences of S. 

Conversions that don't have arrows are implemented by combining the 
existing operators. For example, a signed short integer s is converted to 
a float by converting it to an integer, then to a double, and finally to float. 
The tree is (CVD+F (CVI+D (CVS+! s))). Conversions between unsigned 
and double are handled differently, as described below. 

cast has three parts that correspond to the steps just outlined. First, 
p is converted to its supertype, which is D, I, or U. Then, it's converted to 
the supertype of the destination type, if necessary. Finally, it's converted 
to the destination type. 



9. 1 • CONVERSIONS 

c c 

l l 
o-I-u-P 

l l l 
F s s 

FIGURE 9.1 Conversions. 

(tree.c functions)+= 
Tree cast(p, type) Tree p; Type type; { 

Type pty, ty = unqual(type); 

} 

p = value(p); 
if (p->type == type) 

return p; 
pty = unqual(p->type); 
if (pty == ty) 

return retype(p, type); 
(convert p to super(pty) 175) 
(convert p to super(ty) 176) 
(convert p to ty 177) 

return p; 

.... 
174 182 ... 

As shown, these conversions are done with the unqualified versions of 
the types involved. super returns its argument's supertype. 

The first step makes all signed integers ints, floats doubles, and point
ers unsigneds: 

(convert p to super(pty) 175) = 
switch (pty->op) { 
case CHAR: p = simplify(CVC, super(pty), p, NULL); 
case SHORT: p = simplify(CVS, super(pty), p, NULL); 
case FLOAT: p = simplify(CVF, doubletype, p, NULL); 
case INT: p = retype(p, inttype); 
case DOUBLE: p = retype(p, doubletype); 
case ENUM: p = retype(p, inttype); 
case UNSIGNED:p = retype(p, unsignedtype); 
case POINTER: 

if (isptr(ty)) { 
(pointer-to-pointer conversion 176) 

} else 
p = simplify(CVP, unsignedtype, p, NULL); 

175 

break; 
break; 
break; 
break; 
break; 
break; 
break; 

109 CHAR 
109 DOUBLE 

175 

57 doubletype 
109 ENUM 
109 FLOAT 
109 INT 
60 isptr 

109 POINTER 
171 retype 
109 SHORT 
203 simplify 
60 unqual 

109 UNSIGNED 
58 unsignedtype 

160 value 
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break; 
} 

simplify builds trees just like tree, but folds constants, if possible, and, 
if a generic operator is given as its first argument, s imp 1 i fy forms the 
type-specific operator from its first and second arguments. 1 cc insists 
that pointers fit in unsigned integers, so that they can be carried by un
signed operators, which reduces the operator vocabulary. There's one 
special case: the CVP+U is eliminated for pointer-to-pointer conversions 
because it's always useless there. 

(pointer-to-pointer conversion 176) = 
if (isfunc(pty->type) && !isfunc(ty->type) 
I I !isfunc(pty->type) && isfunc(ty->type)) 

warning("conversion from '%t' to '%t' is compiler _ 
dependent\n", p->type, ty); 

return retype(p, type); 

175 

1 cc warns about conversions between object pointers and function point
ers because the standard permits these different kinds of pointers to 
have different sizes. 1 cc, however, insists that they have the same sizes. 

The second step converts p, which is now a double, int, or unsigned, 
to whichever one of these three types is ty's supertype, if necessary: 

(convertp to super(ty) 176)= 
{ 

} 

Type sty= super(ty); 
pty = p->type; 
if (pty != sty) 

if (pty == inttype) 
p = simplify(CVI, sty, p, NULL); 

else if (pty == doubletype) 
if (sty == unsignedtype) { 

(double-to-unsigned conversion) 
} else 

p = simplify(CVD, sty, p, NULL); 
else if (pty == unsignedtype) 

if (sty == doubletype) { 
(unsigned-to-double conversion 177) 

} else 
p = simplify(CVU, sty, p, NULL); 

175 

Notice that there are no arrows directly between D and u in Figure 9.1. 
Most machines have instructions that convert between signed integers 
and doubles, but few have instructions that convert between unsigneds 
and doubles, so there is no CVU+D or CVD+U. Instead, the front end builds 
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trees that implement these conversions, assuming that integers and un
signeds are the same size. 

An unsigned u can be converted to a double by constructing an ex
pression equivalent to 

2.*(int)(u>>l) + (int)(u&l) 

u»l vacates the sign bit so that the shifted result, which is equal to 
u/2, can be converted to a double with an integer-to-double conversion. 
The floating-point multiplication and addition compute the value desired. 
The code builds the tree for this expression: 

(unsigned-to-double conversion 177) = 
Tree two= tree(CNST+D, doubletype, NULL, NULL); 
tWO->U.V.d = 2.; 
p = (*optree['+'])(ADD, 

(*optree['*'])(MUL, 
two, 
simplify(CVU, inttype, 

simplify(RSH, unsignedtype, 
p, consttree(l, inttype)), NULL)), 

simplify(CVU, inttype, 
simplify(BAND, unsignedtype, 

p, consttree(l, unsignedtype)), NULL)); 

176 

Notice that this tree is a dag: It contains two references top. The optree 
functions are used for the multiplication and addition so that the integer
to-double conversions will be included. 

The front end implements double-to-unsigned conversions by con
structing a tree for the appropriate expression. Exercise 9.2 explores 
how. 

The tree now represents a value whose type is the supertype of ty, 
and the third step in cast converts the tree to the destination type. This 
step is essentially the inverse of super: 

(convert p to ty 177) = 
if (ty == signedchar I I ty == chartype I I ty 

p = simplify(CVI, type, p, NULL); 
else if (isptr(ty) 
I I ty == unsignedchar I I ty == unsignedshort) 

p = simplify(CVU, type, p, NULL); 
else if (ty == floattype) 

p simplify(CVD, type, p, NULL); 
else 

p retype(p, type); 

175 
shorttype) 

177 

175 cast 
57 chartype 

193 consttree 
57 doubletype 
57 floattype 
60 isptr 

191 optree 
171 retype 

57 shorttype 
57 signedchar 

203 simplify 
150 tree 

57 unsignedchar 
58 unsignedshort 
58 unsignedtype 
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cast: 175 
i sari t:h 60 

isunsigned 60 
lvalue 169 

point:er 174 
promot:e 71 

simplify 203 
unsignedt:ype 58 

9.2 Unary and Postfix Operators 

The conversion functions described above provide the machinery needed 
to implement the semantic checking for each of the operators. The con
straints on the operands, such as their types, and the semantics of the 
operator, such as its result type, are defined in the standard. The prose 
for unary - is typical: 

The operand of the unary - operator shall have arithmetic type. 
The result of the unary - operator is the negative of its operand. The 

integral promotion is performed on the operand, and the result has the 
promoted type. 

The code for each operator implements these kinds of specifications; 
it checks that the operand trees meet the constraints and it builds the 
appropriate tree for the result. For example, the code for unary - is 

(negation 178) = 164 
p = pointer(p); 
if (isarith(p->type)) { 

p = cast(p, promote(p->type)); 
if (isunsigned(p->type)) { 

warning("unsigned operand of unary -\n"); 
p = simplify(NEG, inttype, cast(p, inttype), NULL); 
p = cast(p, unsignedtype); 

} else 
p = simplify(NEG, p->type, p, NULL); 

} else 
typeerror(SUB, p, NULL); 

typeerror issues a diagnostic for illegal operands to a unary or binary 
operator. For example, if pi is an int *, -pi is illegal because pi is not 
an arithmetic type, and typeerror issues 

operand of unary - has illegal type 'pointer to int' 

Warning about using unsigned operands to unary - is not required by 
the standard, but helps pinpoint probable errors. This warning would be 
appropriate even if 1 cc supported a signed 1 ong type that could hold all 
negated unsigneds, because the integral promotions do not yield any of 
the long types. 

For unary &, the standard says 

The operand of the unary & operator shall be either a function designator 
or an lvalue that designates an object that is not a bit-field and not 
declared with the register storage-class specifier. 

Unary & takes an operand of type T and returns its address, which has 
type (POINTER T). In most cases, the semantics above are provided by 
1va1 ue, which exposes the addressing tree under an INDIR. The excep
tions are arrays and functions, which have no INDIRs: 
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(address of179)= 164 
if (isarray(p->type) I I isfunc(p->type)) 

p = retype(p, ptr(p->type)); 
else 

p = lvalue(p); 
if (isaddrop(p->op) && p->u.sym->sclass == REGISTER) 

error("invalid operand of unary&; '%s' is declared_ 
register\n", p->u.sym->name); 

else if (isaddrop(p->op)) 
p->u.sym->addressed = 1; 

(tree.c exported macros)= 
#define isaddrop(op) \ 

((op)==ADDRG+P I I (op)==ADDRL+P I I (op)==ADDRF+P) 

.... 
(symbol flags 50)+= 50 211 38 

"" unsigned addressed:!; 

As specified above, unary & cannot be applied to register variables or to 
bit fields. Trees for bit fields don't have INDIRs, so 1va1 ue catches them. 
The front end changes the storage class of frequently referenced locals 
and parameters to REGISTER before it passes them to the back end. But 
it must not change the storage class of variables whose addresses are 
taken, which are those symbols with addressed lit. 

Unary * is the inverse of unary &; it takes an operand with the type 
(POINTER T) and wraps it in an INDIR tree to represent an rvalue of type 
T. Again, most of the work is done by rva 1 ue, and pointers to arrays 
and functions need special treatment. 

(indirection 179) = 164 
p = pointer(p); 
if (isptr(p->type) 
&& (isfunc(p->type->type) I I isarray(p->type->type))) 

p = retype(p, p->type->type); 
else { 

} 

if (YYnull) 
p = nullcheck(p); 

p = rvalue(p); 

Exercise 9.5 explains YYnul 1 and nul 1 check, which help catch null
pointer errors. 

Type casts specify explicit conversions. Some casts, such as pointer
to-pointer casts, generate no code, but simply specify the type of an ex
pression. Other casts, such as int-to-float, generate code that effects the 
conversion at runtime. The code below and the code in cast implement 
the rules specified by the standard. 

175 cast 
60 isarray 
60 isfunc 
60 isptr 

169 lvalue 
215 nullcheck 
174 pointer 

61 ptr 
80 REGISTER 

171 retype 
169 rvalue 
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The standard stipulates that the target type specified in a cast must be 
a qualified or unqualified scalar type or void, and the type of the operand 
- the source type - must be a scalar type. The semantic analysis of 
casts divides into computing and checking the target type, parsing the 
operand, and computing and checking the source type. typename parses 
a type declarator and returns the resulting Type, and thus does most of 
the work of computing the target type, except for qualified enumerations: 

(type cast 180)= 
Type ty, tyl = typename(), pty; 
expect(')'); 
ty = unqual(tyl); 
if (isenum(ty)) { 

} 

Type ty2 = ty->type; 
if (isconst(tyl)) 

ty2 = qual(CONST, ty2); 
if (isvolatile(tyl)) 

ty2 = qual(VOLATILE, ty2); 
tyl = ty2; 
ty = ty->type; 

180 164 ... 

This code computes the target type tyl and its unqualified variant ty. 
The target type for a cast that specifies an enumeration type is the enu
meration's underlying integral type (which for 1 cc is always int), not the 
enumeration. Thus, tyl and ty must be recomputed before parsing the 
operand. 

(type cast 180) += 
p = pointer(unary()); 
pty = p->type; 
if (isenum(pty)) 

pty = pty->type; 

.... 
180 180 164 ... 

This tree is cast to the unqualified type, ty, if the target and source types 
are legal: arithmetic and enumeration types can be cast to each other; 
pointers can be cast to other pointers; pointers can be cast to integral 
types and vice versa, but the result is undefined if the sizes of the types 
differ; and any type can be cast to void. 

(type cast180)+= 
if (isarith(pty) && isarith(ty) 
I I isptr(pty) && isptr(ty)) 

p = cast(p, ty); 
else if (isptr(pty) && isint(ty) 
I I isint(pty) && isptr(ty)) { 

if (Aflag >= 1 && ty->size < pty->size) 

.... 
180 181 164 ... 
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warning("conversion from '%t' to '%t' is compiler _ 
dependent\n", p->type, ty); 

p = cast(p, ty); 
} else if (ty != voidtype) { 

} 

error("cast from '%t' to '%t' is illegal\n", 
p->type, tyl); 

tyl = inttype; 

Recall that cast warns about casts between object and function pointers. 
The final step is to annotate p with the possibly qualified type: 

.... 
(type castl80) += 180 164 

p = retype(p, tyl); 
if (generic(p->Op) == INDIR) 

p = tree(RIGHT, ty, NULL, p); 

A cast is not an lvalue, so if p is an INDIR tree, it's hidden under a RIGHT 
tree, which keeps 1va1 ue from accepting it as an lvalue. 

The standard stipulates that an expression of the form e [ i] be treated 
as equivalent to *(e+i). One of the operands must be a pointer and the 
other must be an integral type. The semantics function for addition does 
most of the work once e and i are recognized: 

(subscriptl81)= 166 
{ 

} 

Tree q; 
t = gettok(); 
q = expr('] '); 
if (YYnul 1) 

if (isptr(p->type)) 
p = nullcheck(p); 

else if (isptr(q->type)) 
q = nullcheck(q); 

p = (*optree['+'])(ADD, pointer(p), pointer(q)); 
if (isptr(p->type) && isarray(p->type->type)) 

p = retype(p, p->type->type); 
else 

p = rvalue(p); 

The last if statement handles n-dimensional arrays; for example, if x is 
declared int x [10] [20], x [i] refers to the ith row, which is has type 
(ARRAY 20 (INT)), but x[i] is not an lvalue. Similar comments apply to 
i [x], which is a bit peculiar but equivalent nonetheless. 

References to fields are similar to subscripting; they yield trees that 
refer to the rvalue of the indicated field and are thus lvalues, or, for 
array fields, trees that refer to the address of the field. The parsing is 
straightforward: 

175 cast: 
155 expr 

60 isarray 
60 ispt:r 

169 lvalue 
215 nullcheck 
191 opt:ree 
174 pointer 
171 ret:ype 
149 RIGHT 
169 rvalue 
150 t:ree 

58 voidt:ype 
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(pointer-> field 182) = 166 
t = gettok(); 
p = pointerCp); 
if Ct == ID) { 

if CisptrCp->type) && isstructCp->type->type)) { 
if CYYnull) 

p = nullcheckCp); 
p = fieldCp, token); 

} else 
errorC"left operand of -> has incompatible _ 

type '%t'\n", p->type); 
t = gettok(); 

} else 
errorC"field name expected\n"); 

field calls fieldref, which returns the Field that gives the type and 
location of the field. 

( tree.c functions)+= 
Tree fieldCp, name) Tree p; char *name; { 

Field q; 

} 

Type tyl, ty = p->type; 

if Ci sptrCty)) 
ty = deref(ty); 

tyl = ty; 
ty = unqualCty); 
if CCq = fieldrefCname, ty)) != NULL) { 

(access the field described by q 182) 
} else { 

} 

errorC"unknown field '%s' of '%t'\n", name, ty); 
p = rvalueCretypeCp, ptrCinttype))); 

return p; 

... 
175 

field must cope with qualified structure types. If a structure type is 
declared const or volatile, references to its fields must be similarly qual
ified even though the qualifiers are not permitted in field declarators. 
q->type is the type of the field and q->offset is the byte offset to the 
field. 

(access the field described by q 182) = 
if CisarrayCq->type)) { 

ty = q->type->type; 
(qualify ty, when necessary 183) 
ty = arrayCty, q->type->size/ty->size, 

183 182 .... 

q->type->align); 
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} else { 

} 

ty = q->type; 
(qualifyty, when necessary183) 
ty = ptr(ty); 

p = simplify(ADD+P, ty, p, consttree(q->offset, inttype)); 

(qualify ty, when necessaiy 183) = 
if (isconst(tyl) && !isconst(ty)) 

ty = qual(CONST, ty); 
if (isvolatile(tyl) && !isvolatile(ty)) 

ty = qual(VOLATILE, ty); 

182 183 

s imp 1 i fy returns a tree for the address of the field, or the address of the 
unsigned that holds a bit field. A nonzero q-> 1 sb gives the position plus 
one of a bit field's least significant bit, and serves to identify a field as a 
bit field. Bit fields are referenced via FIELD trees, and are not !values . 

(access the field described by q 182) += 
if (q-> 1 sb) { 

p = tree(FIELD, ty->type, rvalue(p), NULL); 
p->u.field = q; 

} else if (!isarray(q->type)) 
p = rvalue(p); 

(u fields for Tree variants 168)+= 
Field field; 

.... 
182 182 

.... 
168 149 

The u.field field in a FIELD tree points to the Field structure, defined 
in Section 4.6, that describes the bit field. 

The expression e. name is equivalent to (&e)->narne, so field is also 
called by the fragment (struct.field). That code builds a tree for the 
address of . 's left operand, and passes it to fie 1 d. 

9.3 Function Calls 

Function calls are easy to parse but difficult to analyze. The analy
sis must cope with calls to both new-style and old-style functions in 
which the semantics imposed by the standard affect the conversions 
and argument checking. Semantic analysis must also handle the or
der of evaluation of the arguments (which depends on the interface flag 
1 eft_to_ri ght), passing and returning structures by value (which de
pends on the interface flags wants_argb and wants_callb), and actual 
arguments that include other calls. All these variants are caused by 1 cc's 
interface, not by rules in the standard, and all of them could be elimi
nated. Doing so, however, would make it impossible for 1 cc to generate 

183 

109 CONST 
193 consttree 

66 Field 
149 FIELD 
182 field 
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FIGURE9.2 Treeforf(a, '\n', atoi(str)). 

code that mimics the established calling sequences on one or more of its 
targets. These complexities are the price of compatibility with existing 
calling conventions. 

The meaningless program 

char *str; 
struct node { ... } a; 
struct node f(struct node x, char c, inti) { ... } 
main () { f(a, '\n', atoi(str)); } 

illustrates almost all these complexities. The tree for the call to f is 
shown in Figure 9.2, which assumes that wants_argb is one. The CALL+B's 
right operand is described below. The RIGHT trees in this figure collab
orate to achieve the desired evaluation order. A CALL's left operand is 
a RIGHT tree that evaluates the arguments (the ARG trees) and the func
tion itself. The leftmost RIGHT tree in Figure 9.2 is an example. The 
tree whose root is the shaded RIGHT in Figure 9.2 occurs because of the 
nested call to atoi. When this tree is traversed, code is generated so 
that the call to atoi occurs before the arguments to fare evaluated. In 
general, there's one RIGHT tree for each argument that includes a call, 
and one if the function name is itself an expression with a call. 

The actual arguments are represented by ARG trees, rightmost argu
ment first; their right operands are the trees for the evaluation of the rest 
of the actual arguments. Recall that ARG trees can have two operands. 
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FIGURE 9.3 Passing a structure by value when wants_argb is zero. 

The topmost ARG+I is for the argument atoi (str), and its left operand 
points to the CALL+I described above. The presence of the RIGHT tree 
will cause the back end to store the value returned by atoi in a tempo
rary, and the reference from the ARG+I to the CALL+I for atoi will pass 
that value to f. 

The second ARG+I is for the newline passed as the second argument. 
f has a prototype and is thus a new-style function, so it might be ex
pected that the integer constant '\n' would be converted to and passed 
as a character. Most machines have constraints, such as stack alignment, 
that force subword types to be passed as words. Even without such con
straints, passing subword types as words is usually more efficient. So 
1 cc generates code to widen short arguments and character arguments 
to integers when they are passed, and code to narrow them upon entry 
for new-style functions. If the global char ch was passed as f's second 
argument, the tree would be 

(ARG+I (CVC+I (INDIR+C (ADDRG+P ch)))) 

The bottom ARG+B tree passes the structure a to f by value. ARG+B 
is provided so that back ends can use target-specific calling sequences; 
Chapter 16 shows how it's used on the MIPS. If wants_argb is zero, the 
front end completely implements value transmission for structures. It 
copies the actual argument to a local temporary in the caller, and passes 
the address of that temporary. As detailed in idtree, references to the 
actual argument in the callee use an extra indirection to fetch the struc
ture. Figure 9.3 shows the ARG tree for passing a to f when wants_argb 
is zero. The RIGHT tree generates code to assign a to the temporary, t2, 
followed by passing the address of t2. 

The right operand of CALL+B is the address of a temporary in the caller 
to which the return value is assigned; t3 in Figure 9.2, for example. When 
the interface flag wants_ca 11 b is one, the back end must arrange to pass 
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149 RIGHT 

185 

88 wants_argb 
88 wants_callb 
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this address to the caller. When wants_ca 11 b is zero, the front end ar
ranges to pass this address as a hidden first argument, and it changes 
the CALL+B to a CALL+V; in this case, the back end never sees CALLB nodes. 
This change is made by l i stnodes when the tree for a call is converted 
to a forest of nodes for the back end. 

l i stnodes also inspects the interface flag left_ to_ri ght as it tra
verses a call tree. If l eft_to_ri ght is one, the argument subtree is 
traversed by visiting the right operands of ARG trees first, which gen
erates code that evaluates the arguments from the left to the right. If 
l eft_to_ri ght is zero, the left operands are visited first, which evaluates 
the arguments from the right to the left. 

The case in postfix checks the type of the function expression and 
lets ca 11 to do most of the work: 

(calls 186)= 
{ 

} 

Type ty; 
Coordinate pt; 
p = pointer(p); 
if (isptr(p->type) && isfunc(p->type->type)) 

ty = p->type->type; 
else { 

} 

error("found '%t' expected a function\n", p->type); 
ty = func(voidtype, NULL, 1); 

pt = src; 
t gettok(); 
p = call(p, ty, pt); 

166 

ca 11 dedicates locals to deal with each of the semantic issues de
scribed above. n counts the number of actual arguments. args is the 
root of the argument tree, and r is the root of the RIGHT tree that holds 
arguments or function expressions that include calls. For the example 
shown in Figure 9.2, r points to the CALL+! tree. After parsing the argu
ments, if r is nonnull, it and args are pasted together in a RIGHT tree, 
which is the subtree rooted at the shaded RIGHT in Figure 9.2. hasca 11 re
turns a nonzero value if its argument tree includes a CALL, and funcname 
returns the name buried in for the string "a function" if f computes a 
function address. 

(enode.c functions)= 189 
"" Tree call(f, fty, src) Tree f; Type fty; Coordinate src; { 

int n = O; 
Tree args = NULL, r = NULL; 
Type *proto, rty = unqual(freturn(fty)); 
Symbol t3 = NULL; 
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} 

if (fty->u.f.oldstyle) 
proto NULL; 

else 
proto fty->u.f.proto; 

if (hascall (f)) 
r = f; 

if (isstruct(rty)) 
(initialize for a struct function 187) 

if Ct != ')') 
for (; ;) { 

} 

{parse one argument 188) 
if (t ! = I ' I) 

break; 
t = gettok(); 

expect(' ) ' ) ; 
if ({still in a new-style prototype? 187)) 

error("insufficient number of arguments to %s\n", 
funcname(f)); 

if (r) 
args = tree(RIGHT, voidtype, r, args); 

if (events.calls) 
{plant an event hook for a call) 

return calltree(f, rty, args, t3); 

f is the expression for the function, rty is the return type, and proto is 
either null for an old-style function (even if it has a prototype; see Sec
tion 4.5) or walks along the function prototype for a new-style function. 
A nonnull proto is incremented for each actual argument that corre
sponds to a formal parameter in a new-style prototype, and 

{still in a new-style prototype? 187)= 187 188 
proto && *proto && *proto != voidtype 

tests if p roto points to a formal parameter type, when there is a proto
type. Reaching the end of a prototype is different from reaching the end 
of the actual arguments; for example, excess arguments are permitted in 
new-style functions with a variable number of arguments. 

If the function returns a structure, t3 is the temporary that's generated 
to hold the return value: 

{initialize for a st ruct function 187) = 
{ 

t3 = temporary(AUTO, unqual(rty), level); 
if (rty->size == 0) 

187 

error("illegal use of incomplete type '%t'\n", rty); 
} 

80 AUTO 
189 calltree 
142 expect 
171 hascall 
60 isstruct 
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t3 is the temporary shown in Figure 9.2. This initialization could be 
done after parsing the arguments, but it's done before so that the source 
coordinate in the diagnostic shown above pinpoints the beginning of the 
argument list. 

An actual argument is an assignment-expression: 

(parse one argument 188) = 187 
Tree q = pointer(exprl(O)); 
if ((still in a new-style prototype? 187)) 

(new-style argument 188) 
else 

(old-style argument 189) 
if (!IR->wants_argb && isstruct(q->type)) 

(pass a structure directly 191) 
if (q->type->size == 0) 

q->type = inttype; 
if (hascall(q)) 

r r ? tree(RIGHT, voidtype, r, q) : q; 
args = tree(ARG + widen(q->type), q->type, q, args); 
n++; 
if (Aflag >= 2 && n == 32) 

warning("more than 31 arguments in a call to %s\n", 
funcname(f)); 

The if statement at the beginning of this fragment distinguishes between 
new-style and old-style function types, and handles calls to new-style 
functions that have a varying number of arguments, such as pri ntf, or 
that have excess arguments. If a prototype specifies a variable length 
argument list (by ending in , ... ), there are at least two types in the 
prototype array and the last one is voi dtype. Actual arguments beyond 
the last explicit argument are passed in the same way as arguments to 
old-style functions are passed. 

New-style arguments are passed as if the actual argument were as
signed to the formal parameter. No assignment is actually made because 
the argument is carried by an ARG tree, but the argument can be type
checked with assign, which type-checks assignments: 

(new-style argument 188) = 188 
{ 

Type aty; 
q = value(q); 
aty = assign(*proto, q); 
if Caty) 

q = cast(q, aty); 
else 

error("type error in argument %d to %s; found '%t' _ 
expected '%t'\n", n + 1, funcname(f), 
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} 

q->type, *proto); 
if ((isint(q->type) I I isenum(q->type)) 
&& q->type->size != inttype->size) 

q = cast(q, promote(q->type)); 
++proto; 

The second call to cast widens subinteger arguments as described above. 
Old-style arguments suffer the default argument promotions. The in

tegral promotions are performed and floats are promoted to doubles. 

(old-style argument 189}= 
{ 

} 

if (!fty->u.f.oldstyle && *proto == NULL) 
error("too many arguments to %s\n", funcname(f)); 

q = value(q); 
if (q->type == floattype) 

q = cast(q, doubletype); 
else if (isarray(q->type) I I q->type->size == 0) 

error("type error in argument %d to %s; '%t' is 
illegal\n", n + 1, funcname(f), q->type); 

else 
q = cast(q, promote(q->type)); 

188 

The first test in this fragment checks f. ol dstyl e because it's not enough 
to just check for nonnull f. proto: as mentioned in Section 4.5, old-style 
functions can carry prototypes, but these prototypes cannot be used to 
type-check actual arguments. 

The actual CALL tree is built by ca 11 tree, which is presented with the 
tree for the function expression, the return type, the argument tree, and 
the temporary if the function returns a structure. It combines the trees 
to form the CALL+B tree shown in Figure 9.2: 

(enode.c functions}+= 
Tree calltree(f, ty, args, t3) 
Tree f, args; Type ty; Symbol t3; { 

Tree p; 

if (args) 
f = tree(RIGHT, f->type, args, f); 

if (isstruct(ty)) 
p = tree(RIGHT, ty, 

else { 

tree(CALL+B, ty, f, addrof(idtree(t3))), 
idtree(t3)); 

Type rty = ty; 

... 
186 191 .... 

189 

175 cast 
57 doubletype 
5 7 fl oat type 

168 idtree 
60 isarray 
60 isenum 
60 isint 
60 isstruct 
63 oldstyle 
71 promote 

149 RIGHT 
150 tree 
160 value 



190 

call 186 
calltree 189 

cast 175 
COND 149 

isenum 60 
isptr 60 

lvalue 169 
promote 71 

RIGHT 149 
tree 150 

unqual 60 
unsignedtype 58 

wants_argb 88 
widen 74 

} 

} 
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if (isenum(ty)) 
rty = unqual(ty)->type; 

else if (isptr(ty)) 
rty = unsignedtype; 

p = tree(CALL + widen(rty), promote(rty), f, NULL); 
if (isptr(ty) I I p->type->size > ty->size) 

p = cast(p, ty); 

return p; 

The operator CALL+! is used for integers, unsigneds, and pointers, so 
much of ca 11 tree is devoted to getting the types correct. A CALL+B 
tree is always tucked under a RIGHT tree that returns the address of the 
temporary that holds the return value. Figure 9.2 omits this RIGHT tree; 
the tree actually built by ca 11 tree and thus returned by ca 11 begins 

RIGHT 

/~ 
CALL+B INDIR+B 

/ ~ i 
RIGHT 

/~ 
ADDRL+P 

t3 

ADDRG+P 
f 

ADDRL+P 
t3 

CALL+B itself returns no value; it exists only to permit back ends to gen
erate target-specific calling sequences for these functions. 

add rof is an internal version of 1va1 ue that doesn't insist on an IN DIR 
tree (although there is an INDIR tree in call tree's use of addrof). addrof 
follows the operands of RIGHT, COND, and ASGN, and the INDIR trees to find 
the tree that computes the address specified by its argument. It returns 
a RIGHT tree representing the original tree and that address, if necessary. 
For example, if oc is the operand tree buried in p that computes the ad
dress, addrof(p) returns (RIGHT root(p) oc); if p itself computes the 
address, addrof(p) returns p. 

Structures are always passed by value, but if wants_argb is zero and 
the argument is a structure, it must be copied to a temporary as ex
plained above. There's one optimization that improves the code for pass
ing structures that are returned by functions. For example, in 

f(f(a, '\n', atoi(str)), 'O', 1); 

the node returned by the inner call to f is passed to the outer call. In this 
and similar cases, copying the actual argument can be avoided because 
it already resides in a temporary. The pattern that must be detected is 



9.4 • BINARY OPERA TORS 

(RIGHT 
(CALL+B ... ) 
(INDIR+B (ADDRL+P te111p)) 

) 

... 
where te111p is a temporary. i sea 11 b looks for this pattern: 

(enode.c functions}+= 189 192 
int iscallb(e) Tree e; { 

} 

return e->op == RIGHT && e->kids[O] && e->kids[l] 
&& e->kids[O]->OP == CALL+B 
&& e->kids[l]->OP == INDIR+B 
&& isaddrop(e->kids[l]->kids[O]->op) 
&& e->kids[l]->kids[O]->u.sym->temporary; 

... 

(pass a structure directly 191} = 188 
if (iscallb(q)) 

q = addrof(q); 
else { 

} 

Symbol tl = temporary(AUTO, unqual(q->type), level); 
q = asgn(tl, q); 
q = tree(RIGHT, ptr(tl->type), 

root(q), lvalue(idtree(tl))); 

asgn (Symbo 1 t, Tree e) is an internal form of assignment that builds 
and returns a tree for assigning e to the symbol t. 

9.4 Binary Operators 

As the indirect call through optree in expr3 suggests, a semantics func
tion for a binary operator takes a generic operator and the trees for the 
two operands, and returns the tree for the binary expression. Table 9.1 
lists the functions and the operators they handle. The operators are 
grouped as shown in this table because the operators in each group have 
similar semantics. 

optree is defined by including token. h (see Section 6.2) and extracting 
its fifth column, which holds the names of the tree-building functions: 

(enode.c data}= 
Tree (*optree[]) ARGS((int, Tree, Tree)) = { 
#define xx(a,b,c,d,e,f,g) e, 
#define yy(a,b,c,d,e,f ,g) e, 
#include "token.h" 
} ; 

80 AUTO 
162 expr3 
168 idtree 
179 i sadd rop 
42 level 

169 lvalue 
61 ptr 

149 RIGHT 

191 

50 temporary 
109 token.h 
150 tree 
60 unqual 
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asgntree 197 
binary 173 

cast 175 
cmptree 193 

condtree 200 
eqtree 195 

incr 158 
isarith 60 
isfunc 60 
isint 60 
isptr 60 

simplify 203 
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Function Operators 

incr += -= *= I= %= 
<<= >>= &= A= I= 

asgntree 
condtree ? : 
andtree 11 && 
bittree I A & % 
eqtree -- != 
cmptree < > <= >= 
shtree << >> 
addtree + 
subtree 
multree * I 

TABLE 9.1 Operator semantics functions. 

The function for addition typifies these semantics functions. It must 
type-check the operands and form the appropriate tree depending on 
their types. The easy case is when both operands are arithmetic types: 

(enode.c functions)+= 
static Tree addtree(op, 1, r) int op; Tree l, r; { 

Type ty = inttype; 

} 

if (isarith(l->type) && isarith(r->type)) { 
ty = binary(l->type, r->type); 
(cast 1 and r to type ty 192) 

} else if (isptr(l->type) && isint(r->type)) 
return addtree(ADD, r, l); 

else if ( isptr(r->type) && isint(l->type) 
&& !isfunc(r->type->type)) 

(build an ADD+P tree 193) 
else 

typeerror(op, 1, r); 
return simplify(op, ty, 1, r); 

.... 
191 193 ... 

(castl and r to type ty 192)= 
1 = cast(l, ty); 

192 193 194 195 

r = cast(r, ty); 

Addition can also take a pointer and an integer in either order. The 
recursive call to addt ree above switches the arguments so the next clause 
can handle both orders. The front end always puts the integer operand 
on the left in ADD dags because that order helps back ends implement 
some additions with addressing modes. 
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The standard distinguishes between pointers to objects and pointers 
to functions; most operators, such as addition, that take pointers accept 
only object pointers. Integers may be added to object pointers, but the 
addition implies a multiplication by the size of the object: 

(build an ADD+P tree 193)= 
{ 

} 

int n; 
ty = unqual(r->type); 
(n .._ *ty's size 193) 
1 = cast(l, promote(l->type)); 
if (n > 1) 

1 = multree(MUL, consttree(n, inttype), l); 
return simplify(ADD+P, ty, 1, r); 

(n .._ *ty'ssizel93)= 
n = ty->type->size; 
if (n == 0) 

error("unknown size for type '%t'\n", ty->type); 

192 

193 

consttree builds a tree for a constant of any type that has an associated 
integer or an unsigned value: 

(enode.c functions)+= 
Tree consttree(n, ty) unsigned n; Type ty; { 

Tree p; 

} 

if Ci sarray(ty)) 
ty = atop(ty); 

p = tree(CNST + ttob(ty), ty, NULL, NULL); 
p->u.v.u = n; 
return p; 

... 
192 193 ..... 

The relational comparison operators also accept only object pointers 
and return integers, but they accept more relaxed constraints on their 
pointer operands. 

(enode.c functions)+= 
static Tree cmptree(op, 1, r) int op; Tree l, r; { 

Type ty; 

if (isarith(l->type) && isarith(r->type)) { 
ty = binary(l->type, r->type); 
(cast 1 and r to type ty 192) 

} else if (compatible(l->type, r->type)) { 

... 
193 194 ..... 

62 atop 
173 binary 
175 cast 

193 

194 compatible 
60 isarith 
60 isarray 
71 promote 

203 simplify 
150 tree 

73 ttob 
60 unqual 



194 

cast 175 
cmptree 193 
eqtree 195 
eqtype 69 
isfunc 60 
isint 60 
isptr 60 

simplify 203 
ttob 73 

unqual 60 
unsignedtype 58 

voidtype 58 
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} 

ty = unsignedtype; 
(cast 1 and r to type ty 192) 

} else { 

} 

ty = unsignedtype; 
typeerror(op, l, r); 

return simplify(op + ttob(ty), inttype, l, r); 

The two pointers must point to qualified or unqualified versions of com
patible object types or compatible incomplete types. In other words, any 
canst and volatile qualifiers must be ignored when type-checking the ob
jects, which is exactly what compati b 1 e does: 

(enode.c functions)+= 
static int compatible(tyl, ty2) Type tyl, ty2; { 

return isptr(tyl) && !isfunc(tyl->type) 
&& isptr(ty2) && !isfunc(ty2->type) 
&& eqtype(unqual (t·1l->type), unqual (ty2->type), 

} 

... 
193 194 ... 

0); 

The third argument of zero to eqtype causes eqtype to insist that its 
two type arguments are object types or incomplete types. 

The equality comparison operators are similar to the relationals but 
are fussier about pointer operands. These and other operators distin
guish between void pointers, which are pointers to qualified or unquali
fied versions of void, and null pointers, which are integral constant ex
pressions with the value zero or one of these expressions cast to void *. 
These definitions are encapsulated in 

(enode.c macros)= 
#define isvoidptr(ty) \ 

(isptr(ty) && unqual(ty->type) 

(enode.c functions)+= 
static int isnullptr(e) Tree e; { 

voidtype) 

return (isint(e->type) && generic(e->op) == CNST 
&& cast(e, unsignedtype)->u.v.u == 0) 

} 

I I (isvoidptr(e->type) && e->op == CNST+P 
&& e->u.v.p ==NULL); 

... 
194 195 ... 

In addition to the arithmetic types, which are handled by calling cmptree, 
eqtree accepts a pointer and a null pointer, an object pointer and a void 
pointer, or two pointers to qualified or unqualified versions of compat
ible types. The leading if statement in eqt ree tests for just these three 
combinations for the left and right operands, and the recursive call re
peats the test for the right and left operands, when appropriate. 
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... 
(enode.c functions)+= 194 195 

Tree eqtree(op, l, r) int op; Tree l, r; { 
Type xty = 1->type, yty = r->type; 

} 

if (isptr(xty) && isnullptr(r) 
I I isptr(xty) && !isfunc(xty->type) && isvoidptr(yty) 
11 (xty and yty point to compatible l}pes 195)) { 

} 

Type ty = unsignedtype; 
(cast 1 and r to twe ty 192) 
return simplify(op + U, inttype, l, r); 

if (isptr(yty) && isnullptr(l) 
I I isptr(yty) && !isfunc(yty->type) && isvoidptr(xty)) 

return eqtree(op, r, l); 
return cmptree(op, l, r); 

.... 

(xty and yty point to compatible l}pes 195) = 195 196 201 
(isptr(xty) && isptr(yty) 
&& eqtype(unqual(xty->type), unqual(yty->type), 1)) 

The third argument of 1 to eqtype causes eqtype to permit its two type 
arguments to be any combinations of compatible object or incomplete 
types. Given the declaration 

int (*p) [10] , (*q) [] ; 

eqtype's third argument is what permits p == q but disallows p < q. 

9.5 Assignments 

The legality of an assignment expression, a function argument, a return 
statement, or an initialization depends on the legality of an assignment 
of an rvalue to the location denoted by an lvalue. assign (xty, e) per
forms the necessary type-checking for any assignment. It checks the 
legality of assigning the tree e to an lvalue that holds a value of type 
xty, and returns xty if the assignment is legal or null if it's illegal. The 
return value is also the type to which e must be converted before the 
assignment is made. 

( enode.c functions)+= 
Type assign(xty, e) Type xty; Tree e; { 

Type yty = unqual(e->type); 

xty = unqual(xty); 
if (isenum(xty)) 

... 
195 197 .... 

193 cmptree 
69 eqtype 
60 isenum 
60 isfunc 

195 

194 i snull ptr 
60 isptr 

194 isvoidptr 
203 simplify 

60 unqual 
58 unsignedtype 
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asgntree 197 
assign 195 

i sari th 60 
isconst 60 

isnullptr 194 
isptr 60 

isstruct 60 
isvoidptr 194 

isvolatile 60 

} 

xty = xty->type; 
if (xty->size == 0 I I yty->size == 0) 

return NULL; 
(assign 196) 

The body of assign tests the five constraints imposed on assignments by 
the standard. The first two permit assignment of arithmetic and struc
ture types: 

(assign 196) = 
if ( isarith(xty) && isarith(yty) 
I I isstruct(xty) && xty == yty) 

return xty; 

196 196 ..... 

The other three cases involve pointers. The null pointer may be assigned 
to any pointer: 

(assign 196) += 
if (isptr(xty) && isnullptr(e)) 

return xty; 

.... 
196 196 196 ..... 

Any pointer may be assigned to a void pointer or vice versa, provided the 
type pointed to by the left pointer operand has at least all the qualifiers 
carried by the type pointed to by the right operand: 

(assign 196) += 
if ((isvoidptr(xty) && isptr(yty) 

I I isptr(xty) && isvoidptr(yty)) 
&& (*xty has all of*yty's qualifiers 196)) 

return xty; 

.... 
196 196 196 ..... 

(*xty has all of *yty's qualifiers 196)= 196 
( (isconst(xty->type) I I !isconst(yty->type)) 
&& (isvolatile(xty->type) I I !isvolatile(yty->type))) 

A pointer can be assigned to another pointer if they both point to com
patible types and the lvalue has all the qualifiers of the rvalue, as above . 

(assign 196)+= 
if ( (xty and yty point to compatible types 195) 
&& (*xty has all of *yty's qualifiers 196)) 

return xty; 

.... 
196 196 196 ..... 

Finally, if none of the cases above apply, the assignment is an error, and 
assign returns the null pointer: 

(assign 196)+= 
return NULL; 

.... 
196 196 

assign is used in asgntree to build a tree for an assignment: 
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(enode.c functions)+= 
Tree asgntree(op, 1, r) int op; Tree l, r; { 

Type aty, ty; 

} 

r = pointer(r); 
ty = assign(l->type, r); 
if (ty) 

r = cast(r, ty); 
else { 

} 

typeerror(ASGN, 1, r); 
if (r->type == voidtype) 

r = retype(r, inttype); 
ty = r->type; 

if (1->op != FIELD) 
1 = lvalue(l); 

(asgntree 197) 
return tree(op + (isunsigned(ty) ? I ttob(ty)), 

ty I l, r); 

.... 
195 200 ... 

When the assignment is illegal, assign returns null and asgntree must 
choose a type for the result of the assignment. It uses the type of the 
right operand, unless that type is void, in which case asgntree uses int. 
This code exemplifies what's needed to recover from semantic errors so 
that compilation can continue. 

The body of asgntree, revealed by (asgntree), below, detects attempts 
to change the value of a const location, changes the integral rvalue of 
assignments to bit fields to meet the specifications of the standard, and 
transforms some structure assignments to yield better code. 

An lvalue denotes a const location if the type of its referent is qualified 
by const or is a structure type that is const-qualified. A structure type 
so qualified has its u. sym->u. s. cfi e 1 ds flag set. 

(asgntree 197)= 
aty = 1->type; 
if (isptr(aty)) 

198 

aty = unqual(aty)->type; 
if ( isconst(aty) 
I I isstruct(aty) && unqual(aty)->u.sym->u.s.cfields) 

if (isaddrop(l->op) 
&& !1->u.sym->computed && !1->u.sym->generated) 

error("assignment to canst identifier '%s'\n", 
1->u.sym->name); 

else 
error("assignment to canst location\n"); 

... 197 

195 assign 
175 cast 

65 cfields 
211 computed 
149 FIELD 

197 

50 generated 
179 isaddrop 
60 isconst 
60 isptr 
60 isstruct 
60 isunsigned 

169 lvalue 
174 pointer 
171 retype 
150 tree 

73 ttob 
60 unqual 
58 voidtype 
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asgntree 197 
consttree 193 

FIELD 149 
field 182 

fieldmask 66 
fieldsize 66 

isunsigned 60 
unsignedtype 58 
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aty is set to the type of the value addressed by the lvalue. The assign
ment is illegal if aty has a canst qualifier or if it's a structure type with 
one or more canst-qualified fields. The gymnastics for issuing the di
agnostic are used to cope with lvalues that don't have source-program 
names. 

The result of an assignment is the value of the left operand, and the 
type is the qualified version of the left operand. The cast at the begin
ning of asgntree sets r to the correct tree and ty to the correct type 
for r and ty to represent the result, so the result of ASGN is its right 
operand. Unfortunately, this scheme doesn't work for bit fields. The re
sult of an assignment to a bit field is the value that would be extracted 
from the field after the assignment, which might differ from the value 
represented by r. So, for assignments to bit fields that occupy less than 
a full unsigned, asgntree must change r to a tree that computes just 
this value. 

.... 
(asgntree 197)+= 197 199 197 ..... 

if (1->op == FIELD) { 

} 

int n = 8*1->u.field->type->size - fieldsize(l->u.field); 
if (n > 0 && isunsigned(l->u.field->type)) 

r = bittree(BAND, r, 
consttree(fieldmask(l->u.field), unsignedtype)); 

else if (n > 0) { 

} 

if (r->op == CNST+I) 
r = consttree(r->u.v.i<<n, inttype); 

else 
r = shtree(LSH, r, consttree(n, inttype)); 

r = shtree(RSH, r, consttree(n, inttype)); 

If the bit field is unsigned, the result is r with its excess most significant 
bits discarded. If the bit field is signed and has m bits, bit m - 1 is 
the sign bit and it must be used to sign-extend the value, which can be 
done by arithmetically shifting r left to bring bit m into the sign bit, and 
then shifting right by the same amount, dragging the sign bit along in 
the process. For example, Figure 9.4 shows the trees assigned to r for 
the two assignments in 

struct { int a:3; unsigned b:3; } x; 
x.a = e; 
x.b = e; 

In the assignment x. a = e, r is assigned a tree that uses shifts to sign
extend the rightmost 3 bits of e; for x. b = e, r is assigned a tree that 
ANDS e with 7. If r is constant, the left shift is done explicitly to keep 
the constant folder from shouting about overflow. 
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RSH+I BAND+U 

I\ I\ 
LSH+I CNST+I e CNST+U 

I\ 29 
7 

e CNST+I 
29 

FIGURE 9.4 Trees for the results of x. a = e and x . b = e. 

Back ends typically generate block moves for structure assignments. 
The job of generating good code for these assignments falls mostly on 
back ends, but there is an opportunity to reduce the number of useless 
block moves, and it's similar to the optimization done by ca 11 for struc
ture arguments described on page 190. In x = f(), where f returns a 
structure, a temporary is generated in the caller to hold f's return value, 
and the temporary is copied to x after the call returns. The left side of 
Figure 9.5 shows the resulting tree; x stands for the tree for x. This copy 
can be avoided by using x in place of the temporary. 

This improvement can be made when x addresses a location directly 
and there's a temporary that holds the value returned by f: 

(asgntree 197)+= 
if (isstruct(ty) && isaddrop(l->op) && iscallb(r)) 

return tree(RIGHT, ty, 
tree(CALL+B, ty, r->kids[O]->kids[O], 1), 
idtree(l->u.sym)); 

.... 
198 197 

The right side of Figure 9.5 shows the tree returned by this transforma
tion. 

ASGN+B 

/~ 
x RIGHT 

/~ 
CALL+B INDIR+B 

/ ~ i 
ADDRG+P 

f 
ADDRL+P 

tl 
ADDRL+P 

tl 

RIGHT 

/~ 
CALL+B INDIR+B 

/ ~ i 
ADDRG+P 

f 
x x 

AGURE 9.5 Trees for X=f (). 

186 call 
168 idtree 
179 isaddrop 
191 iscallb 
60 isstruct 

149 RIGHT 
150 tree 

199 
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binary 173 
COND 149 
cond 174 

eqtype 69 
isarith 60 

RIGHT 149 
tree 150 

unqual 60 

9.6 Conditionals 

The complex semantics of the conditional expression combines parts of 
the semantics of comparisons, of the binary operators, of assignment, 
and of casts. The COND operator is the only one that takes three operands: 
The expression e ? l : r yields the tree shown in Figure 9.6, which is 
built by condt ree: 

(enode.c functions)+= 
Tree condtree(e, 1, r) Tree e, 1, r; { 

Symbol tl; 

} 

Type ty, xty = 1->type, yty = r->type; 
Tree p; 

(condtree 200) 
p = tree(COND, ty, cond(e), 

tree(RIGHT, ty, root(l), root(r))); 
p->u.sym = tl; 
return p; 

.... 
197 

tl, carried in the u. sym field of a COND tree, is a temporary that holds 
the result of the conditional expression at runtime. t1 is omitted if the 
result is void. 

The call cond(e) in the code above type-checks the first operand, 
which must have a scalar type. There are six legal combinations for the 
types of second and third operands. The three easy cases are when both 
have arithmetic types, both have compatible structure types, or both have 
void type. All three of these cases are covered by the two if statements: 

(condtree200)= 201 200 ... 
if (isarith(xty) && isarith(yty)) 

ty = binary(xty, yty); 
else if (eqtype(xty, yty, 1)) 

ty = unqual(xty); 

COND 

/tl~ 
e RIGHT 

/~ 
ASGN ASGN 

/~ /~ 
ADDRL+P l ADDRL+P r 

tl tl 

FIGURE 9.6 Tree for e ? l r. 
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The first if statement handles the arithmetic types, and the second han
dles structure types and void. 

The remaining three cases involve pointers. If one of the operands is 
a null pointer and the other is a pointer, the resulting type is the nonnull 
pointer type: 

( condtree 200) + = 

else if (isptr(xty) && isnullptr(r)) 
ty = xty; 

else if (isnullptr(l) && isptr(yty)) 
ty = yty; 

.... 
200 201 200 .... 

If one of the operands is a void pointer and the other is a pointer to an 
object or incomplete type, the result type is the void pointer: 

.... 
(condtree200)+= 201201 200 .... 

else if (isptr(xty) && !isfunc(xty->type) && isvoidptr(yty) 
I I isptr(yty) && !isfunc(yty->type) && isvoidptr(xty)) 

ty = voidptype; 

If both operands are pointers to qualified or unqualified ve· 
patible types, either can serve as the result type: 

.ons of com-

.... 
(condtree 200) += 201 201 200 

else if ( (xty and yty point to compatible types 195)) 

ty = xty; 
else { 

typeerror(COND, l, r); 
return consttree(O, inttype); 

} 

.... 

The type-checking code above ignores qualifiers on pointers to quali
fied types. The resulting pointer type, however, must include all of the 
qualifiers of the referents of both operand types; so if ty is a pointer, 
it's rebuilt with the appropriate qualifiers: 

.... 
(condtree 200)+= 201 202 

if (isptr(ty)) { 

} 

ty = unqual(unqual(ty)->type); 
if (isptr(xty) && isconst(unqual(xty)->type) 
I I isptr(yty) && isconst(unqual(yty)->type)) 

ty = qual(CONST, ty); 
if (isptr(xty) && isvolatile(unqual(xty)->type) 
I I isptr(yty) && isvolatile(unqual(yty)->type)) 

ty = qual(VOLATILE, ty); 
ty = ptr(ty); 

.... 200 

If the conditional, e, is a constant, the result of the conditional expres
sion is one of the other operands: 

149 COND 
109 CONST 

201 

193 consttree 
60 isconst 
60 isfunc 

194 isnullptr 
60 isptr 

194 isvoidptr 
60 isvolatile 
61 ptr 
62 qual 
60 unqual 
58 voidptype 

109 VOLATILE 
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(condtree 200)+= 
if (e->op == CNST+D I I e->op == CNST+F) { 

e = cast(e, doubletype); 
return retype(e->u.v.d != 0.0? 1 : r, ty); 

} 

if (generic(e->op) == CNST) { 
e = cast(e, unsignedtype); 
return retype(e->u.v.u ? 1 : r, ty); 

} 

... 
201 202 200 ... 

This constant folding is not just an optimization; it's mandatory because 
conditional expressions can be used in contexts that require constant 
expressions. 

Finally, if the result type isn't void, the temporary is generated and 1 
and r are changed to assignments to that temporary: 

(condtree 200) += 
if (ty != voidtype && ty->size > 0) { 

tl = temporary(REGISTER, unqual(ty), level); 
1 = asgn(tl, 1); 
r = asgn(tl, r); 

} else 
t1 = NULL; 

9. 7 Constant Folding 

... 
202 200 

Constant expressions are permitted wherever a constant is required. Ar
ray sizes, case labels, bit-field widths, and initializations are examples. 

constant-expression: conditional-expression 

Constant expressions are parsed by 

(simp.c functions)= 
Tree constexpr(tok) int tok; { 

Tree p; 

} 

needconst++; 
p = exprl(tok); 
needconst--; 
return p; 

(simp.c data)= 
int needconst; 

203 ... 
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exprl parses assignment-expressions. Technically, constexpr should 
call expr2, which parses conditional-expressions, but legal assignments 
are never constants, and will always cause semantic errors. Calling exprl 
handles syntax errors more gracefully because exprl consumes an en
tire assignment and thus avoids multiple diagnostics from the cascading 
syntax errors. Callers to constexpr report an error if the tree returned 
is not a CNST tree and if it's used in a context that requires a constant. 
An example is i ntexpr, which parses integer constant expressions: 

(simp.c functions)+= 
int intexpr(tok, n) int tok, n; { 

Tree p = constexpr(tok); 

} 

needconst++; 
if (generic(p->op) == CNST && isint(p->type)) 

n = cast(p, inttype)->u.v.i; 
else 

error("integer expression must be constant\;i"); 
needconst--; 
return n; 

.... 
202 203 .... 

needconst is a global variable that controls the constant folding done 
by simplify, as detailed below. If it's nonzero, simplify warns about 
constant expressions that overflow and folds them anyway. Otherwise, 
it doesn't fold them. 

Constant folding is not simply an optimization. The standard makes it 
required by defining constructs in which the value of a constant expres
sion must be computed during compilation. Array sizes and bit-field 
widths are examples. simplify returns the tree specified by its argu
ments, which are the same as tree's: 

.... 
(simp.c functions)+= 203 205 .... 

Tree simplify(op, ty, l, r) int op; Type ty; Tree l, r; { 

} 

int n; 
Tree p; 

if (optype(op) == 0) 
op+= ttob(ty); 

switch (op) { 
(simplify cases204) 

} 
return tree(op, ty, l, r); 

simplify does three things that tree does not: it forms a type-specific 
operator if it's passed a generic one, it evaluates operators when both 

203 
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operands are constants, and it transforms some trees into simpler ones 
that yield better code as it constructs the tree requested. 

Each of the cases in the body of simplify's switch statement han
dles one type-specific operator. If the operands are both constants, the 
code builds and returns a CNST tree for the resulting value; otherwise, it 
breaks to the end of the switch statement, which builds and returns the 
appropriate tree. The code that checks for constant operands and builds 
the resulting CNST tree is almost the same for every case; only the type 
suffix, Value field name, operator, and return type vary in each case, so 
the code is buried in a set of macros. The case for unsigned addition is 
typical: 

(simplify cases204)= 
case ADD+U: 

foldcnst(U,u,+,unsignedtype); 
commute(r,l); 
break; 

This case implements the transformation 

(ADD+U (CNST+U C1) (CNST+U C2)) ~ (CNST+U C1 + C2) 

205 203 ... 

This use of fo 1 den st checks whether both operands are CNST +U trees, 
and, if so, returns a new CNST +U tree whose u. v. u field is the sum of 
1->r.v.u and r->r.v.u: 

(simp.c macros)= 
#define foldcnst(TYPE,VAR,OP,RTYPE) \ 

if (1->op == CNST+TYPE && r->op == CNST+TYPE) {\ 
p = tree(CNST+ttob(RTYPE), RTYPE, NULL, NULL);\ 
p->u.v.VAR = 1->u.v.VAR OP r->u.v.VAR;\ 
return p; } 

204 ... 

For commutative operators, commute ensures that if one of the operands 
is a constant, it's the one given as commute's first argument. This trans
formation reduces the case analyses that back ends must perform, allow
ing back ends to count on constant operands of commutative operators 
being in specific sites. 

(simp.c macros)+= 
#define commute(L,R) \ 

if (generic(R->op) == 
Tree t = L; L = R; 

.... 
204 205 ... 

CNST && generic(L->op) != CNST) {\ 
R = t; } 

commute swaps its arguments, if necessary, to make L refer to the con
stant operand. For example, the commute(r, 1) in the case for ADD+U 
above ensures that if one of the operands is a constant, r refers to that 
operand. This transformation also makes some of simplify's transfor
mations easier, as shown below. 
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Unsigned addition is easy because the standard dictates that unsigned 
operators do not overflow. Signed operations, however, must cope with 
overflow. For example, if the operands to ADD+I are constants, but 
their sum overflows, the expression is not a constant expression un
less it's used in a context that demands one. The signed operators use 
xfoldcnst, which is like foldcnst, but also checks for overflow . 

.... 
(simplify cases204)+= 

case ADD+!: 
204 206 203 ..... 

xfoldcnst(I,i,+,inttype,add,INT__MIN,INT_MAX,needconst); 
commute(r,l); 
break; 

implements the transformation 

(ADD+! (CNST+I C1) (CNST+I C2)) =:> (CNST+I C1 + c2) 

but only if c 1 + c2 doesn't overflow or if needconst is 1. xfo l dcnst 
has four additional arguments: A function, the minimum and maximum 
allowable values for the result, and a flag that is nonzero 1• ·_ constant is 
required. 

(simp.c macros)+= 2't4 206 ..... 
#define xfoldcnst(TYPE,VAR,OP,RTYPE,FUNC,MIN,MAX,needconst)\ 

if (1->op == CNST+TYPE && r->op == CNST+TYPE\ 
&& FUNC((double)l->u.v.VAR,(double)r->u.v.VAR,\ 

(double)MIN,(double)MAX, needconst)) {\ 
p = tree(CNST+ttob(RTYPE), RTYPE, NULL, NULL);\ 
p->u.v.VAR = 1->u.v.VAR OP r->u.v.VAR;\ 
return p; } 

The function takes doubles because l cc assumes that a double has 
enough bits in its significand to represent all of the integral types. Test
ing for constant operands and building the resulting CNST tree are iden
tical to the code in foldcnst, but the function is called to check the 
validity of the operation; it returns zero if the operation will overflow, 
and one otherwise. The function is passed the values, the minimum and 
maximum, and the flag. All but the flag are converted to doubles. For 
integer addition, the test for overflow is simple; x + y overflows if it is 
less than INT_MIN or greater than INT_MAX, where INLMIN and INT _MAX 
are the ANSI values for the smallest and largest signed integers. The 
function, add, handles all the types, so it must not compute x + y be
cause the addition might overflow. Instead, it tests the conditions under 
which overflow will occur: 

(simp.c functions)+= 
static int add(x, y, min, max, needconst) 
double x, y, min, max; int needconst; { 

.... 
203 210 ..... 
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} 

int cond = x == 0 I I y == 0 
I I x < 0 && y < 0 && x >= min - y 
II X<O&&y>O 
II X>O&&y<O 
I I x > 0 && y > 0 && x <= max - y; 
if (!cond && needconst) { 

} 

warning("overflow in constant expression\n"); 
cond = 1; 

return cond; 

As shown, needconst forces add to return 1 after issuing a warning. sub, 
mul, and div are similar. 

The conversions also divide into those that must check for overflow 
and those that can ignore it. Conversions from a smaller to a larger 
type, between unsigned types, between unsigned and pointer types, and 
from integer to unsigned can ignore overflow. The conversions below 
exemplify these four cases. They implement transformations like 

(CVC+I (CNST+C c)) => (CNST+I c') 

where c' is the possibly sign-extended value of c. For the unsigned con
versions, c' = c. 

.... 
(simplify cases 204)+= 

case CVC+I: 
205 207 203 .... 

cvtcnst(C,inttype, p->u.v.i 
(l->u.v.sc&0200? (-0<<8) : O)l(l->u.v.sc&0377)); 

break; 
case CVU+S: 

cvtcnst(U,unsignedshort,p->u.v.us 1->u.v.u); break; 
case CVP+U: 

cvtcnst(P,unsignedtype, p->u.v.u (unsigned)l->u.v.p); 
break; 

case CVI+U: 
cvtcnst(I,unsignedtype, p->u.v.u 1->u.v.i); break; 

(simp.c macros)+= 
#define cvtcnst(FTYPE,TTYPE,EXPR) \ 

if (1->op == CNST+FTYPE) {\ 
p = tree(CNST+ttob(TTYPE), TTYPE, NULL, NULL);\ 
EXPR;\ 
return p; } 

.... 
205 207 .... 

The assignment in the CVC+I case must sign-extend the sign bit of the 
character operand manually, because the compiler cannot count on chars 
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being signed when it's compiled by another C compiler. It's tempting to 
replace the assignment passed to cvtconst by something like 

((int)l->u.v.sc<<(8*sizeof(int) - 8))>>(8*sizeof(int) - 8) 

but whether or not » replicates the sign bit depends on the compiler 
that compiles 1 cc. 

The four conversions from larger to smaller types must check for over
flow. They implement transformations like 

(CVI+C (CNST +I c)) ~ (CNST +C c) 

if c fits in the smaller type or if needconst is one. 
... 

(simplify cases204)+= 206 207 203 ... 
case CVI+C: 

xcvtcnst(I, chartype,1->u.v.i,SCHAR_MIN,SCHAR_MAX, 
p->u.v.sc = 1->u.v.i); break; 

case CVD+F: 
xcvtcnst(D, floattype, 1->U. v. d, -FL T_MAX, FLT_M,' 

p->u.v.f = 1->u.v.d); break; 
case CVD+I: 

xcvtcnst(D, inttype,1->u.v.d, INT_MIN,INT_MAX, 
p->u.v.i = 1->u.v.d); break; 

case CVI+S: 
xcvtcnst(I,shorttype,1->u.v.i, SHRT_MIN,SHRT_MAX, 

p->u.v.ss = 1->u.v.i); break; 

... 
(simp.c macros)+= 206 208 

#define xcvtcnst(FTYPE,TTYPE,VAR,MIN,MAX,EXPR) \ 
if (1->op == CNST+FTYPE) {\ 

if (needconst && (VAR < MIN I I VAR > MAX))\ 
warning("overflow in constant expression\n");\ 

if (needconst I I VAR >= MIN && VAR <= MAX) {\ 
p = tree(CNST+ttob(TTYPE), TTYPE, NULL, NULL);\ 
EXPR;\ 
return p; } } 

... 

In addition to evaluating constant expressions, s imp 1 i fy transforms 
the trees for some operators to help generate better code. Some of these 
transformations remove identities and other simple cases. For example: 

(simplify cases204)+= 
case BAND+U: 

foldcnst(U,u,&,unsignedtype); 
commute(r,l); 
identity(r,l,U,u,(-(unsigned)O)); 
if (r->op == CNST+U && r->U.V.U == 0) 

... 
207 208 203 ... 
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return tree(RIGHT, unsignedtype, root(l), 
consttree(O, unsignedtype)); 

break; 

... 
(simp.c macros)+= 207 209 

#define identity(X,Y,TYPE,VAR,VAL) \ 
if (X->op == CNST+TYPE && X->u.v.VAR == VAL)\ 

return Y 

... 

The use of identity and the if statement that follows implement the 
transformations 

(BAND+U e (CNST+U -0)) 
(BAND+U e (CNST+U 0)) 

=> e 
=> Ce , (CNST +U 0)) 

In the second case, e cannot be discarded because it might have side 
effects. commute Cr, 1) makes it necessary to check only if r is a constant. 

s imp 1 i fy also implements strength reduction for some operators. This 
transformation replaces an operator by a less expensive one that com
putes the same value. For example, an unsigned multiplication by a 
power of two can be replaced by a left shift: 

(MUL+U (CNST +U zk) e) => (LSH+U e (CNST +I k)) 

The code also uses fol dcnst to check for constant operands. 
... 

(simplify cases 204)+= 

case MUL+U: 
207 208 ... 

commute(l,r); 
if (1->op == CNST+U && (n = ispow2(1->u.v.u)) != 0) 

return simplify(LSH+U, unsignedtype, r, 
consttree(n, inttype)); 

foldcnst(U,u,*,unsignedtype); 
break; 

i spow2 (u) returns k if u is equal to zk for k > 0. 

203 

Bit fields are often tested by expressions such as p->x ! = 0, which 
leads to a NE tree with FIELD and CNST trees as operands. Extracting the 
bit field, which involves shifting and masking in general, and testing it 
can be easily replaced by simpler code that fetches the word that con
tains the field, ANDs it with a properly positioned bit mask, and tests the 
outcome: 

(simplify cases 204)+= 

case NE+I: 
cfoldcnst(I,i,!=,inttype); 
commute(r,l); 
zerofield(NE,I,i); 
break; 

... 
208 209 203 ... 
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.... 
(simp.c macros)+= 208 209 ..... 

#define zerofield(OP,TYPE,VAR) \ 
if (1->op == FIELD\ 
&& r->op == CNST+TYPE && r->u.v.VAR == 0)\ 

return eqtree(OP, bittree(BAND, 1->kids[O],\ 
consttree(\ 

fieldmask(l->u.field)<<fieldright(l->u.field),\ 
unsignedtype)), r); 

This case implements the transformation 

(NE+I (FIELD e) (CNST+I 0)) ~ 

(NE+I (BAND+U (e (CNST+U 1\1))) (CNST+I 0)) 

where J\1 is a mask of s bits shifted m bits left, and s is size of the bit 
field that lies m bits from the least significant end of the unsigned or 
integer in which it appears. cfo 1 den st is a version of fo 1 den st that's 
specialized for the relational operators: 

(simp.c macros)+= 
#define cfoldcnst(TYPE,VAR,OP,RTYPE) \ 

if (1->op == CNST+TYPE && r->op == CNST+TYPE) {\ 
p = tree(CNST+ttob(RTYPE), RTYPE, NULL, NULL);\ 
p->u.v.i = 1->u.v.VAR OP r->u.v.VAR;\ 
return p; } 

.... 
209 209 ..... 

Pointer addition is the most interesting and complex case in simplify 
because it implements many transformations that yield better code. Gen
erating efficient addressing is the linchpin of generating efficient code, 
so effort in this case pays off on all targets. The easy cases handle con
stants and identities: 

(simplify cases204)+= 
case ADD+P: 

foldaddp(l,r,I,i); 
foldaddp(l,r,U,u); 
foldaddp(r,l,I,i); 
foldaddp(r,l,U,u); 
commute(r,l); 
identity(r,retype(l,ty),I,i,O); 
identity(r,retype(l,ty),U,u,O); 
(ADD+P transformations 210) 

break; 

(simp.c macros)+= 
#define foldaddp(L,R,RTYPE,VAR) \ 

if (L->op == CNST+P && R->op == CNST+RTYPE) {\ 
p = tree(CNST+P, ty, NULL, NULL);\ 

.... 
208 203 
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p->u.v.p = (char *)L->u.v.p + R->u.v.VAR;\ 
return p; } 

Four uses of fo 1 daddp are required because of the asymmetry of ADD+ P's 
operands: one is a pointer and the other is an integer or an unsigned. 
These uses of fo 1 daddp implement transformations like 

(ADD+P (CNST+P ci) (CNST+I c2)) ~ (CNST+P c1 + c2) 

The uses of identity implement 

(ADD+P e (CNST +I 0)) ~ e 
' and the similar transformation for unsigned constants. 

The remaining transformations of ADD+P trees either produce simpler 
and thus better trees or feed another transformation. The transfor
mation 

(ADD+P transformations 210)= 
if (isaddrop(l->op) 
&& (r->op == CNST+I I I r->op == CNST+U)) 

return addrtree(l, cast(r, inttype)->u.v.i, ty); 

211 ... 209 

eliminates indexed addressing of a known location by a constant, which 
occurs in array references such as a [ 5 J and in field references such as 
x. name. These expressions yield trees of the form 

(ADD+P n (CNST+x c)) 

where n denotes a tree for the address of an identifier, x is u or I, and c 
is a constant. This tree can be transformed to n', a tree for an identifier 
that is bound to the addressed location. add rt ree creates a new identifier 
whose address is the location addressed by 1 plus the constant off set, 
and builds a tree for the address of this identifier. 

(simp.c functions)+= 
static Tree addrtree(e, n, 

Symbol p = e->u.sym, q; 

NEWO(q, FUNC); 

ty) Tree e; int n; Type ty; { 

q->name = stringd(genlabel(l)); 
q->sclass = p->sclass; 
q->scope = p->scope; 
q->type = ty; 
q->temporary = p->temporary; 
q->generated = p->generated; 
q->addressed = p->addressed; 
q->computed = 1; 
q->defined = 1; 

... 
205 
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} 

q->ref = 1; 
(announce q 211) 

e = tree(e->op, ty, NULL, NULL); 
e->u.sym = q; 
return e; 

(symbol flags 50)+= 
unsigned computed:l; 

.... 
179 292 38 ..... 

As for other identifiers, the front end must announce this new identi
fier to the back end. Since its address is based on the address of another 
identifier, represented by p, it's announced by calling the interface func
tion address, and its computed flag identifies it as a symbol based on 
another symbol. But there's a phase problem: p must be announced be
fore q, but if p is a local or a parameter, it has not yet been passed to 
the back end via local or function. addrtree thus calls address only 
for globals and statics, and delays the call for locals and parameters: 

(announce q 211) = 
if (p->scope == GLOBAL 
I I p->sclass == STATIC I I p->sclass 

if (p->sclass == AUTO) 
q->sclass = STATIC; 

(*IR->address)(q, p, n); 
} else { 

} 

Code cp; 
addlocal(p); 
cp = code(Address); 
cp->u.addr.sym = q; 
cp->u.addr.base = p; 
cp->u.addr.offset = n; 

211 

EXTERN) { 

The code-list entry Address is described in Section 10.1. lee can't delay 
the call to address for globals and statics because expressions like &a[S] 
are constants and can appear in, for example, initializers. 

The next transformation improves expressions like b [ i] . name, which 
yields a tree of the form (ADD+P (ADD+P i n) (CNST+x c)), where i is 
a tree for an integer expression and n and c are defined above. This tree 
can be transformed into (ADD+P i (ADD+P n (CNST+x c))) and the in
ner ADD+P tree will be collapsed to a simple address by the transforma
tion above to yield (ADD+P i n'). 

(ADD+P transformations 210)+= 
if (1->op == ADD+P && isaddrop(l->kids[l]->op) 
&& (r->op == CNST+I I I r->op == CNST+U)) 

.... 
210 212 209 ..... 
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return simplify(ADD+P, ty, 1->kids[O], 
addrtree(l->kids[l], cast(r, inttype)->u.v.i, ty)); 

Technically, this transformation is safe only when (i + n) + c is equal to 
i + (n + c), which is known only at runtime, but the standard permits 
these kinds of rearrangements to be made at compile time. 

Similarly, the tree (ADD+P (ADD+! i (CNST +x c)) n) can be trans
formed to (ADD+P i n'); this transformation also applies if SUB+! ap
pears in place of the ADD+!: 

.... 
(ADD+P transformations 210)+= 211 212 

if ((1->op == ADD+! I I 1->op == SUB+!) 
&& 1->kids[l]->op == CNST+I && isaddrop(r->op)) 

return simplify(ADD+P, ty, 1->kids[O], 
simplify(generic(l->op)+P, ty, r, 1->kids[l])); 

..... 209 

The following cases combine constants and implement the transfor
mations 

(ADD+P (ADD+P x (CNST C1)) (CNST C2)) ~ 

(ADD+P x (CNST C1 + C2)) 
(ADD+P (ADD+! x (CNST c1)) (ADD+P y (CNST c2))) ~ 

(ADD+P x (ADD+P y (CNST C1 + C2))) 

These transformations trigger others when x or y are identifier trees. 
.... 

(ADD+P transformations 210)+= 212 212 209 
if (1->op == ADD+P && generic(l->kids[l]->op) == CNST 

..... 

&& generic(r->op) == CNST) 
return simplify(ADD+P, ty, 1->kids[O], 

(*optree['+'])(ADD, 1->kids[l], r)); 
if (1->op == ADD+! && generic(l->kids[l]->op) == CNST 
&& r->op == ADD+P && generic(r->kids[l]->op) == CNST) 

return simplify(ADD+P, ty, 1->kids[O], 
simplify(ADD+P, ty, r->kids[O], 
(*optree['+'])(ADD, 1->kids[l], r->kids[l]))); 

The last transformation reaches into RIGHT trees to apply ADD+P trans
formations to their operands. 

(ADD+P transformations 210)+= 
if (1->op == RIGHT && 1->kids[l]) 

return tree(RIGHT, ty, 1->kids[O], 
simplify(ADD+P, ty, 1->kids[l], r)); 

else if (1->op == RIGHT && 1->kids[O]) 
return tree(RIGHT, ty, 

simplify(ADD+P, ty, 1->kids[O], r), NULL); 

These tests implement 

.... 
212 209 
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(ADD+P (RIGHT x y) e) => 
(ADD+P (RIGHT x) e) => 

(RIGHT x (ADD+P y e)) 
(RIGHT (ADD+P x e)) 

The first test applies to trees formed by expressions such as f () . x; the 
call returns a temporary, so referencing a field of that temporary will 
benefit from the first ADD+P transformation described above. The second 
test applies to expressions that are wrapped in a RIGHT as the result of 
a conversion. 

Table 9.2 lists the remaining transformations in (simplify cases). 

(AND+I (CNST+I 0) e) => (CNST+I O) 
(AND+I (CNST +I 1) e) => e 
(OR+I (CNST +I O) e) => e 
(OR+I (CNST +I c) e), c f:. 0 => (CNST +I 1) 
(BCOM+U (BCOM+U e)) => e 
(BOR+U (CNST +U O) e) => e 
(BXOR+U (CNST+U 0) e) => e 
(DIV+I e (CNST+I 1)) => e 
(DIV+U e (CNST+U c)), c = 2k => (RSH+U e (CNST+I k)) 
(GE+U e (CNST +U O)) => (e, (CNST +I 1)) 
(GE+U (CNST+U 0) e) => (EQ+I e (CNST+I 0)) 
(GT+U (CNST+U O) e) => (e, (CNST+I 0)) 
(GT+U e (CNST+U 0)) => (NE+I e (CNST+I 0)) 
(LE+U (CNST+U 0) e) => (e, (CNST+I 1)) 
(LE+U e (CNST+U O)) => (EQ+I e (CNST+I O)) 
(LT+U e (CNST+U O)) => (e, (CNST+I 0)) 
(LT+U (CNST+U 0) e) => (NE+I e (CNST+I 0)) 
(LSH+I e (CNST+I O)) => e 
(LSH+U e (CNST+I 0)) => e 
(MOD+I e (CNST+I 1)) => (e, (CNST+I O)) 
(MOD+U e (CNST+I c)), c = 2k => (BAND+U e (CNST+U c -1)) 
(MUL+I (CNST+I c1) (ADD+I e (CNST+I c2))) => 

(ADD+I (MUL+I (CNST +I c1) e) (CNST +I c1 x c2)) 
(MUL+I (CNST +I c1) (SUB+I e (CNST +I c2))) => 

(SUB+I (MUL+I (CNST +I c1) e) (CNST +I c1 x c2)) 
(MUL+I (CNST+I c) e), c = 2k => (LSH+I e (CNST+I k)) 
(NEG+D (NEG+D e)) => e 
(NEG+F (NEG+F e)) => e 
(NEG+I (NEG+I e)), e f:. (CNST+I INT.MIN) => e 
(RSH+I e (CNST+I 0)) => e 
(RSH+U e (CNST+I O)) => e 
(SUB+P e (CNST+I c)) => (ADD+P e (CNST+I -c)) 
(SUB+P e (CNST+U c)) => (ADD+P e (CNST+U -c)) 
(SUB+P e1 (ADD+I e2 (CNST+I c))) => 

(SUB+P (SUB+P e1 (CNST+I c)) e2) 

TABLE 9.2 Remaining s imp 1 i fy transformations. 
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cast 175 
postfix 166 

simplify 203 
unary 164 

CHAPTER 9 • EXPRESSION SEMANTICS 

Further Reading 

1 cc's approach to type checking is similar to the one outlined in Chap
ter 6 of Aho, Sethi, and Ullman (1986). simplify's transformations are 
similar to those described by Hanson (1983). Similar transformations 
can be done, often more thoroughly, by other kinds of optimizations 
or during code generation, but usually at additional cost. s imp 1 i fy im
plements only those that are likely to benefit almost all programs. A 
more systematic approach is necessary to do a more thorough job; see 
Exercise 9.8. 

Exercises 

9.1 Implement Type super(Type ty), which is shown in Figure 9.1. 
Don't forget about enumerations and the types long, unsigned long, 
and long double. 

9.2 How can a double be converted to an unsigned using only double-to
signed integer conversion? Use your solution to implement cast's 
fragment (double-to-unsigned conversion). 

9.3 In 1 cc, all enumeration types are represented by integers because 
that's what most other C compilers do, but the standard permits 
each enumeration type to be represented by any of the integral 
types, as long it the type chosen can hold all the values. For exam
ple, unsigned characters could be used for enumeration types with 
enumeration values in the range 0-255. Explain how cast must 
be changed to accommodate this scheme. Earlier versions of 1 cc 
implemented this scheme. 

9.4 Implement the omitted fragments for unary and postfix. 

9.5 Dereferencing null pointers is a common programming error in C 
programs. 1 cc's -n option catches these errors. With -n, 1 cc gen
erates code for 

static char * _ YYfi 1 e = "file"; 
static void _YYnull(int line) { 

char buf[200]; 

} 

sprintf(buf,"null pointer dereferenced @%s:%d\\n", 
_YYfile, line); 

write(2, buf, strlen(buf)); 
abort(); 

at the end of each source file; file is the name of the source file. 
It also arranges for its global YYnul 1 to point to the symbol-table 
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entry for the function _YYnull. Whenever it builds a tree to defer
ence a pointer p, if YYnul 1 is nonnull, it calls nul lcheck to build 
a tree that is equivalent to ((tl = p) 11 _YYnull(lineno), tl), 
where t1 is a temporary, and lineno is a constant that gives the 
source-code line at which the dereference appears and is the value 
of the global 1 i neno. Thus, attempts to dereference a null pointer 
at runtime result in calls to _YYnull. Implement nullcheck. 

9.6 bittree builds the trees for & I A %, multree for* /, shtree for 
« », and subtree for binary -. Implement these functions. The 
pointer subtraction code in subtree and the code in bi tt ree for the 
modulus operator% are the most subtle. subtree takes about 25 
lines, and the others each take less than 20. 

9.7 Given the following file-scope declarations, what ADD+P tree is built 
for the expression x[lOJ .table[i] .count? Don't forget to apply 
s imp 1 i fy's transformations. 

int i; 
struct 1 i st { 

char *name; 
struct entry table { 

int age; 
int count; 

} table[lOJ; 
} x[lOO]; 

9.8 si mp 1 i fy uses ad hoc techniques to implement constant folding, 
and it implements only some of the transformations possible. Ex
plore the possibilities of using 1 burg, which is described in Chap
ter 14, to implement constant folding and a complete set of trans
formations. 

215 

104 lineno 
203 simplify 



function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 
gencode 337 

216 

10 
Statements 

The syntax of C statements is 

statement: 
ID : statement 
case constant-expression : statement 
default : statement 
[ expression ] ; 
; f ' (' expression ') ' statement 
if ' (' expression ') ' statement e 1 se statement 
switch ' (' expression ') ' statement 
whi 1 e ' (' expression ') ' statement 
do statement whi 1 e ' (' expression ') ' 
for ' ( ' [ expression ] ; [ expression ] ; [ expression ] ' ) ' 

statement 
break ; 
continue ; 
goto ID; 
return [ expression] ; 
compound-statement 

compound-statement: 
' {' { declaration} { statement} '}' 

compound-statement is implemented in Section 11.7. Some languages, 
such as Pascal, use semicolons to separate statements. In C, semicolons 
terminate statements, which is why they appear in the productions for 
the expression, do-while, break, continue, goto, and return statements, 
and they do not appear in the production for compound statements. 

10.1 Representing Code 

The semantics of statements consist of the evaluation of expressions, 
perhaps intermixed with jumps and labels, which implement transfer 
of control. Expressions are compiled into trees and then converted to 
dags, as suggested in Section 1.3 and detailed in Chapter 12. Jumps and 
labels are also represented by dags. For each function, these dags are 
strung together in a code list, which represents the code for the function. 
The front end builds the code list for a function and calls the interface 
function function. As described in Section 11.6, back ends call gencode 
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and emi tcode to generate and emit code; these functions traverse the 
code list. 

The code list is a doubly linked list of typed code structures: 

{stmt.c typedefs)=. 
typedef struct code *Code; 

{stmt.c exported types)= 
struct code { 

} ; 

enum { Blockbeg, 
Label, 

} kind; 
Code prev, next; 
union { 

(Blockbeg 219) 
(Blockend 220) 
(Local 219) 
(Address 219) 

Blockend, Local, Address, Defpoint, 
Start, Gen, Jump, Switch 

(Defpoi nt 220) 
(Label, Gen, Jump 220) 
(Switch 242) 

} u; 

231 ... 

Each of the fields of u correspond to one of the values of kind enu
merated above except for Start, which needs no u field. Bl ockbeg 
and Bl ockend entries identify the boundaries of compound statements. 
Local and Address identify local variables that must be announced to 
the back end by the 1oca1 and address interface functions. Def point 
entries define the locations of execution points, which are the places 
in the program at which debuggers might plant breakpoints, for exam
ple. Label, Gen, and Jump entries carry dags for expressions, labels, and 
jumps. Switch entries carry the data needed to generate code for a 
switch statement. 

The code list begins with a Start entry. code 1 i st always points to 
the last entry on the list: 

(stmt.c data)= 
struct code codehead = { Start }; 
Code codelist = &codehead; 

238 ... 

The top diagram in Figure 10.l shows the initial state of the code list. 
As statements in a function are compiled, the code list grows as entries 
are appended to it. code allocates an entry, links it to the entry pointed 
to by code 1 i st, and advances code 1 i st to point to the new entry, which 
is now the last one on the code list. code returns a pointer to the new 
entry: 
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90 address 
457 " (MIPS) 
490 " (SPARC) 
521 " (X86) 
218 code 
341 emitcode 
143 kind 

90 local 
447 " (MIPS) 
483 " (SPARC) 
518 " (X86) 
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Code 217 
codelist 217 

FUNC 97 
Jump 217 
kind 143 

Label 217 
NEW 24 

Start 217 
Switch 217 
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(stmt.c functions)= 
Code code(kind) int kind; { 

Code cp; 

} 

(check for unreachable code 218) 
NEW(cp, FUNC); 
cp->kind = kind; 
cp->prev = codelist; 
cp->next = NULL; 
codelist->next = cp; 
codelist = cp; 
return cp; 

219 ... 

The bottom diagram in Figure 10.1 shows the code list after two entries 
have been appended. 

The values of the enumeration constants that identify code-list en
tries are important. Those greater than Start generate executable code; 
those less than Labe 1 do not generate code, but serve only to declare 
information of interest to the back end. Thus, code can detect entries 
that will generate unreachable code if it appends one with kind greater 
than Start after an unconditional jump: 

(check for unreachable code 218) = 
if (kind > Start) { 

} 

for (cp = codelist; cp->kind <Label; ) 
cp = cp->prev; 

if (cp->kind == Jump I I cp->kind == Switch) 
warning("unreachable code\n"); 

codelist---. 

codehead: Start kind 
NULL prev 
NULL next 

u 

codelist ---------------

codehead: 

FIGURE 10.1 The initial code list and after appending two entries. 

218 
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As detailed in Section 10.7, control doesn't "fall through" switch state
ments; they're like unconditional jumps. 

addl oca l appends a Local entry for a local variable, unless it's already 
been defined: 

(Local 219)= 
Symbol var; 

(stmt.c functions)+= 
void addlocal(p) Symbol p; { 

} 

if (!p->defined) { 

} 

code(Local)->u.var p; 
p->defined = 1; 
p->scope =level; 

217 

... 
218 220 ..... 

addrtree illustrates the use of addlocal and the use of code to append 
an Address entry. Address entries carry the data necessary for gencode 
to make a call to the interface function address. 

(Address 219) = 
struct { 

Symbol sym; 
Symbol base; 
int offset; 

} addr; 

217 

When gencode processes this entry, it uses the values of the sym, base, 
and offset fields as the three arguments to address. 

Bl ockbeg entries store the data necessary to compile a compound 
statement: 

(Blockbeg 219)= 
struct { 

int level; 
Symbol *locals; 
Table identifiers, types; 
Env x; 

} block; 

217 

level is the value of level associated with the block, and local s is 
a null-terminated array of symbol-table pointers for the locals declared 
in the block. xis back end's Env value for this block. identifiers and 
types record the i denti fie rs and types tables when the block was com
piled; they're used in code omitted from this book to generate debugger 
symbol-table information when the option -g is specified. Blockend en
tries just point to their matching Blockbeg: 

90 address 
217 Address 

219 

457 address (MIPS) 
490 " (SPARC) 
521 " (X86) 
210 addrtree 
217 Blockbeg 
217 Blockend 
218 code 

50 defined 
365 Env 
337 gencode 
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217 Local 
364 off set 
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Code 217 
code 218 

Coordinate 38 
Defpoint 217 

forest 311 
Gen 217 

Jump 217 
Label 217 

refine 169 
src 108 

(Bl ockend 220) = 
Code begin; 
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217 

Labe 1, Gen, and Jump entries all carry a pointer to a forest: 

(Label, Gen, Jump 220)= 217 
Node forest; 

Each of these entries is identified by its own enumeration constant so 
that its purpose can be determined without inspecting its dag. This ca
pability is used above in code to identify jumps, and it's used in Sec
tion 10.9 to eliminate jumps to jumps and unreachable jumps. 

10.2 Execution Points 

Execution points occur before every expression in the grammar at the 
beginning of this chapter, before the operands of && and 11, before the 
second and third operands of ? : , at the beginning and end of every com
pound statement, and at the entry and exit to every function. They give 
back ends that implement the stab interface functions mentioned in Sec
tion 5.2 the opportunity to generate code and symbol-table information 
for debuggers. For example, debuggers permit breakpoints to be set at 
execution points. 

Execution points and events are also used to implement 1 cc's profiling 
facility. The option -b causes lee to generate code to count the number 
of times each execution point is executed and to write those counts to 
a file. The -a option causes that file to be read during compilation and 
used to compute values of refi nc that give exact execution frequencies 
instead of estimates. 

An execution-point entry records the source coordinates and a unique 
number that identifies the execution point: 

(Defpoi nt 220) = 
struct { 

Coordinate src; 
int point; 

} point; 

217 

defi nept appends a Defpoi nt entry to the code list and fills in either an 
explicit coordinate or the current value of src: 

(stmt.c functions)+= 
void definept(p) Coordinate *p; { 

Code cp = code(Defpoint); 

cp->u.point.src = p ? *p : src; 
cp->u.point.point = npoints; 

... 
219 221 ..... 
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} 

(reset refi nc if -a was specifi.ed) 
if (events.points) 

(plant event hook) 

Usually, defi nept is called with a null pointer, but the loop and switch 
statements generate tests and assignments at the ends of their state
ments, so the execution points are in a different order in the generated 
code than they appear in the source code. For these, the relevant coordi
nate is saved when the expression is parsed, and is passed to defi nept 
when the code for the expression is generated; the calls to defi nept in 
forstmt are examples. 

10.3 Recognizing Statements 

The parsing function for statement uses the current token to identify the 
kind of statement, and switches to statement-specific code: 

... 
(stmt.c functions)+= 220 224 .... 

void statement(loop, swp, lev) int loop, lev; Swtch swp; { 

} 

float ref = refine; 

if (Aflag >= 2 && lev == 15) 
warning("more than 15 levels of nested statements\n"); 

switch (t) { 
case IF: 
case WHILE: 
case DO: 
case FOR: 
case BREAK: 
case CONTINUE: 
case SWITCH: 
case CASE: 
case DEFAULT: 
case RETURN: 
case I {I: 

case ';': 
case GOTO: 
case ID: 
default: 
} 

(if statement 224) break; 
(while statement) break; 
(do statement) (semicolon 222) 
(for statement 228) break; 
(break statement 232) (semicolon 222) 
(continue statement 228) (semicolon 222) 
(switch statement 232) break; 
(case label 234) break; 
(default label 234) break; 
(return statement 243) (semicolon 222) 
compound(loop, swp, lev + 1); break; 
definept(NULL); t = gettok(); break; 
(goto statement 227) (semicolon 222) 
(statement label or fall thru to default226) 
(expression statement 222) (semicolon 222) 

(check for legal statement termination 222) 
refi nc = ref; 

221 

62 Aflag 
293 compound 
220 definept 
228 forstmt 

38 ref 
169 refine 
231 Swtch 
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definept 220 
expect 142 
exprO 156 

fi ndl abe l 46 
genlabel 45 

idtree 168 
kind 143 

listnodes 318 
nodecount 314 

refine 169 
skipto 144 

statement 221 
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(semicolon 222)= 
expect(';'); 
break; 

(check for legal statement termination 222)= 
if (kind[t] != IF && kind[t] != ID 
&& t != '}' && t != EOI) { 

} 

static char stop[] = { IF, ID, '}', 0 }; 
error("illegal statement termination\n"); 
skipto(O, stop); 

221 

221 

statement takes three arguments: loop is the label number for the inner
most for, while, or do-while loop, swp is a pointer to the swtch structure 
that carries all of the data pertaining to the innermost switch statement 
(see Section 10.7), and lev tells how deeply statements are currently 
nested. If the current statement is not nested in any loop, 1 oop is zero; 
if it's not nested in any switch statement, swp is null. 1 oop is needed to 
generate code for break and continue statements, swp is needed to gen
erate code for switch statements, and 1 ev is needed only for the warning 
shown above at the beginning of statement. The code for each kind of 
statement passes these values along to nested calls to statement, modi
fying them as appropriate. 

Labels, like those used for 1 oop, are local labels, and they're gener
ated by genlabel (n), which returns the first of n labels. findlabel (n) 
returns the symbol-table entry for label n. 

For every reference to an identifier, i dtree increments that identifier's 
ref field by refi nc. This value is approximately proportional to the num
ber of times the identifier is referenced. statement and its descendants 
change refi nc to weight each reference to an identifier that is appropri
ate for the statement in which it appears. For example, refi nc is divided 
by 2 for the arms of an if statement, and it's multiplied by 10 for the 
body of a loop. The value of the ref field helps identify those locals and 
parameters that might profitably be assigned to registers, and locals are 
announced to the back end in decreasing order of their ref values. 

The default case handles expressions that are statements: 

(expression statement 222) = 
definept(NULL); 
if (kind[t] != ID) { 

error("unrecognized statement\n"); 
t = gettok(); 

} else { 
Tree e = exprO(O); 
listnodes(e, 0, O); 
if (nodecount == 0 I I nodecount > 200) 

221 
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} 

walk(NULL, 0, O); 
deallocate(STMT); 

1 i st nodes and wa 1 k are the two functions that generate dags from trees. 
Chapter 12 explains their implementations, but their usage must be ex
plained now in order to understand how the front end implements the 
semantics of statements. 

1 i stnodes takes a tree as its first argument, generates the dag for that 
tree as described in Chapter 5, and appends the dag to a growing forest 
of dags that it maintains. Thus, the call to 1 i stnodes above generates the 
dag for the tree returned by exprO, and appends that dag to the forest. 
For the input 

c = a + b; 
a= a/2; 
d = a + b; 

the fragment (expression statement) is executed three times, once for 
each statement, and thus 1 i stnodes is called three times. The first call 
appends the dag for c = a + b to the initially empty forest, and the 
next two calls grow that forest by appending the dags for the second 
and third assignments. As detailed in Section 12.1, 1 i stnodes reuses 
common subexpressions when possible; for example, in the assignment 
d = a + b, it reuses the dags for the !value of a and the rvalue of b 
formed for the first assignment. It can't reuse the rvalue of a because 
the second assignment changes a. 

The second and third arguments are label numbers, and their purpose 
is explained in the next section; the zeros shown in the call to 1 i stnodes 
above specify no labels. 1 i stnodes also accepts the null tree for which 
it simply returns. 

1 i stnodes keeps the forest to itself until wa 1 k is called, which accepts 
the same arguments as 1 i stnodes. wa 1 k takes two steps: First, it passes 
its arguments to 1 i stnodes, so a call to wa 1 k has the same effect as a call 
to 1 i st nodes. Second, and most important, wa 1 k allocates a Gen code-list 
entry, stores the forest in that entry, appends the entry to the code list, 
and clears the forest. Once a forest is added to the code list, its dags are 
no longer available for reuse by 1 i stnodes. 

The call wa 1 k(NULL, 0, 0) effectively executes just the second step, 
and it has the effect of adding the current forest to the code list, if there 
is a nonempty forest. This call is made whenever the current forest must 
be appended to the code list either because some other executable code
list entry must be appended or because two or more separate flows of 
control merge. In the code above, this call is made when nodecount is 
zero or when it exceeds 200. nodecount is the number of nodes in the 
forest that are available for reuse. wa 1 k is called when the forest has 
no nodes that can be reused or when the forest is getting large. The 
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branch 247 
conditional 225 
deallocate 28 
define lab 246 
definept 220 

expect 142 
expr 155 

findlabel 46 
genlabel 45 

ref 38 
refi nc 169 

statement 221 
STMT 97 

Swtch 231 
walk 311 
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former condition puts dags that do not share common subexpressions 
into separate forests, and the latter one limits the sizes of forests; both 
consequences may help back ends. 

The call to dea 11 ocate frees all the space in the STMT arena, which is 
where trees are allocated. wa 1 k also deallocates the STMT arena. 

10.4 If Statements 

The generated code for an if statement has the form 

if expression == 0 goto L 
statement1 

goto L + 1 
L: statement2 

L + 1: 

If the else part is omitted, the goto L + 1 is omitted. The code is 

(if statement 224) = 
ifstmt(genlabel(2), loop, swp, lev + 1); 

(stmt.c functions)+= 
static void ifstmt(lab, loop, swp, lev) 
int lab, loop, lev; Swtch swp; { 

} 

t = gettok(); 
expect(' (') ; 
definept(NULL); 
walk(conditional(')'), 0, lab); 
refine/= 2.0; 
statement(loop, swp, lev); 
if (t == ELSE) { 

branch(lab + 1); 
t = gettok(); 
definelab(lab); 
statement(loop, swp, lev); 
if (findlabel(lab + 1)->ref) 

definelab(lab + 1); 
} else 

definelab(lab); 

221 

... 
221 225 .... 

The first argument to ifstmt is L; genlabel (2) generates two labels for 
use in the if statement. i fstmt's other three arguments echo statement's 
arguments. conditional parses an expression by calling expr, and en
sures that the resulting tree is a conditional, which is an expression 
whose value is used only to alter flow of control. The root of the tree 
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for a conditional has one of the comparison operators, AND, OR, NOT, or 
a constant. condi ti ona l's argument is the token that should follow the 
expression in the context in which condi ti ona 1 is called. 

{stmt.c functions)+= 
static Tree conditional(tok) int tok; { 

Tree p = expr(tok); 

} 

if (Aflag > 1 && isfunc(p->type)) 
warning("%s used in a conditional 

funcname(p)); 
return cond(p); 

... 
224 226 ..... 

expression\n", 

The second and third arguments to 1 i stnodes and walk are labels 
that specify true and false targets. walk(e, tlab, flab) passes its ar
guments to 1 i stnodes, which generates a dag from e and adds it to the 
forest, and appends a Gen entry carrying the forest to the code list, as 
explained in the previous section. When e is a tree for a conditional ex
pression, either tl ab or fl ab is nonzero. If tl ab is nonzero, 1 i stnodes 
generates a dag that transfers control to t 1 ab if the result of e is nonzero; 
likewise, 1 i stnodes generates a dag that jumps to fl ab if e evaluates to 
zero. 1 i stnodes and wa 1 k can be called with a nonzero value for only 
one of tl ab or fl ab; control always "falls through" for the other case. 

For the if statement, wa 1 k is called with a nonzero fl ab corresponding 
to L in the generated code shown above. define 1 ab and branch generate 
code-list items for label definitions and jumps. L + 1 is defined only if 
it's needed; a label's ref field is incremented each time it's used as the 
target of a branch. For example, L + 1 isn't needed if the branch to it is 
eliminated, which occurs in code like 

if ( ... ) 
return; 

else 

The return statement acts like an unconditional jump, so the call to 
branch(lab + 1) doesn't emit the branch. 

Recall that refi nc is the amount added to each reference to an iden
tifier in i dtree. Estimating that each arm of an if statement is executed 
approximately the same number of times, refi nc is halved before they 
are parsed. The result is that a reference to an identifier in one of the 
arms counts half as much as a reference before or after the if statement. 
i fstmt doesn't have to restore refi nc because statement does. 

62 Aflag 
149 AND 
247 branch 
174 cond 
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155 expr 
217 Gen 
168 idtree 
224 ifstmt 

60 isfunc 
318 listnodes 
149 NOT 
149 OR 
169 refine 
221 statement 
311 walk 



226 CHAPTER 10 •STATEMENTS 

defined 50 
definelab 246 

expect 142 
FUNC 97 

getchr 108 
install 44 

Label 217 
lookup 45 

statement 221 
Table 39 
token 108 

10.5 Labels and Gotos 

For statements that begin with an identifier, the identifier is a label if it 
is followed by a colon; otherwise, it begins an expression. 

(statement label or fall thru to default 226) = 
if (getchr() == ':') { 

stmtlabel (); 
statement(loop, swp, lev); 
break; 

} 

221 

get ch r advances the input to just before the initial character of the next 
token and returns that character. It is used to 'peek' at the next character 
to check for a colon. Since an identifier can be both a label and a variable, 
a separate table, stmtlabs, holds source-language labels: 

(stmt.c exported data)= 
extern Table stmtlabs; 

Like other tables, stmtl abs is managed by 1 ookup and i nsta 11. It maps 
source-language labels to internal label numbers, which are stored in the 
symbols' u. 1 . 1abe1 fields. 

(stmt.c functions)+= 
static void stmtlabel() { 

} 

Symbol p = lookup(token, stmtlabs); 

(install token in stmtl abs, if necessary 226) 
if (p->defined) 

error("redefinition of label '%s' previously_ 
defined at %w\n", p->name, &p->src); 

p->defined = 1; 
definelab(p->u.l.label); 
t = gettok(); 
expect(':'); 

.... 
225 228 ... 

definelab(n) builds a LABELV dag that defines the label n, allocates a 
Label code-list entry to hold that dag, and appends the Label entry to 
the code list. 

Labels can be defined before they are referenced and vice versa, so 
they can be installed either when they label a statement or when they 
appear in a goto statement. 

(install token in stmtl abs, if necessary 226) = 
if (p == NULL) { 

p = install(token, &stmtlabs, 0, FUNC); 

226 227 
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} 

p->scope = LABELS; 
p->u.l.label = genlabel(l); 
p->src = src; 

A label's ref field counts the number of references to the label and is 
initialized to zero by i nsta 11. Each reference to the label increments the 
ref field: 

(goto statement 227) = 
walk(NULL, 0, O); 
definept(NULL); 
t = gettok(); 
if Ct == ID) { 

Symbol p = lookup(token, stmtlabs); 
(install token in stmtl abs, if necessary 226) 
use(p, src); 
branch(p->u.l.label); 
t = gettok(); 

} else 
error("missing label in goto\n"); 

221 

branch(n) builds a JUMPV dag for a branch to the label n, allocates a Jump 
code-list entry to hold that dag, and appends the Jump entry to the code 
list. It also increments n's ref field. 

Undefined labels - those referenced in goto statements but never de
fined - are found and announced when funcdefn calls checkl ab at the 
end of a function definition. 

10.6 Loops 

The code for all three kinds of loops has a similar structure involving 
three labels: L is the top of the loop, L + 1 labels the test portion of the 
loop, and L + 2 labels the loop exit. For example, the generated code for 
a while loop is 

goto L + 1 
L: statement 
L + 1: if expression != 0 goto L 
L+ 2: 

This layout is better than 

L: 
L + 1 : if expression ! = 0 goto L + 2 

statement 
goto L 

L + 2: 

227 
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220 defi nept 
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because the former executes n + 2 branch instructions when the loop 
body is executed n times; the more obvious layout executes 2n + 1 
branches. 

The code for continue statements jumps to L + l, and the code for 
break statements jumps to L + 2. Lis the loop handle, and is passed to 
statement and the functions it calls, as illustrated by i fstmt. A continue 
statement, for example, is legal only if there's a loop handle: 

(continue statement 228) = 
walk(NULL, 0, O); 
definept(NULL); 
if (loop) 

branch(loop + 1); 
else 

error("illegal continue statement\n"); 
t = gettok(); 

221 

The first three of the four labels in a for loop have the same meanings 
as in the while loop; the layout of the generated code when all three 
expressions are present is 

L: 
L + 1: 
L + 3: 
L +2: 

expression1 
goto L + 3 
statement 
expression3 
if expression2 ! = 0 goto L 

expressioni. expression2, and expression3 are called the initialization, 
test, and increment, respectively. 

Most of the complexity in the parsing function is in coping with the op
tional expressions, announcing the execution points in the right places, 
and implementing an optimization for loops that always execute their 
bodies at least once. 

(for statement 228) = 
forstmt(genlabel(4), swp, lev + 1); 

(stmt.c functions)+= 
static void forstmt(lab, swp, lev) 
int lab, lev; Swtch swp; { 

int once = O; 
Tree el = NULL, e2 = NULL, e3 NULL; 
Coordinate pt2, pt3; 

t = gettok(); 
expect('('); 

221 

.... 
226 233 ... 
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} 

definept(NULL); 
{forstmt 229) 

First, the initialization is parsed and appended to the code list: 

{forstmt 229) = 
if (kind[t] == ID) 

el = texpr(exprO, 
else 

expect(';'); 
walk(el, 0, O); 

I• I 

' ' 

229 229 .... 
FUNC); 

Next, the test is parsed, but it cannot be passed to wa 1 k until a~er the 
body of the loop has been compiled. The assignment to pt2 saves the 
source coordinate of the test for a call to defpoi nt just before the tree 
for the test is passed to wa 1 k. 

{forstmt229)+= 
pt2 = src; 
refine *= 10.0; 
if (kind[t] == ID) 

e2 = texpr(conditional, 
else 

expect(';'); 

I• I 

' ' 

... 
229 229 229 .... 

FUNC); 

wa 1 k has an important side effect: it deallocates the STMT arena from 
which trees are allocated by tree. texpr causes the trees for the test 
to be allocated in the FUNC arena, so they survive the calls to wa 1 k that 
are made when the loop body is compiled. texp r is also used for the 
increment: 

{forstmt229)+= 
pt3 = src; 
if (kind[t] == ID) 

e3 = texpr(exprO, ')', FUNC); 
else { 

} 

static char stop[] = { IF, ID, '}', 0 }; 
test(')', stop); 

... 
229 230 229 .... 

pt3 holds the source coordinate for the increment expression for a later 
call to defpoi nt. 

Multiplying refi nc by 10 estimates that loop bodies are executed 10 
times more often than statements outside of loops, and weights refer
ences to identifiers used in loops accordingly. 

Many for loops look like the one in the following code: 

229 

225 conditional 
220 definept 
142 expect 
156 exprO 
97 FUNC 

143 kind 
169 refine 
97 STMT 

141 test 
150 texpr 
150 tree 
311 walk 
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sum = O; 
for Ci = O; i < 10; i++) 

sum+= x[i]; 
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The loop bodies in these kinds of loops are always executed at least once 
and the leading goto L + 3 could be omitted, which is accomplished by 

.... 
(forstmt229)+= 229 230 229 .... 

if (e2) { 

} 

once= foldcond(el, e2); 
if (!once) 

branch(lab + 3); 

fo 1 dcond inspects the trees for the initialization and for the test to de
termine if the loop body will be executed at least once; see Exercise 10.3. 
el is passed to fol dcond, which is why it was parsed with texpr above. 

The rest of forstmt compiles the loop body and lays down the labels 
and expressions as described above. 

(forstmt229)+= 
definelab(lab); 
statement(lab, swp, lev); 
definelab(lab + 1); 
definept(&pt3); 
if (e3) 

walk(e3, 0, 0); 
if (e2) { 

if (!once) 
definelab(lab + 3); 

definept(&pt2); 
walk(e2, lab, 0); 

} else { 

} 

definept(&pt2); 
branch(lab); 

if (findlabel(lab + 2)->ref) 
definelab(lab + 2); 

.... 
230 229 

Symbol-table entries for generated labels are installed in the 1abe1 s table 
by fi ndl abe 1. Llke other labels, the ref field of a generated label is 
nonzero only if the label is the target of a jump. 

10. 7 Switch Statements 

The C switch statement differs significantly from, for example, the Pascal 
case statement. Any statement can follow the switch clause; the place
ment of the case and default labels is not specified by the syntax of the 
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switch statement. In addition, after executing the statement associated 
with a case label, control falls through to the next statement, which might 
be labelled by another case label. Case and default labels are simply la
bels, and have no additional semantics. For example, the intent of the 
code 

switch (n%4) 
while (n > 0) { 
case 0: *x++ 
case 3: *x++ = 
case 2: *x++ = 
case 1: *x++ = 
} 

*y++; n--; 
*y++; n--; 
*y++; n--; 
*y++; n--; 

is to copy n values from y to x where n ~ 4. The loop is unrolled so 
that each iteration copies four values. The switch statement copies the 
first n%4 values and the n/ 4 iterations copy the rest. This example is 
somewhat contrived but legal nonetheless. 

The generated code for a switch statement with n cases and a default 
looks like: 

L + 1: 

tl - expression 
select and jump to L1, ... , Ln, L 
code for statement 

where tl is a temporary associated with the switch statement, and L + 1 
is the exit label. Each case label generates a definition for its generated 
label, Li, a default label generates a definition for L, and each break inside 
a switch generates a jump to the exit label: 

goto L + 1 

If there's no default, L labels the same location as L + 1. 
Parsing the switch statement, the case and default labels, and the 

break statement are easy; the hard part is generating good code for the 
select and jump fragment. Each case label is associated with an integer 
value. These value-label pairs are used to generate the code that selects 
and jumps to the appropriate case depending on the value of expression. 
These and other data are stored in a swtch structure associated with the 
switch statement during parsing: 

(stmt.c typedefs)+= 
typedef struct swtch *Swtch; 

(stmt.c types)= 
struct swtch { 

Symbol sym; 

..... 
217 

231 
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} ; 

int lab; 
Symbol deflab; 
int ncases; 
int size; 
int *values; 
Symbol *labels; 

sym holds the temporary, tl, 1 ab holds the value of L, and defl ab points 
to the symbol-table entry for the default label, if there is one. values and 
1abe1 s point to arrays that store the value-label pairs. These arrays have 
size elements, ncases of which are occupied, and these ncases are kept 
in ascending order of va 1 ues. A pointer to the swtch structure for the 
current switch statement - the switch handle - is passed to statement 
and its descendants. 

Case and default labels are handled much like break and continue 
statements: They refer to the innermost, or current, switch statement, 
and case and default labels that appear outside of switch statements, 
which is when the switch handle is null, are erroneous. The code for 
the break statement determines whether it is associated with a loop or a 
switch by examining both the loop handle and the switch handle: 

(break statement 232) = 
walk(NULL, 0, 0); 
definept(NULL); 
if (swp && swp->lab > loop) 

branch(swp->lab + 1); 
else if (loop) 

branch(loop + 2); 
else 

error("illegal break statement\n"); 
t = gettok(); 

221 

Since the values of labels increase as they are generated, a break refers 
to a switch statement if there's a switch handle and its Lis greater than 
the loop handle. 

Parsing switch statements involves parsing and type-checking the ex
pression, generating a temporary, appending a Switch placeholder on the 
code list, initializing a new switch handle and passing it to statement, 
and generating the closing labels and the selection code. 

(switch statement232)= 
swstmt(loop, genlabel(2), lev + 1); 

(stmt.c macros)= 
#define SWSIZE 512 

221 

239 ... 



10.7 •SWITCH STATEMENTS 

.... 
(stmt.c functions)+= 228 235 .... 

static void swstmt(loop, lab, lev) int loop, lab, lev; { 

} 

Tree e; 
struct swtch sw; 
Code head, tail; 

t = gettok(); 
expect(' (') ; 
definept(NULL); 
e = expr(') '); 
(type-check e 233) 

(generate a temporary to hold e, if necessary233) 
head= code(Switch); 
sw.lab =lab; 
sw.deflab = NULL; 
sw.ncases = O; 
SW.size = SWSIZE; 
sw.values = newarray(SWSIZE, sizeof *sw.value~ FUNC); 
sw.labels = newarray(SWSIZE, sizeof *sw.labe1 , FUNC); 
refine /= 10.0; 
statement(loop, &sw, lev); 
(define L, if necessary, and L + 1 236) 
(generate the selection code 236) 

The placeholder Swi tch entry in the code list will be replaced by one or 
more Switch entries when the selection code is generated. The switch 
expression must have integral type, and it's promoted: 

(type-check e 233) = 233 
if (!isint(e->type)) { 

} 

error("illegal type '%t' in switch expression\n", 
e->type); 

e = retype(e, inttype); 

e = cast(e, promote(e->type)); 

The temporary also has type e->type, but the temporary can be avoided 
in some cases. If the switch expression is simply an identifier, and it's 
the right type and is not volatile, then it can be used instead. Otherwise, 
the expression is assigned to a temporary: 

(generate a temporary to hold e, if necessary233)= 233 
if (generic(e->op) == INDIR && isaddrop(e->kids[O]->op) 
&& e->kids[O]->u.sym->type == e->type 
&& !isvolatile(e->kids[O]->u.sym->type)) { 

sw.sym = e->kids[O]->u.sym; 

175 cast 
217 Code 
218 code 

233 

220 defi nept 
142 expect 
155 expr 
97 FUNC 

179 isaddrop 
60 isint 
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addlocal 219 
caselabel 235 

cast 175 
constexpr 202 
definelab 246 

expect 142 
findlabel 46 
genident 49 
genlabel 45 

isint 60 
level 42 

needconst 202 
REGISTER 80 

statement 221 
walk 311 

walk(NULL, 0, 0); 
} else { 

} 

sw.sym = genident(REGISTER, e->type, level); 
addlocal(sw.sym); 
walk(asgn(sw.sym, e), 0, O); 

Once the switch handle is initialized, case and default labels simply 
add data to the handle. For example, a default label fills in the defl ab 
field, unless it's already filled in: 

(default label234)= 
if (swp == NULL) 

error("illegal default label\n"); 
else if (swp->deflab) 

error("extra default label\n"); 
else. { 

} 

swp->deflab = findlabel(swp->lab); 
definelab(swp->deflab->u.l.label); 

t = gettok(); 
expect(' : '); 
statement(loop, swp, lev); 

221 

Case labels are similar: The label value is converted to the promoted 
type of the switch expression, and a label associated with that value is 
generated and defined: 

(case label 234) = 
{ 

int lab= genlabel(l); 
if (swp == NULL) 

error("illegal case label\n"); 
definelab(lab); 
while (t == CASE) { 

static char stop[] { IF, ID, 0 }; 
Tree p; 
t = gettok(); 
p = constexpr(O); 
if (generic(p->op) == CNST && isint(p->type)) { 

if (swp) { 
needconst++; 

} 

} else 

p = cast(p, swp->sym->type); 
needconst--; 
caselabel(swp, p->u.v.i, lab); 

221 
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} 

} 

error("case label must be a constant _ 
integer expression\n"); 

test(':', stop); 

statement(loop, swp, lev); 

needconst is incremented before that call to cast so that si mp 1 ify will 
fold the conversion even if it overflows. For example, the input 

int i; 
switch (i) 
case Oxffffffff: 

elicits the diagnostic 

warning: overflow in constant expression 

because the case value is an unsigned that can't be represented by an 
integer. Notice that a case label is processed even if it ap· ~ars outside 
a switch statement; this prevents the case label from cam _1g additional 
syntax errors. 

caselabel appends the value and the label to the values and labels 
arrays in the switch handle. It also detects duplicate labels. 

(stmt.c functions)+= 
static void caselabel(swp, val, lab) 
Swtch swp; int val, lab; { 

} 

int k; 

if (swp->ncases >= swp->size) 
(double the size of values and labels) 

k = swp->ncases; 
for ( ; k > 0 && swp->values[k-1] >=val; k--) { 

swp->values[k] swp->values[k-1]; 
swp->labels[k] = swp->labels[k-1]; 

} 
if Ck < swp->ncases && swp->values[k] == val) 

error("duplicate case label '%d'\n", val); 
swp->values[k] =val; 
swp->labels[k] = findlabel(lab); 
++swp->ncases; 
if (Aflag >= 2 && swp->ncases == 258) 

warning("more than 257 cases in a switch\n"); 

.... 
233 239 .... 

The for loop inserts the new label and value into the right place in the 
va 1 ues and 1abe1 s arrays so that these arrays are sorted in ascending 
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order of values, which helps both to detect duplicate case values and to 
generate good selection code. If necessary, these arrays are doubled in 
size to accommodate the new value-label pair. 

After the return from statement to swstmt, a default label is defined, 
if there was no explicit default, and the exit label, L + 1, is defined, if it 
was referenced: 

(define L, if necessary, and L + 1 236) = 233 
if (sw.deflab == NULL) { 

sw.deflab = findlabel(lab); 
definelab(lab); 
if (sw.ncases == 0) 

warning("switch statement with no cases\n"); 
} 
if (findlabel(lab + 1)->ref) 

definelab(lab + 1); 

The default label is defined even if it isn't referenced, because it will 
probably be referenced by the selection code. 

The selection code can't be generated until all the cases have been 
examined. Compiling statement appends entries to the code list, but 
the entries for the selection code need to appear just after those for 
expression and before those for statement. The selection code could 
appear after statement if branches were inserted so the selection code 
was executed before statement. But there's a solution to this problem 
that's easier and generates better code: rearrange the code list. 

The top diagram in Figure 10.2 shows the code list after the exit label 
has been defined. The solid circle represents the entry for expression, 
the open circle is the Switch placeholder, and the open squares are the 
entries for statement, including the definitions for the case and default 
labels and the jumps generated by break statements. head points to the 
placeholder and code 1 i st to the last statement entry. 

The first step in generating the selection code is to make the solid 
circle the end of the code list: 

(generate the selection code 236)= 
tail = codelist; 
codelist = head->prev; 
codelist->next = head->prev = NULL; 

236 233 ..... 

The second diagram in Figure 10.2 shows the outcome of these state
ments. head and tai 1 point to the entries for the placeholder and for 
statement, and code 1 i st points to the entry for expression. As the se
lection code is generated, its entries are appended in the right place: 

(generate the selection code 236) += 
if (sw.ncases > 0) 

.... 
236 237 233 ..... 
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FIGURE 10.2 Code-list manipulations for generating switch selection code. 

swgen(&sw); 
branch(lab); 

Figure 10.2's third diagram shows the code list after entries for the se
lection code, which are shown in open triangles, have been added. The 
last step is to append the entire list held by head and tail to the code 
list and set code list back to tai 1: 

(generate the selection code 236) += 
head->next->prev = codelist; 
codelist->next = head->next; 
codelist =tail; 

.... 
236 233 

The last diagram in Figure 10.2 shows the result, which omits the place
holder. 

The fastest selection code when there are more than three cases is a 
branch table: The value of expression is used as an index to this table, 

237 

247 branch 
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239 swgen 
343 tail 
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and the ith entry holds Li, or L if i is not a case label. For this organiza
tion, selection takes constant time. This table takes space proportional 
to u - l + 1 where l and u are the minimum and maximum case values. 
For n case values, the density of the table - the fraction occupied by 
nondefault destination labels - is n/ ( u - l + 1). If the density is too low, 
this organization wastes space. Worse, there are legal switch statements 
for which it is impractical: 

switch (i) { 
case INT _MIN : 
case INT_MAX: 
} 

... ' 

... ' 
break; 
break; 

At the other extreme, a linear search - a sequence of n comparisons -
is compact but slow. It takes only O(n) space for any set of case labels, 
but selection takes O(n) time. Using a binary search would reduce the 
time to O(logn) and increase the space by O(logn). 

1 cc combines branch tables and binary search: It generates a binary 
search of dense branch tables. If there are m tables, selection takes 
O(logm) time and space that is proportional ton+ logm. Generating 
the selection code for this approach involves three steps: partitioning 
the value-label pairs into dense tables, arranging these tables into a tree 
that mirrors the binary search, and traversing this tree to generate code. 

An example helps describe the code for these steps. Suppose the case 
values are 

i 0 1 2 3 4 5 6 7 8 9 
v[i] 21 22 23 27 28 29 36 37 38 39 

v is the va 1 ues array, and the numbers above the line are the indices into 
v. The density, d(i,j), for the subset of values v[i..j] is the number of 
values divided by the range of those values: 

For example, 

d(0,9) 
d(0,5) 
d(6,9) 

d(i,j) = (j - i + 1)/(v[j] - v[i] + 1). 

(9 - 0 + 1)/(39 - 21+1) 
(5-0+1)/(29-21+1) 
(9-6+1)/(39-36+1) 

10/19 
6/9 
4/4 

0.53 
0.67 
1.0 

The value of density is the minimum density for branch tables: 

{stmt.c data)+= 
float density= 0.5; 

.... 
217 

As shown, the default density is 0.5, which results in a single table for the 
example above because d(O, 9) > 0.5. lee's -dx option changes density 
to x. If density is 0.66, the example generates two tables (v[0 .. 5] 
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and v[6 .. 9]), and three tables if density is 0.75 (v[0 .. 2], v[3 .. 5], and 
v[6 .. 9]). If density exceeds 1.0, there are none-element tables, which 
corresponds to a binary search. 

A simple greedy algorithm implements partitioning: If the current ta
ble is v[i .. j] and d(i,j + 1) ~density, extend the table to v[i .. j + l]. 
Whenever a table is extended, it's merged with its predecessor if the den
sity of the combined table is greater than density. swgen does both of 
these steps at once by treating the single element v [j + 1] as the table 
v[j + l..j + 1] and merging it with its predecessor, if possible. In the 
code below, buckets [k] is the index in v of the first value in the kth ta
ble, i.e., table k is v[buckets[k] .. buckets[k + 1] - 1]. For n case values, 
there can be up to n tables, so buckets can have n + 1 elements. 

... 
(stmt.c macros}+= 232 

#define den(i,j) ((j-buckets[i]+l.O)/(v[j]-v[buckets[i]]+l)) 

(stmt.c functions}+= 
static void swgen(swp) Swtch swp; { 

} 

int *buckets, k, n, *v = swp->values; 

buckets = newarray(swp->ncases + 1, 
sizeof *buckets, FUNC); 

for (n = k = O; k < swp->ncases; k++, n++) { 
buckets[n] = k; 
while (n > 0 && den(n-1, k) >= density) 

n--; 
} 
buckets[n] = swp->ncases; 
swcode(swp, buckets, 0, n - 1); 

... 
235 240 .... 

When swgen calls swcode, there are n tables, buckets [O .. n-1] holds the 
indices into v for the first value in each table, and buckets [n] is equal 
ton, which is the index of a fictitious n+lst table. 

The display below illustrates how swgen partitions the example from 
above when density is 0.66. The first iteration of the for loop ends with: 

v[i] j2.l 22 23 27 28 29 36 37 38 39 

The vertical bars appear to the left of the first element of a table and 
thus represent the values of buckets. The rightmost bar is the value of 
buckets [n]. The value associated with k is underlined. So, at the end 
of the first iteration, k is zero and refers to the value 21, and the one 
table is v[0 .. 0]. The next two iterations set buckets [1] to 1 and 2, and 
in each case combine the single-element tables v[l..1] and v[2 .. 2] with 
their predecessors v[O .. O] and v[O .. l]. At the end of the third iteration, 
the state is 

238 density 
97 FUNC 

239 

28 newarray 
240 swcode 
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v[i] 121 22 23 27 28 29 36 37 38 39 

and the only table is v[0 .. 2]. The fourth iteration cannot merge v[3 .. 3], 
which holds just 27, with v[0 .. 2] because the density d(O, 3) = 4/7 = 
0.57 is too low, so the state becomes 

v[iJ 121 22 23 1U 28 29 36 37 38 39 

Next, v[ 4 . .4] (28) can be merged with v[3 .. 3], but v[3 . .4] cannot be 
merged with v[0 .. 3] because d(O, 4) = 5/8 = 0.63. 

The iteration that examines 29 is the interesting one. Just before the 
while loop, n is 2 and the state is 

v[i] 121 22 23 127 28 ~ 36 37 38 39 

The while loop merges v[3 .. 4] with v[5 .. 5] and decrements n to l; since 
d(O, 5) = 6/9 = 0.67, it also merges v[0 .. 2] with the just-formed v[3 .. 5] 
and decrements n to 0. The state after the while loop is 

v[i] 121 22 23 27 28 29 36 37 38 39 

This process ends with two tables; the state just before calling swcode is 

i 0 1 2 3 4 5 6 7 8 9 
v[i] 121 22 23 27 28 29 136 37 38 391 

and n is 2 and buckets holds the indices 0, 6, and 10. 
The last two steps arrange the tables described by buckets into a tree 

and traverse this tree generating the selection code for each table. swcode 
uses a divide-and-conquer algorithm to do both steps at the same time. 
swgen calls swcode with the switch handle, buckets, the lower and upper 
bounds of buckets, and the number of tables. buckets also has a sentinel 
after its last element, which simplifies accessing the last case value in the 
last table. 

swcode generates code for the ub-1 b+l tables given by b [lb .. ub]. It 
picks the middle table as the root of the search tree, generates code for 
it, lfld calls itself recursively for the tables on either side of the root 
table. 

(stmt.c functions)+= 
static void swcode(swp, b, lb, ub) 
Swtch swp; int b[]; int lb, ub; { 

} 

int hilab, lolab, l, u, k =(lb+ ub)/2; 
int *v = swp->values; 

(swcode241) 

.... 
239 242 .... 

When there's only one table, switch expressions whose value is not within 
the range covered by the table cause control to be transferred to the 
default label. For a binary search of tables, control needs to flow to the 
appropriate subtable when the switch expression is out of range. 



10.7 •SWITCH STATEMENTS 

(swcode241)= 

if Ck > lb && k < ub) { 
lolab = genlabelCl); 
hilab = genlabelCl); 

} else if Ck > lb) { 
lolab = genlabelCl); 
hilab = swp->deflab->u.l.label; 

} else if Ck < ub) { 
lolab = swp->deflab->u.l.label; 
hilab = genlabelCl); 

} else 
lolab = hilab = swp->deflab->u.l.label; 

241 240 ... 

1o1 ab and hi 1 ab are where control should be transferred to if the switch 
expression is less than the root's smallest value or greater than the root's 
largest value. If the search tree has both left and right subtables, 1o1 ab 
and hi 1 ab will label their code sequences. The default label is used for 
hilab when there's no right subtable and for lolab when there's no left 
subtable. If the root is the only table, the default label is used for both 
lo lab and hi lab. 

Finally, the code for the root table is generated: 

(swcode 241)+= 
1 = b[k]; 
u = b[k+l] - 1; 
if Cu - 1 + 1 <= 3) 

{generate a linear search) 
else { 

{generate an indirect jump and a branch table 242) 
} 

.... 
241 241 240 ... 

and swcode is called recursively to generate the left and right subtables . 

{swcode 241) += 

if Ck > lb) { 
definelabClolab); 
swcodeCswp, b, lb, k - 1); 

} 
if Ck < ub) { 

definelabChilab); 
swcodeCswp, b, k + 1, ub); 

} 

.... 
241 240 

A branch table takes two comparisons and an indirect jump - at least 
three instructions. For most targets, this overhead makes a branch table 
suitable only if there are more than three values in the table. Otherwise, 
a short linear search is better; see Exercise 10.8. 

241 

246 definelab 
45 genlabel 

240 swcode 
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The code generated for an indirect jump through a branch table has 
the form: 

if tl < v[l] goto lolab 
if tl > v[u] goto hilab 
goto *table[tl-v[l]] 

where v[l], v[u], lolab, and hi lab are replaced by the corresponding 
values computed by swcode. The branch table is a static array of pointers, 
and the tree for the target of an indirect jump is the same one that's built 
for indexing an array: 

(generate an indirect jump and a branch table 242) = 
Symbol table = genident(STATIC, 

243 241 

array(voidptype, u - 1 + 1, 0), LABELS); 
(*IR->defsymbol)(table); 
cmp(LT, swp->sym, v[l], lolab); 
cmp(GT, swp->sym, v[u], hilab); 
walk(tree(JUMP, voidtype, 

rvalue((*optree['+'])(ADD, pointer(idtree(table)), 
(*optree['-'])(SUB, 

cast(idtree(swp->sym), inttype), 
consttree(v[l], inttype)))), NULL), 0, O); 

cmp builds the tree for the comparison 

if p ®n goto L 

.... 

and converts it to a dag. p is an identifier, ® is a relational operator, and 
n is an integer constant: 

(stmt.c functions)+= 
static void cmp(op, p, n, lab) int 

listnodes(eqtree(op, 
cast(idtree(p), inttype), 
consttree(n, inttype)), 

lab, 0); 
} 

... 
240 244 .... 

op, n, lab; Symbol p; { 

cmp is also used to generate a linear search; see Exercise 10.8. 
The branch table is generated by defining the static variable denoted 

by table and calling the interface function defaddress for each of the 
labels in the table. But this process cannot be done until the generated 
code is emitted, so the relevant data are saved on the code list in a Swi tch 
entry: 

(Switch 242)= 
struct { 

Symbol sym; 

217 
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Symbol table; 
Symbol defl ab; 
int size; 
int *values; 
Symbol *labels; 

} swtch; 

(generate an indirect jump and a branch table 242) += 
code(Switch); 
codelist->u.swtch.table = table; 
codelist->u.swtch.sym = swp->sym; 
codelist->u.swtch.deflab = swp->deflab; 
codelist->u.swtch.size = u - l + 1; 
codelist->u.swtch.values = &v[l]; 
codelist->u.swtch.labels = &swp->labels[l]; 
if (v[u] - v[l] + 1 >= 10000) 

warning("switch generates a huge table\n"); 

The table is emitted by emi tcode. 

10.8 Return Statements 

.... 
242 241 

Return statements without an expression appear in void functions, and 
returns with expressions appear in all other functions. An extraneous 
expression is an error, and a missing expression draws only a warning: 

(return statement243)= 221 
{ 

} 

Type rty = freturn(cfunc->type); 
t = gettok(); 
definept(NULL); 
if Ct ! = ' ; ') 

if (rty == voidtype) { 
error("extraneous return value\n"); 
expr(O); 
retcode(NULL); 

} else 
retcode(expr(O)); 

else { 
if (rty != voidtype 
&& (rty != inttype I I Aflag >= 1)) 

warning("missing return value\n"); 
retcode(NULL); 

} 
branch(cfunc->u.f.label); 

62 Aflag 
247 branch 
290 cfunc 
218 code 

243 

217 codelist 
220 definept 
341 emitcode 
155 expr 
64 freturn 
41 labels 

244 retcode 
217 Switch 

41 table 
58 voidtype 
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retcode type-checks its argument tree and calls wa 1 k to build the corre
sponding RET dag, as detailed below. This dag is followed by a jump to 
cfunc->u. f. 1 abe l, which labels the end of the current function; cfunc 
points to the symbol-table entry for the current function. (This jump 
may be discarded by branch.) The back end must finish a function with 
the epilogue - the code that restores saved values, if necessary, and 
transfers from the function to its caller. 

The code above doesn't warn about missing return values for functions 
that return ints unless 1 cc's -A option is specified, because it's common 
to use int functions for void functions; i.e., to use 

f(double x) { ... return; } 

instead of the more appropriate 

void f(double x) { ... return; } 

For many programs, warnings about missing int return values would 
drown out the more important warnings about the other types. 

For void functions, retcode has nothing to do except perhaps plant 
an event hook: 

(stmt.c functions)+= 
void retcode(p) Tree p; { 

Type ty; 

if (p NULL) { 
if (events.returns) 

(plant event hook for return) 
return; 

} 
(retcode 244) 

} 

... 
242 246 .... 

For types other than void, retcode builds and walks a RET tree. The RET 
operator simply identifies the return value so that the back end can put 
it in the appropriate place specified by the target's calling conventions, 
such as a specific register. 

When there's an expression, retcode type-checks it, converts it to the 
return type of the function as if it were assigned to a variable of that 
type, and wraps it in the appropriate RET tree: 

(retcode 244) = 
p = pointer(p); 
ty = assign(freturn(cfunc->type), p); 
if (ty == NULL) { 

error("illegal return type; found '%t' 
p->type, freturn(cfunc->type)); 

245 244 .... 

expected '%t'\n", 
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return; 
} 
p = cast(p, ty); 

Integers, unsigneds, floats, and doubles are returned as is. Characters 
and shorts are converted to the promoted type of the return type just as 
they are in argument lists. Since there's no RET +P, pointers are converted 
to unsigneds and returned by RET +I. Calls to such functions are made 
with CALL+I, and their values are converted back to pointers with CVU+P . 

(retcode 244)+= 

if (retv) 
(return a structure 245) 

if (events.returns) 
(plant an event hook for return p) 

p = cast(p, promote(p->type)); 
if (isptr(p->type)) { 

} 

(warn if p denotes the address of a local) 
p = cast(p, unsignedtype); 

... 
244 244 

walk(tree(RET + widen(p->type), p->type, p, NULL), 0, O); 

Returning the address of a local variable is a common programming er
ror, so lee detects and warns about the easy cases; see Exercise 10.9. 

There is no RET +B. Structures are returned by assigning them to a vari
able. As described in Section 9.3, if wants_ca 11 b is one, this variable is 
the second operand to CALL+B in the caller and the first local in the callee, 
and the back end must arrange to pass its address according to target
specific conventions. If wants_ca 11 b is zero, the front end passes the 
address of this variable as a hidden first argument, and never presents 
the back end with a CALL+B. In both cases, compound, which implements 
compound-statement, arranges for retv to point to the symbol-table en
try for a pointer to this variable. Returning a structure is an assignment 
to *retv: 

(return a structure 245) = 
{ 

if (iscallb(p)) 
p = tree(RIGHT, p->type, 

else 

tree(CALL+B, p->type, 
p->kids[O]->kids[O], idtree(retv)), 

rvalue(idtree(retv))); 

p = asgntree(ASGN, rvalue(idtree(retv)), p); 
walk(p, 0, O); 
if (events.returns) 

(plant an event hook for a struct return) 

245 

245 
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293 compound 
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return; 
} 

As for ASGN+B (see Section 9.5) and ARG+B (see Section 9.3), there's an 
opportunity to reduce copying for 

return f(); 

f returns the same structure returned by the current function, so the 
current function's retv can be used as the temporary for the call to f. 
If the call to i sea 11 b in the code above identifies this idiom, the CALL+B 
tree is rebuilt using retv in place of the temporary. 

10.9 Managing Labels and Jumps 

Labels are defined by defi ne 1 ab, and jumps to labels are made by 
branch. These functions also collaborate to remove dead jumps, i.e., 
those that follow an unconditional jump or a switch, to avoid jumps to 
jumps, and to avoid jumps to immediately following labels. They do so 
using a scheme similar to the one used in code to detect unreachable 
code. 

defi nel ab appends a label definition to the code list and then checks 
if the preceding executable entry is a jump to the new label: 

.... 
(stmt.c functions)+= 244 247 

void definelab(lab) int lab; { 
Code cp; 

} 

Symbol p = findlabel(lab); 

walk(NULL, 0, O); 
code(Label)->u.forest = newnode(LABELV, NULL, NULL, p); 
for (cp = codelist->prev; cp->kind <=Label;) 

cp = cp->prev; 
while ({cp points to a Jump to lab 247)) { 

p->ref--; 

} 

(remove the entry at cp 247) 
while (cp->kind <= Label) 

cp = cp->prev; 

..... 

newnode builds a dag for LABELV with a sym[OJ equal top. The for loop 
walks cp backward in the code list to the first entry that represents ex
ecutable code, and the while loops remove one or more jumps to 1 ab. 
cp is a jump to lab if *cp is a Jump entry, and its node computes the 
address of 1 ab: 
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(cp points to a Jump to lab 247)= 
cp->kind == Jump 

&& cp->u.forest->kids[O] 
&& cp->u.forest->kids[O]->op == ADDRGP 
&& cp->u.forest->kids[O]->syms[O] == p 

246 

Dropping the Jump out of the code list removes the useless jump: 

(remove the entry at cp 247) = 
cp->prev->next = cp->next; 
cp->next->prev = cp->prev; 
cp = cp->prev; 

246 247 

When defi nel ab removes a jump, it decrements the label's ref field. 
It does so because building a jump dag increments the target label's ref 
field: 

(stmt.c functions)+= 
Node jump(lab) int lab; { 

Symbol p = findlabel(lab); 

p->ref++; 

.... 
246 247 ... 

return newnode(JUMPV, newnode(ADDRGP, NULL, NULL, p), 
NULL, NULL); 

} 

jump is called by branch, which stores the JUMPV dag in a Jump entry and 
appends it to the code list. 

branch also eliminates jumps to jumps and dead jumps. It begins by 
appending the jump to the code list using a Label placeholder. The jump 
is not a label, but Label is used so that (check for unreachable code) in 
code won't bark, which it would do if the last executable entry on the 
code list were an unconditional jump. 

(stmt.c functions)+= 
static void branch(lab) int lab; { 

Code cp; 
Symbol p = findlabel(lab); 

walk(NULL, 0, 0); 
code(Label)->u.forest = jump(lab); 
for (cp = codelist->prev; cp->kind <Label;) 

cp = cp->prev; 
while ((cp points to a Label 1' lab 248)) { 

equatelab(cp->u.forest->syms[O], p); 
(remove the entry at cp 247) 
while (cp->kind < Label) 

cp = cp->prev; 

.... 
247 248 ... 
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} 
(eliminate or plant the jump 249) 

} 

branch's for loop backs up to the first executable or Label entry before 
the placeholder. The while loop looks for definitions of labels L' that 
form the pattern 

L': 
goto L 

where goto L is the jump in the placeholder. 

(cp points to a Label !- lab 248)= 

cp->kind == Label 
&& cp->u.forest->op == LABELV 
&& !equal(cp->u.forest->syms[O], p) 

247 

If L' !- L, L' is equivalent to L; jumps to L' can go to L instead, and the 
Labe 1 entry for L' can be removed. 

(stmt.c functions)+= 
void equatelab(old, new) Symbol old, new; { 

old->u.l.equatedto =new; 
new->ref++; 

} 

... 
247 248 ... 

makes new a synonym for old. During code generation, references to old 
are replaced by the label at the end of the list formed by the equatedto 
fields. These fields form a list because it's possible that new will be 
equated to another symbol after old is equated to new. The ref field 
counts the number of references to a label from jumps and from the 
u. l .equated fields of other labels, so equatelab increments new->ref. 

These synonyms complicate testing when two labels are equal. The 
fragment (cp points to a Label !- lab) must fail when L' is equal to the 
destination of the jump so code such as 

top: 
goto top; 

is not erroneously eliminated, no matter how nonsensical it seems. Just 
testing whether L' is equal to the destination, p, isn't enough; the two 
labels are equivalent if L' is equal to p or to any label for which p is a 
synonym. equa 1 implements this more complicated test: 

(stmt.c functions)+= 
static int equal(lprime, dst) Symbol lprime, dst; { 

for ( ; dst; dst = dst->u.l.equatedto) 
if (lprime == dst) 

... 
248 
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} 

return 1; 
return O; 

If cp ends on a Jump or Switch, the branch is unreachable, and the 
placeholder can be deleted. Otherwise, the placeholder becomes a Jump: 

{eliminate or plant the jump 249)= 248 

if (cp->kind == Jump I I cp->kind == Switch) { 
p->ref--; 
codelist->prev->next = NULL; 
codelist = codelist->prev; 

} else { 

} 

codelist->kind = Jump; 
if (cp->kind == Label 
&& cp->u.forest->op == LABELV 
&& equal(cp->u.forest->syms[O], p)) 

warning("source code specifies an infinite loop"); 

The warning exposes infinite loops like the one shown above. 

Further Reading 

Baskett (1978) describes the motivations for the layout of the generated 
code for the loops. 

1 cc's execution points have been used for generating debugger sym
bol tables and for profiling. Ramsey and Hanson (1992) describe how the 
retargetable debugger 1 db uses execution points to locate breakpoints 
and to provide starting points for searching the debugger's symbol ta
ble. Ramsey (1993) details the use of the stab interface functions to 
generate symbol-table data, and describes how 1 cc itself can be used 
to evaluate C expressions entered during debugging. Fraser and Han
son (199lb) describe the implementation of 1 cc's machine-independent 
profiling enabled by its -b option. 

Many papers and compiler texts describe how to generate selection 
code for switch statements. Hennessy and Mendelsohn (1982) and Bern
stein (1985) describe techniques similar to the one used in lee. The 
greedy algorithm groups the case values into dense tables in linear time, 
but not into the minimum number of such tables. The one-page paper 
by Kannan and Proebsting (1994) gives a simple quadratic algorithm for 
doing so. 
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density 238 
forstmt 228 

simplify 203 
swgen 239 

Exercises 

10.1 Implement the do statement. 

10.2 Implement the while statement. 

10.3 Implement 

(stmt.c prototypes)= 

CHAPTER 10 • STATEMENTS 

static int foldcond ARGS((Tree el, Tree e2)); 

which is called by forstmt. Hint: Build a tree that conditionally 
substitutes el for the left operand of the test e2, when appropriate. 
If the operands of this tree are constants, s imp 1 i fy will return a 
CNST tree that determines whether the loop body will be executed 
at least once. 

10.4 There's a while loop in (case label), but there's no repetitive con
struct in the grammar for case labels. Explain. 

10.5 Prove that the execution time of the partitioning algorithm in swgen 
is linear in n, the number of case values. 

10.6 Here's another implementation of swgen's partitioning algorithm 
(suggested by Arthur Watson). 

while (n > 0) { 

} 

float d = den(n-1, k); 
if (d < density 
I I k < swp->ncases - 1 && d < den(n, k+l)) 

break; 
n--; 

The difference is that a table and its predecessor are not combined 
if the table and v[k+l] would form a denser table. For example, 
with density equal to 0.5, the greedy algorithm partitions the val
ues 1, 6, 7, 8, 11, and 15 into the three tables (1, 6-8), (11), and 
(15), and this lookahead variant gives the two tables (1) and (6-8, 
11, 15). Analyze and explain this variant. Can you prove under 
what conditions it will give fewer tables than the greedy algorithm? 

10.7 Change swgen to use the optimal partitioning algorithm described 
by Kannan and Proebsting (1994). With density equal to 0.5, the 
optimal algorithm partitions the values 1, 6, 7, 8, 9, 10, 15, and 19 
into the two tables (1) and (6-10, 15, 19); the greedy algorithm and 
its lookahead variant described in the previous exercise generate 
the three tables (1, 6-10), (15), and (19). Can you find real programs 
on which the optimal algorithm gives fewer tables than the greedy 
algorithm? Can you detect the differences in execution times? 
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10.8 Implement swcode's (generate a linear search). The generated code 
has the form 

if t1 = v[l] goto Li 

if tl = v[u] goto Lu 
if t1 < v[l] goto lolab 
if tl > v[u] goto hilab 

Use cmp to do the comparisons, and avoid generating unnecessary 
jumps to 1o1 ab and hi 1 ab. 

10.9 Implementing (warn if p denotes the address of a local) involves ex
amining p to see if it's the address of a local or a parameter. This 
test catches some, but not all, of these kinds of programming er
rors. Give an example of an error that this approach cannot detect. 
Is there a way to catch all such errors at compile-time? At run-time? 

10.10 swcode is passed ub-1 b+l tables in b [lb .. ub], and picks the mid
dle table at b[(lb+ub)/2] as the root of the tree from which it 
generates a binary search. Other choices are possible; it may, for 
instance, choose the largest table, or profiling data could supply the 
frequency of occurrence for each case value, which could pinpoint 
the table that's most likely to cover the switch value. Alternatively, 
we could assume a specific probability distribution for the case val
ues. Suppose all values in the range v[b[l b] .. b[ub + 1] - 1] - even 
those for which there are no case labels - are equally likely to oc
cur. For this distribution, the root table should be the one with 
a case value closest to the middle value in this range. Implement 
this strategy by computing swcode's k appropriately. Be careful; it's 
possible that no table will cover the middle value, so pick the one 
that's closest. 

10.11 Some systems support dynamic linking and loading. When new 
code is loaded, the dynamic linker must identify and update all re
locatable addresses in it. This process takes time, so dynamically 
linked code benefits from position-independent addresses, which 
are relative to the value that the program counter will have during 
the execution of the instruction that uses the address. For example, 
if the instruction at location 200 jumps to location 300, conven
tional relocatable code stores the address 300 in the instruction, 
but position-independent code stores 300 - 200 or 100 instead. Ex
tend 1 cc's interface so that it can emit position-independent code 
for switch statements. The interface defined in Chapter 5 can't 
do so because it uses the same defaddress for switch statements 
that it uses to initialize pointer data, which mustn't be position
independent. 
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11 
Declarations 

Declarations specify the types of identifiers, define structure and union 
types, and give the code for functions. Parsing declarations can be 
viewed as converting the textual representation of types to the corre
sponding internal representations described in Chapter 4 and generating 
the code list decribed in Section 1.3. 

Declarations are the most difficult part of C to parse. There are two 
main sources of this difficulty. First, the syntax of declarations is de
signed to illustrate the use of an identifier. For example, the declaration 
int *x [10] declares x to be an array of 10 pointers to ints. The idea 
is that the declaration illustrates the use of x; for example, the type of 
*x[i] is int. Unfortunately, distributing the type information throughout 
the declaration complicates parsing it. 

The other difficulty comes from the restrictions on the declarations for 
globals, locals, and parameters. For example, locals and globals can be 
declared static, but parameters cannot. Likewise, both function declara
tions and function definitions may appear at file scope, but only function 
declarations may appear at a local scope. It is possible to write a syntax 
specification that embodies these kinds of restrictions, but the result is a 
set of repetitious productions that vary slightly in detail. An alternative, 
illustrated by the declaration syntax given throughout this chapter, is to 
specify the syntax of the most general case and use semantic checks dur
ing parsing to enforce the appropriate restrictions depending on context. 
Since the rules concerning redeclaration vary among the three kinds of 
identifiers, such checks are necessary in any case. 

The text and the code in this chapter reflect these difficulties: This 
chapter is the longest one in this book, and some of its code is intricate 
and complex because it must cope with many, sometimes subtle, details. 
Some of the functions are mutually recursive or are used for several 
purposes, so circularities in their explanations are unavoidable. 

The first five sections describe how declarations are parsed and are in
ternalized in the front end's data structures described in previous chap
ters. The last four sections cover function definitions, compound state
ments, finalization, and l cc's main program. These sections are perhaps 
the more important because they contribute most to understanding the 
interaction between the front end and the back ends. Section 11.6, for 
example, is where the front end calls the back ends' function interface 
routine, and Section 11.9 reveals how the interface record for a specific 
target is bound to the front end. 
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11.1 Translation Units 

A C translation unit consists of one or more declarations or function 
definitions: 

translation-unit: 
external-declaration { external-declaration} 

external-declaration: 
function-definition 
declaration 

program is the parsing function for translation-unit and one of the five 
functions exported by decl. c, which processes all declarations. It ac
tually parses translation-unit as if it permitted empty input, and only 
warns about that case: 

(decl.c functions)= 
void program() { 

int n; 

} 

level = GLOBAL; 
for (n = O; t != EOI; n++) 

if (kind[t] == CHAR I I kind[t] == STATIC 
11 t == ID 11 t == '*' 11 t == I(') { 

decl (dclglobal); 
(deallocate arenas 254) 

} else if (t == ';') { 
warning("empty declaration\n"); 
t = gettok(); 

} else { 

} 

error("unrecognized declaration\n"); 
t = gettok(); 

if (n == 0) 
warning("empty input file\n"); 

255 ..... 

decl is the parsing function for both function-definition and declara
tion, because a function-definition looks like a declaration followed by 
a compound-statement. decl's argument is dclglobal, dcllocal, or 
dcl par am. After decl and its collaborators have digested a complete dec
laration for an identifier, they call a dclX function to validate the identi
fier and install it in the appropriate symbol table. These dclX functions 
enforce the semantic differences between globals, locals, and parameters 
mentioned above. 

The two else arms in the loop body above handle two error conditions. 
The standard insists that a declaration declare at least an identifier, a 
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structure or enumeration tag, or one or more enumeration members. The 
first else warns about declarations that don't, and the second diagnoses 
declarations with syntax errors. 

Declarations can allocate space in any arena. Function definitions al
locate space in the PERM and FUNC arenas, and variable declarations use 
space in the STMT arena for the trees that represent initializers. Thus, 
both the FUNC and STMT arenas are deallocated at the ends of declara
tions and definitions: 

{deallocate arenas 254)= 
deallocate(STMT); 
deallocate(FUNC); 

11.2 Declarations 

The syntax for declarations is 

declaration: 
declaration-specifiers init-declarator { , init-declarator} ; 
declaration-specifiers ; 

init-declara tor: 
declarator 
declarator= initializer 

initializer: 
assigmnent-expression 
' { ' initializer { , initializer } [ , ] ' } ' 

declaration-specifiers: 
storage-class-specifier [ declaration-specifiers ] 
type-specifier [ declaration-specifiers ] 
type-qualifier [ declaration-specifiers ] 

storage-class-specifier: 
typedef I extern I static I auto I register 

type-specifier: 
void 
char I fl oat I short I signed 
int I double I long I unsigned 
s truct-or-union-specifier 
en um-specifier 
identifier 

type-qualifier: con st I vo 1ati1 e 
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A declaration specifies the type of an identifier and its other attributes, 
such as its storage class. A definition declares an identifier and causes 
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storage for it to be reserved. Declarations with initializers are definitions; 
those without initiallzers are tentative definitions, which are covered in 
Section 11.8. 

A declaration begins with one or more specifiers in any order. For 
example, all the declarations ' 

short canst x; 
canst short x; 
canst short int x; 
int canst short x; 

declare x to be short integer that cannot be modified. storage-class
specifiers, type-specifiers, and type-qualifiers can appear in any order, 
but only one of each kind of specifier can appear. This flexibility com
plicates specifier, the parsing function for declaration-specifiers . 

( decl.c functions)+= 
static Type specifier(sclass) int *sclass; { 

int els, cons, sign, size, type, vol; 
Type ty = NULL; 

} 

els = vol = cons sign size type O; 
if (sclass == NULL) 

els = AUTO; 
for (; ;) { 

} 

int *p, tt = t; 
switch (t) { 
(set p and ty 256) 

default: p = NULL; 
} 
if (p == NULL) 

break; 
(check for invalid use of the specifier 256) 

*p = tt; 

if (scl ass) 
*sclass = els; 

(compute ty 257) 

return ty; 

... 
253 258 .... 

If specifier's argument, scl ass, is nonnull, it points to the variable 
to which the token code for the storage class should be assigned. The 
locals els, vol, cons, sign, size, and type record the appearance of the 
similarly named specifiers by being assigned the token code for their 
specifier: 

255 

80 AUTO 
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DOUBLE 109 

enumdcl 310 
ENUM 109 

EXTERN 80 
FLOAT 109 

GLOBAL 38 
INT 109 

i stypename 115 
level 42 
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REGISTER 80 
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STATIC 80 
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(set p and ty 256)= 
case AUTO: 
case REGISTER: if (level <= GLOBAL && els == 0) 

error("invalid use of 
p =&els; t = gettok(); 

case STATIC: case EXTERN: 

'%k'\n", t); 
break; 

case TYPEDEF: p =&els; t = gettok(); 
case CONST: p =&cons; t = gettok(); 
case VOLATILE: p =&vol; t = gettok(); 
case SIGNED: 
case UNSIGNED: p =&sign; t gettok(); 
case LONG: 
case SHORT: p =&size; t gettok(); 
case VOID: case CHAR: case INT: case FLOAT: 
case DOUBLE: p = &type; ty = tsym->type; 

t = gettok(); 
case ENUM: p =&type; ty = enumdcl(); 

break; 
break; 
break; 

break; 

break; 

break; 
break; 

case STRUCT: 
case UNION: p =&type; ty = structdcl(t); break; 

256 255 .... 

These variables are initialized to zero and change only when their cor
responding specifier is encountered. Thus, a nonzero value for any of 
these variables indicates that their specifier has already appeared, which 
helps detect errors: 

(check for invalid use of the specifier256)= 
if (*p) 

error("invalid use of '%k'\n", tt); 

255 

Once all the declaration-specifiers have been consumed, the values of 
sign, size, and type encode the specified type. enumdcl and structdcl 
parse enum-specifier and struct-or-union-specifier. 

If scl ass is null, then a storage class must not appear, so cl sis initial
ized as if one did occur, which catches errors. This flexibility is needed 
because specifier is called when parsing abstract-declarators, which do 
not have storage classes; see Section 11.3 and Exercise 11.3. 

The body of the switch statement shown above points p to the appro
priate local variable, and sets ty to a Type if the token is a type-specifier. 
A typedef name, which arrives as an ID token, can appear with only a 
storage class or a qualifier: 

(set p and ty 256)+= 
case ID: 

if (istypename(t, tsym) && type == 0) { 
use(tsym, src); 
ty = tsym->type; 
p = &type; 

• 256 255 
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t = gettok(); 
} else 

p = NULL; 
break; 

All that remains after parsing declaration-specifiers is to determine 
the appropriate Type, which is encoded in the values of sign, size, and 
type. This Type is specifier's return value. The default 

{compute ty 257}= 
if (type == O) { 

type = INT; 
ty = inttype; 

257 255 ..... 

} 

is what makes short canst x declare x a short integer. The remaining 
cases inspect sign, size, and type to determine the appropriate type: 

... 
{compute ty 257}+= 257 257 255 ..... 

if (size == SHORT && type != INT 
I I size == LONG && type != INT && type != DOUBLE 
I I sign && type != INT && type != CHAR) 

error("invalid type specification\n"); 
if (type == CHAR && sign) 

ty = sign == UNSIGNED ? unsignedchar : signedchar; 
else if (size == SHORT) 

ty = sign == UNSIGNED ? unsignedshort : shorttype; 
else if (size == LONG && type == DOUBLE) 

ty = longdouble; 
else if (size == LONG) 

ty = sign == UNSIGNED ? unsignedlong : longtype; 
else if (sign == UNSIGNED && type == INT) 

ty = unsignedtype; 

The explicit inclusion of sign in the test for CHAR is needed to distinguish 
signed and unsigned chars from plain chars, which are a distinct type. 
The resulting Type, computed by the code above, enumdcl or structdcl, 
can be qualified by const or volatile qualifiers, or both: 

{compute ty 257} += 
if (cons == CONST) 

ty = qual(CONST, ty); 
if (vol == VOLATILE) 

ty = qual(VOLATILE, ty); 

... 
257 255 

dee 1, the parsing function for declaration, starts by calling specifier: 

109 CHAR 
109 CONST 
258 decl 
109 DOUBLE 
310 enumdcl 
109 INT 

257 

57 longdouble 
109 LONG 

57 longtype 
62 qual 

109 SHORT 
57 shorttype 
57 signedchar 

255 specifier 
277 structdcl 

57 unsignedchar 
109 UNSIGNED 

57 unsignedlong 
58 unsignedshort 
58 unsignedtype 

109 VOLATILE 
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(decl.c functions}+= 
static void decl(dcl) 

... 
255 260 .... 

Symbol (*dcl) ARGS((int, char*, Type, Coordinate *)); { 

} 

int sclass; 
Type ty, tyl; 
static char stop[] = { CHAR, STATIC, ID, 0 }; 

ty = specifier(&sclass); 
if Ct == ID 11 t == '*' 11 t 

char *id; 
Coordinate pos; 
(id, tyl - the first declarator 258} 
for (;;) { 

(declare id with type tyl 260} 
if (t != ',') 

break; 
t = gettok(); 

'C' 11 t == '[') { 

(id, tyl - the next declarator258} 
} 

} else if (ty == NULL 
11 ! (ty is an enumeration or has a tag}) 

error("empty declaration\n"); 
test(';', stop); 

dcl r, described in the next section, parses a declarator. The easy case is 
the one for the second and subsequent declarators: 

(id, tyl - the next declarator258} = 258 
id = NULL; 
pos = src; 
tyl = dclr(ty, &id, NULL, O); 

dcl r accepts a base type - the result of specifier - and returns a Type, 
an identifier, and possibly a parameter list. The base type, ty in the code 
above, is dcl r's first argument, and its next two arguments are the ad
dresses of the variables to assign the identifier and parameter list, if they 
appear. It returns the complete Type. Passing a null pointer as dcl r's 
third argument specifies that parameter lists may not appear in this con
text. As detailed in Sectio:rflll.3, a nonzero fourth argument causes dcl r 
to parse an abstract-declwator. pos saves the source coordinate of the 
beginning of a declarator for use when the identifier is declared. 

The first declaratot is treated differently than the rest because decl 
also recognizes function-definitions, which can be confused with only 
the first declarator at file scope: 

(id, tyl - thefirstdeclarator258}= 258 
id = NULL; 
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pos = src; 
if (level == GLOBAL) { 

Symbol *params = NULL; 
tyl = dclr(ty, &id, &params, O); 
if ((function definition?259)) { 

(define function id 259) 
return; 

} else if (params) 
exitparams(params); 

} else 
tyl = dclr(ty, &id, NULL, 0); 

Since the first declarator might be a function definition, a nonnull lo
cation for the parameter list is passed as dcl r's third argument. If the 
declarator includes a function and its parameter list, params is set to an 
array of symbol-table entries. When there is a parameter list, but it's 
not part of a function definition, exi tparams is called to close the scope 
opened by that list. This scope isn't closed when the end of the list is 
reached because the parsing function for parameter lists can't differenti
ate between a function declaration and a function definition. Section 11.4 
elaborates. 

A declaration is really a function-definition if the first declarator spec
ifies a function type and includes an identifier, and the next token begins 
either a compound statement or a Hst of parameter declarations: 

(function definition? 259) = 
params && id && isfunc(tyl) 
&& (t == '{' I I istypename(t, tsym) 
I I (kind[t] == STATIC && t != TYPEDEF)) 

decl calls funcdefn to handle function definitions: 

(defi.ne function id 259)= 
if (sclass == TYPEDEF) { 

} 

error("invalid use of 'typedef'\n"); 
sclass = EXTERN; 

if (tyl->u.f.oldstyle) 
exi tscope () ; 

funcdefn(sclass, id, tyl, params, pos); 

259 

259 

The call to exi tscope closes the scope opened in parameters because 
that scope will be reopened in funcdefn when the declarations for the 
parameters are parsed. 

The semantics part of decl amounts to declaring the identifier given in 
the declarator. As described above, decl's argument is a dclX function 
that does this semantic processing, except for typedefs. 

265 dcl r 
258 decl 

259 

272 exitparams 
42 exitscope 
80 EXTERN 

286 funcdefn 
38 GLOBAL 
60 isfunc 

115 istypename 
143 kind 
42 level 
63 oldstyle 

271 parameters 
80 STATIC 

108 tsym 
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(declare id with t}pe tyl 260)= 

if (Aflag >= 1 && !hasproto(tyl)) 
warning("missing prototype\n"); 

if (id == NULL) 
error("mi ssi ng i denti fi er\n"); 

else if (sclass == TYPEDEF) 
(declare id a typedef for tyl 260) 

else 
(void)(*dcl)(sclass, id, tyl, &pos); 

258 

Typedefs are the easy case. The semantic processing simply checks for 
redeclaration errors, installs the identifier id into the i denti fie rs table, 
and fills in its type and storage class attributes. 

(declare id a typedef for tyl 260) = 
{ 

} 

Symbol p = lookup(id, identifiers); 
if (p && p->scope == level) 

error("redeclaration of '%s'\n", id); 
p = install(id, &identifiers, level, 

level <LOCAL? PERM : FUNC); 
p->type = tyl; 
p->sclass = TYPEDEF; 
p->src = pos; 

260 

The three dclX functions are more complicated. Each copes with a 
slightly different declaration semantics, and dclglobal and dcllocal 
also parse initializers. dclglobal is the most complicated of the three 
functions because it must cope with valid redeclarations. For example, 

extern int x[]; 
int x[lO]; 

validly declares x twice. The second declaration also changes x's type 
from (ARRAY (INT)) to (ARRAY 40 4 (INT)). 

(decl.c functions)+= 
static Symbol dclglobal(sclass, id, ty, pos) 
int sclass; char *id; Type ty; Coordinate *pos; { 

Symbol p, q; 

} 

(dclglobal 261) 

return p; 

.... 
258 264 ..... 

decl accepts any set of specifiers and declarators that are syntactically 
legal, so the dclX functions must check for the specifiers that are illegal 
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in their specific semantic contexts, and must also check for redeclara
tions. dclglobal, for example, insists that the storage class be extern, 
static, or omitted: 

(dclglobal 261)= 
if (sclass == 0) 

sclass = AUTO; 
else if (sclass != EXTERN && sclass != STATIC) { 

error("invalid storage class '%k' for '%t %s'\n", 
sclass, ty, id); 

sclass = AUTO; 
} 

261 260 
"" 

Globals that have no storage class or an illegal one are given storage class 
AUTO so that all identifiers have nonzero storage classes, which simplifies 
error checking elsewhere. 

dclglobal next checks for redeclaration errors. 
... 

261 262 
"" 

(dclglobal 261)+= 
p = lookup(id, identifiers); 
if (p && p->scope == GLOBAL) { 

} 

if (p->sclass != TYPEDEF && eqtype(ty, 
ty = compose(ty, p->type); 

else 

p->type, 1)) 

error("redeclaration of '%s' previously declared _ 
at %w\n", p->name, &p->src); 

if (!isfunc(ty) && p->defined && t == '=') 
error("redefinition of '%s' previously defined_ 

at %w\n", p->narne, &p->src); 
(check for inconsistent linkage 262) 

260 

A redeclaration is legal if the types on both declarations are compati
ble, which is determined by eqtype, and the resulting type is the com
posite of the two types. Forming this composite is how the type of x, 
illustrated above, changed from (ARRAY (INT)) to (ARRAY 40 4 (INT)). 
Some redeclarations are legal, but redefinitions - indicated by a nonzero 
defined flag and an approaching initializer - are never legal. 

An identifier has one of three kinds of linkage. Identifiers with ex
ternal linkage can be referenced from other separately compiled trans
lation units. Those with internal linkage can be referenced only within 
the translation unit in which they appear. Parameters and locals have no 
linkage. 

A global with no storage class or declared extern in its first declaration 
has external linkage, and those declared static have internal linkage. On 
subsequent declarations, an omitted storage class or extern has a slightly 
different interpretation. If the storage class is omitted, it has external 

261 

80 AUTO 
72 compose 

260 dclglobal 
50 defined 
69 eqtype 
80 EXTERN 
38 GLOBAL 
41 identifiers 
60 isfunc 
45 lookup 
37 scope 
80 STATIC 
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linkage, but if the storage class is extern, the identifier has the same 
linkage as a previous file-scope declaration for the identifier. Thus, 

static int y; 
extern int y; 

is legal and y has internal linkage, but 

extern int y; 
static int y; 

is illegal because the second declaration demands that y have internal 
linkage when it already has external linkage. Multiple declarations that 
all have external or internal linkage are permitted. 

The table below summarizes these rules in terms of p->scl ass, the 
storage class of an existing declaration, and scl ass, the storage class 
for the declaration in hand. AUTO denotes no storage class. 

p->sclass 
EXTERN 
STATIC 
AUTO 

EXTERN 
J 
J 
J 

sclass 
STATIC AUTO 

x J 
J x 
x J 

J marks the legal combinations, and x marks the combinations that are 
linkage errors. The code use in dclglobal above is derived from this 
table: 

(check for inconsistent linkage 262)= 261 
if (p->sclass == EXTERN && sclass == STATIC 
I I p->sclass == STATIC && sclass == AUTO 
I I p->sclass == AUTO && sclass == STATIC) 

warning("inconsistent linkage for '%s' previously_ 
declared at %w\n", p->name, &p->src); 

This if statement prints its warning for the second of the two examples 
shown above. 

Next, the global is installed in the globals table, if necessary, and its 
attributes are initialized or overwritten. 

... 
(dclglobal 261)+= 261 263 260 .... 

if (p == NULL I I p->scope != GLOBAL) { 
p = install(id, &globals, GLOBAL, PERM); 
p->sclass = sclass; 
if (p->sclass != STATIC) { 

static int nglobals; 
nglobals++; 
if (Aflag >= 2 && nglobals == 512) 

warning("more than 511 external identifiers\n"); 
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} 
(*IR->defsymbol)(p); 

} else if (p->sclass == EXTERN) 
p->sclass = sclass; 

p->type = ty; 
p->src = *pos; 

New globals are passed to the back end's defsymbol interface function 
to initialize their x fields. If an existing global has storage class extern, 
and this declaration has no storage class or specifies static, the global's 
sclass is changed to either STATIC or AUTO to ensure that it's defined in 
fi na 1 i ze. If this declaration specifies extern, the assignment to scl ass is 
made but has no effect. 1 cc's -A option enables warnings about non-ANSI 
usage. For example, the standard doesn't require an implementation to 
support more that 511 external identifiers in one compilation unit, so 
1 cc warns about too many externals when -A -A is specified. 

The standard permits compilers to accept 

f() {extern float g(); ... } 
int g() { ... } 
h() {extern double g(); ... } 

without diagnosing that the first declaration for g conflicts with its defi
nition (which is also a declaration), or that the last declaration conflicts 
with the first two. Technically, each declaration for g introduces a differ
ent identifier with a scope limited to the compound statement in which 
the declaration appears. But all three g's have external linkage and must 
refer to the same function at execution time. 1 cc uses the exte rna 1 s ta
ble to warn about these kinds of errors. dcllocal adds identifiers with 
external linkage to externals, and both dcllocal and dclglobal check 
for inconsistencies: 

(dclglobal 261)+= 
{ 

} 

Symbol q = lookup(p->name, externals); 
if (q && (p->sclass == STATIC 

I I !eqtype(p->type, q->type, 1))) 
warning("declaration of '%s' does not match 

declaration at %w\n", p->name, &q->src); 

.... 
262 263 260 ..... 

previous _ 

dclglobal concludes by parsing an initializer, if there's one coming and 
it's appropriate. 

.... 
(dclglobal 261)+= 263 260 

if Ct == '=' && isfunc(p->type)) { 
error("illegal initialization for '%s'\n", p->name); 
t = gettok(); 

80 AUTO 
260 dclglobal 
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initializerCp->type, O); 
} else if Ct == '=') 

initglobalCp, O); 
else if Cp->sclass == STATIC && !isfuncCp->type) 
&& p->type->size == 0) 

errorC"undefined size for '%t %s'\n", p->type, p->name); 

The last else if clause above tests for declarations of identifiers with in
ternal linkage and incomplete types, which are illegal; an example would 
be: 

static int x[]; 

i n i tg 1oba1 parses an initializer if one is approaching or if its second 
argument is nonzero, and defines the global given by its first argument. 
initglobal announces the global in the proper segment, parses its ini
tializer, adjusts its type, if appropriate, and marks the global as defined . 

(decl.c functions)+= 
static void initglobalCp, flag) Symbol p; int flag; { 

Type ty; 

if Ct == '=' I I flag) { 
if Cp->sclass == STATIC) { 

.... 
260 265 ... 

for Cty = p->type; isarrayCty); ty = ty->type) 

} 
} 

defglobalCp, isconstCty) ? LIT : DATA); 
} else 

defglobalCp, DATA); 
if Ct == '=') 

t = gettok(); 
ty = initializerCp->type, O); 
if CisarrayCp->type) && p->type->size == 0) 

p->type = ty; 
if Cp->sclass == EXTERN) 

p->sclass = AUTO; 
p->defined = 1; 

i ni ti a 1 i ze r is the parsing function for initializer, and is omitted from 
this book. If p's type is an array of unknown size, the initialization spec
ifies the size and thus completes the type. An initialization is always 
a definition, in which case an extern storage class is equivalent to no 
storage class, so sclass is changed, if necessary. This change prevents 
doextern from calling the back end's import for pat the end of compi
lation. 

defg 1oba1 announces the definition of its argument by calling the ap
propriate interface functions. 
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... 
{decl.c functions)+= 264 265 

void defglobal(p, seg) Symbol p; int seg; { 
p->u.seg = seg; 

} 

swtoseg(p->u.seg); 
if (p->sclass != STATIC) 

(*IR->export)(p); 
(*IR->global)(p); 

{globals 265) = 
int seg; 

... 

38 

Identifiers with external linkage are announced by calling the export in
terface function, and global proclaims the actual definition. swtoseg(n) 
switches to segment n (one of BSS, LIT, CODE, or DATA) by calling the 
segment interface function, but it avoids the calls when the current seg
ment is n. defglobal records the segment in the global's u.seg field. 

11.3 Declarators 

Treating {parse the first declarator) as a special case in decl is one of the 
messy spots in recognizing declarations. Parsing a declarator, which is 
defined below, is worse. The difficulty is that the base type occurs before 
its modifiers. For example, int *x specifies the type (POINTER (INT)), 
but building the type left-to-right as the declarator is parsed leads to the 
meaningless type (INT (POINTER)). The precedence of the operators [] 
and () cause similar difficulties, as illustrated by 

int *x[lO], *f(); 

The types of x and f are 

(ARRAY 10 (POINTER (INT))) 
(POINTER (FUNCTION (INT))) 

The * appears in the same place in the token stream but in different 
places in the type representation. 

As these examples suggest, it's easier to build a temporary inverted 
type during parsing, which is what dcl r does, and then traverse the in
verted type building the appropriate Type structure afterward. dcl r's 
first argument is the base type, which is the type returned by specifier . 

... 
{decl.c functions)+= 265 266 ... 

static Type dclr(basety, id, params, abstract) 
Type basety; char **id; Symbol **params; int abstract; { 

Type ty = dclrl(id, params, abstract); 
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} 

for ( ; ty; ty = ty->type) 
switch (ty->op) { 
case POINTER: 

basety = ptr(basety); 
break; 

case FUNCTION: 
basety = func(basety, ty->u.f.proto, 

ty->u.f.oldstyle); 
break; 

case ARRAY: 
basety = array(basety, ty->size, O); 
break; 

case CONST: case VOLATILE: 

} 

basety = qual(ty->op, basety); 
break; 

if (Aflag >= 2 && basety->size > 32767) 
warning("more than 32767 bytes in '%t'\n", basety); 

return basety; 

dcl rl parses a declarator and returns its inverted type, from which dcl r 
builds and returns a normal Type. The id and par am arguments are set to 
the identifier and parameter list in a declarator. Exercise 11.3 describes 
the abstract argument. dcl rl uses Type structures for the elements of 
an inverted type, and calls tnode to allocate an element and initialize it: ... 
(decl.c functions)+= 265 267 ... 

static Type tnode(op, type) int op; Type type; { 

} 

Type ty; 

NEWO(ty, STMT); 
ty->op = op; 
ty->type = type; 
return ty; 

dcl rl is the parsing function for declarator; the syntax is 

declarator: 
pointer direct-declarator { suffix-declarator } 

direct-declarator: 
identifier 
' (' declarator ') ' 

suffix-declarator: 
' [' [ constant-expression ] 'J ' 
' (' [ parameter-list ] ') ' 
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pointer: { * { type-qualifi.er} } 

Parsing declarators is similar to parsing expressions. The tokens *, (, and 
[ are operators, and the identifiers and parameter lists are the operands. 
Operators yield inverted type elements and operands set id or pa rams . 

(decl.c functions)+= 
static Type dclrl(id, params, abstract) 
char **id; Symbol **params; int abstract; { 

Type ty = NULL; 

} 

switch (t) { 
case ID: (ident 267) break; 
case '*' · t = gettok () ; (pointer 268) break; 
case ' (': t = gettok(); (abstract function 270) break; 
case '[': break; 
default: return ty; 
} 

while Ct== 'C' I I t == '[') 
switch (t) { 
case ' (': t = gettok(); { (concrete function 268) } 

break; 
case '[': t = gettok(); { (array268) } break; 
} 

return ty; 

... 
266 271 .... 

If id is nonnull it points to the location at which to store the identifier. 
If it is null, it also indicates that the declarator must not include an 
identifier. 

(ident 267) = 
if (id) 

*id = token; 
else 

error("extraneous identifier '%s'\n", token); 
t = gettok(); 

267 

Pointers may be intermixed with any number of canst and volatile qual
ifiers. For example, 

int *canst *canst volatile *p; 

declares p to be a "pointer to a constant volatile pointer to a constant 
pointer to an integer." p and ***p can be changed, but *p and **p cannot, 
and *p may be changed by some external means because it's volatile. 
de 1 rl returns the inverted type 

[POINTER [CONST [POINTER [VOLATILE [CONST [POINTER]]]]]] 

267 

108 token 
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where brackets denote inverted type elements. The type ultimately re
turned by dcl r is 

(POINTER (CONST+VOLATILE (POINTER (CONST POINTER (INT))))) 

The code for parsing pointer is 

(pointer 268) = 267 
if (t == CONST I I t == VOLATILE) { 

Type tyl; 
tyl = ty = tnode(t, NULL); 
while ((t = gettok()) ==CONST I I t ==VOLATILE) 

tyl = tnode(t, tyl); 
ty->type = dclrl(id, params, abstract); 
ty = tyl; 

} else 
ty = dclrl(id, params, abstract); 

ty = tnode(POINTER, ty); 

The recursive calls to dcl rl make it unnecessary for the other fragments 
in dcl rl to append their inverted types to a pointer type, if there is one. 
Exercise 11.2 elaborates. 

Control emerges from dcl rl's switch statement with ty equal to the 
inverted type for a pointer or a function or null. The suffix type operators 
[ and ( wrap ty in the appropriate inverted type element. The case for 
arrays is 

(array268)= 
int n = O; 
if (kind[t] == ID) { 

n = intexpr(']', 1); 
if (n <= 0) { 

} 
} else 

error("'%d' is an illegal array size\n", n); 
n = 1; 

expect(']'); 
ty = tnode(ARRAY, ty); 
ty->size = n; 

267 

Parentheses either group declarators or specify a function type. Their 
appearance in suffix-declarator always specifies a function type: 

(concrete function 268)= 
Symbol *args; 
ty = tnode(FUNCTION, ty); 
(open a scope in a parameter list269) 
args = parameters(ty); 

267 



11. 3 • DECLARATORS 

if (params && *params 
*params = args; 

else 
exitparams(args); 

NULL) 

(open a scope in a parameter list 269) = 
enterscope(); 
if (level > PARAM) 

enters cope() ; 

268 270 

A parameter list in a function type opens a new scope; hence the call 
to enterscope in this case. The second call to enterscope handles an 
implementation anomaly that occurs when a parameter list itself includes 
another scope. For example, in the declaration 

void f(struct T {int (*fp)(struct T {int m; }); } x) { 
struct T { float a; } y; 

} 

the parameter list for f opens a new scope and introducer .de structure 
tag T. The structure's lone field, fp, is a pointer to a funt:tion, and the 
parameter list for that function opens another new scope and defines a 
different tag T. This declaration is legal. The declaration on the second 
line is an error because it redefines the tag T - f's parameter x, its tag 
T, f's local y, and y's tag T are all in the same scope. 

1 cc uses scope PARAM for identifiers declared at the top-level parame
ter scope and LOCAL for identifiers like y; LOCAL is equal to PARAM+l. This 
division is only a convenience; foreach can visit just the parameters, for 
example. Redeclaration tests, however, must check for LOCAL identifiers 
that erroneously redeclare PARAM identifiers. 

The example above is the one case where redeclaration tests must not 
make this check. The code above arranges for a nested parameter list 
to have a scope of at least PARAM+2. Leaving this "hole" in the scope 
numbers avoids erroneous redeclaration diagnostics. For example, the 
tag T in fp's parameter has scope PARAM+2, and thus does not elicit a 
redeclaration error because the x's tag T has scope PARAM. 

At some point, the scope opened by the call or calls to enterscope 
must be closed by a matching call to exi tscope. The parameter list may 
be part of a function definition or just part of a function declaration. If 
the list might be in a function definition, pa rams is nonnull and not pre
viously set, and dcl r's caller must call exits cope when it's appropriate. 
The call to exi tparams in decl 's (id, tyl +- the first declarator) is an 
example. exi tparams checks for old-style parameter lists that are used 
erroneously, and calls exi tscope. If pa rams is null or already holds a 
parameter list, then exi tscope can be called immediately because the 
parameter list can't be part of a function definition. 

265 dcl r 
258 decl 

269 

42 enterscope 
272 exitparams 

42 exitscope 
41 foreach 
42 level 
38 LOCAL 
38 PARAM 
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abstract-declarators, described in Exercise 11.3, complicate the use of 
parentheses for grouping. 

(abstract function 270) = 267 
if (abstract 
&& (t ==REGISTER I I istypename(t, tsym) I I t == ')')) { 

Symbol *args; 
ty = tnode(FUNCTION, ty); 
(open a scope in a parameter list 269) 
args = parameters(ty); 
exitparams(args); 

} else { 

} 

ty = dclrl(id, params, abstract); 
expect(')'); 
if (abstract && ty == NULL 
&& (id == NULL I I *id == NULL)) 

return tnode(FUNCTION, NULL); 

If dcl r is called to parse an abstract-declarator, which is indicated by 
a nonzero fourth argument, a ( signals a parameter list if it's followed 
by a new-style parameter list or by a nonempty declarator and a match
ing ). Since abstract-declarators do not appear in function definitions, 
exi tparams can be called immediately after parsing the parameter list. 

11.4 Function Declarators 

The standard permits function declarations and definitions to include 
old-style and new-style parameter lists. The syntax is 

parameter-list: 
parameter { , parameter } [ , . . . ] 
identifi.er { , identifi.er } 

parameter: 
declaration-specifi.ers declarator 
declaration-specifi.ers [ abstract-declarator ] 

An old-style list is just a list of identifiers. A new-style list is a list of 
declarators, one for each parameter, or at least one parameter followed 
by a comma and ellipsis (, ... ), which specifies a function with a variable 
number of parameters, or the single type specifier void, which specifies 
a function with no parameters. These two styles and their interaction in 
declarations and definitions are what contributes most to the complexity 
of recognizing and analyzing them. 

parameters parses both styles. It installs each of the parameters in 
the i den ti fi ers table at the current scope level, which is established by 
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parameters caller by calling enterscope, as illustrated in the previous 
section. It returns a pointer to a null-terminated array of symbols, one 
for each parameter. The first token of a parameter list identifies the 
style: 

(decl.c functions}+= 
static Symbol *parameters(fty) Type fty; { 

List list = NULL; 
Symbol *params; 

if (kind[t] == STATIC I I istypename(t, tsym)) { 
(parse new-style parameter list 273} 

} else { 
(parse old-style parameter list 271) 

} 

.... 
267 272 ... 

if Ct!=')') { 
static char stop[] 
expect(')'); 
skipto('{', stop); 

{ CHAR, STATIC, IF, ')', 0 }; 

} 

} 
if (t == ')') 

t = gettok(); 
return params; 

parameters also annotates the function type, fty, with parameter infor
mation, as described below. 

Old-style parameters are simply gathered up into a Li st, which is con
verted to a null-terminated array after the parameters are recognized. 

(parse old-style parameter list 271} = 
if (t == ID) 

for(;;){ 

} 

Symbol p; 
if (t != ID) { 

} 

error("expecting an identifier\n"); 
break; 

p = dclparam(O, token, inttype, &src); 
p->defined = O; 
list= append(p, list); 
t = gettok(); 
if (t != I I I) 

break; 
t = gettok(); 

params = ltov(&list, FUNC); 

271 

34 append 
109 CHAR 

271 

274 dclparam 
50 defined 
42 enterscope 

142 expect 
97 FUNC 

115 istypename 
143 kind 

34 List 
321 list 

34 ltov 
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80 STATIC 
108 token 
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fty->u.f .proto = NULL; 
fty->u.f .oldstyle = 1; 

The parameters are installed in i denti fi ers by calling dcl param. Their 
types are unknown, so they're installed with the type integer. If the 
parameter list is part of function definition (which it must be), these 
symbols will be discarded and reinstalled when the declarations are pro
cessed by funcdefn. They're installed here only to detect duplicate pa
rameters. Setting the defi ned bit to zero identifies old-style parameters. 
The function type, fty, is edited to record that it's old-style. 

At the end of a parameter list that is not part of a function definition, 
new-style parameters can simply go out of scope after using them to 
build a prototype, as shown below. But it's an error to use an old-style 
parameter list in such a context. For example, in 

int (*f)(int a, float b); 
int (*g)(a, b); 

the first line is a legal new-style declaration for the type 

(POINTER (FUNCTION (INT) {(INT) (FLOAT)})) 

but the second line is an illegal old-style declaration of the type 

(POINTER (FUNCTION (INT))) 

because it includes a parameter list in a context other than a function 
definition. exi tparams squawks about this error: 

( decl.c functions)+= 
static void exitparams(params) Symbol params[J; { 

} 

if (params[O] && !params[O]->defined) 
error("extraneous old-style parameter list\n"); 

(close a scope in a parameter list 272) 

(close a scope in a parameter list 272) = 
if (level > PARAM) 

exitscope(); 
exitscope(); 

.... 
271 274 ..... 

272 

As mentioned in Exercise 2.15, the array returned by ltov always has at 
least the null terminating element, so if params comes from parameters, 
it will always be nonnull. 

New-style parameter lists are more complicated because they have sev
eral variants. A list may or may not contain identifiers depending on 
whether or not it is part of a function definition. Either variant can end 
in , ... , and a list consisting of just void is legal in both definitions 
and declarations. Also, a new-style declaration provides a prototype for 
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the function type, which must be retained for checking calls, other dec
larations of the same function, and the definition, if one appears. As 
described in Section 4.5, a new-style function with no arguments has a 
zero-length prototype; a function with a variable number of arguments 
has a prototype with at least two elements, the last of which is the type 
for void. The use of void to identify a variable number of arguments 
is an encoding trick (of perhaps dubious value); it doesn't appear in the 
source code and can't be confused with voids that do, because they never 
appear in prototypes. 

(parse new-style parameter list 273} = 
int n = O; 
Type tyl = NULL; 
for(;;){ 

} 

Type ty; 
int sclass = O; 
char *id = NULL; 
if (tyl && t == ELLIPSIS) { 

} 

(terminate 1 i st for a varargs function 274} 
t = gettok(); 
break; 

if (!istypename(t, tsym) && t != REGISTER) 
error("missing parameter type\n"); 

n++; 
ty = dclr(specifier(&sclass), &id, NULL, 1); 
(declare a parameter and append it to 1ist273} 
if (tyl == NULL) 

tyl = ty; 
if Ct!=',') 

break; 
t = gettok(); 

(build the prototype 274} 
fty->u.f .oldstyle = O; 

271 

tyl is the Type of the first parameter, and it's used to detect invalid use 
of void and, as shown above, of ellipses. Each parameter is a declarator, 
so parsing one uses the machinery embodied in specifier and dclr, 
but, as shown above, permits only the storage class register. If the type 
void appears, it must appear alone and first: 

(declare a parameter and append it to 1 i st 273}= 
if ( ty == voidtype && (tyl I I id) 
I I tyl == voidtype) 

error("illegal formal parameter types\n"); 
if (id == NULL) 

273 

273 
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id= stringd(n); 
if (ty != voidtype) 

list= append(dclparam(sclass, id, ty, &src), list); 

Omitted identifiers are given integer names; dclparam will complain 
about these missing identifiers if the declaration is part of a function 
definition. 

Variable length parameter lists cause the evolving list of parameters 
to be terminated by a statically allocated symbol with a null name and 
the type void. 

(terminate list for a varargs function 274) = 
static struct symbol sentinel; 
if (sentinel.type== NULL) { 

sentinel.type= voidtype; 
sentinel.defined= 1; 

} 
if (tyl == voidtype) 

error("illegal formal parameter types\n"); 
list= append(&sentinel, list); 

273 

After the new-style parameter list has been parsed, list holds the sym
bols in the order they appeared. These symbols form the params array 
returned by parameters, and their types form the prototype for the func
tion type: 

(build the prototype 274)= 
fty->u.f.proto = newarray(length(list) + 1, 

sizeof (Type*), PERM); 
params = ltov(&list, FUNC); 
for (n = O; params[n]; n++) 

fty->u.f.proto[n] = params[n]->type; 
fty->u.f.proto[n] =NULL; 

273 

dcl pa ram declares both old-style and new-style parameters. dcl pa ram 
is called twice for each parameter: The first call is from parameters 
and the second is from funcdefn. If the parameter list is not part of 
a definition, the call to exitscope (in exitparams) discards the entries 
made by dcl pa ram. 

(decl.c functions)+= 
static Symbol dclparam(sclass, id, ty, pos) 
int sclass; char *id; Type ty; Coordinate *pos; { 

Symbol p; 

} 

(dcl pa ram 275) 
return p; 

.... 
272 277 ... 
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Declaring parameters is simpler than and different from declaring glob
als. First, the types (ARRAY T) and (FUNCTION T) decay to (POINTER T) 
and (POINTER (FUNCTION T)): 

(dcl pa ram 275) = 
if (isfunc(ty)) 

ty = ptr(ty); 
else if (isarray(ty)) 

ty = atop(ty); 

275 274 ... 

The only explicit storage class permitted is register, but 1 cc uses auto 
internally to identify nonregister parameters. 

(dcl param 275) += 
if (sclass == O) 

sclass = AUTO; 
else if (sclass != REGISTER) { 

... 
275 275 ... 

error("invalid storage class '%k' for '%t%s\n", 
sclass, ty, (id275)); 

sclass = AUTO; 
} else if (isvolatile(ty) I I isstruct(ty)) { 

warning("register declaration ignored for '%t%s\n", 
ty, (id275)); 

sclass = AUTO; 
} 

(id 275)= 
stringf(id? "%s'" : '" parameter", id) 

274 

275 

Parameters may be declared only once, which makes checking for re
declaration easy: 

(dcl pa ram 275) += 
... 

275 275 ... 274 
p = lookup(id, identifiers); 
if (p && p->scope == level) 

error("duplicate declaration for '%s' 
declared at %w\n", id, &p->src); 

previously _ 

else 
p = install(id, &identifiers, level, FUNC); 

dcl param concludes by initializing p's remaining fields and checking for 
and consuming illegal initializations. 

(dcl par am 275) += 
p->sclass = sclass; 
p->src = *pos; 
p->type = ty; 
p->defined = 1; 

... 
275 274 

62 at:op 
80 AUTO 

275 
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if (t == '=') { 

} 

error("illegal initialization for parameter '%s '\n", id); 
t = gettok(); 
(void)exprl(O); 

Parameters are considered defined when they are declared because they 
are announced to the back end by the interface procedure function, as 
described in Section 11.6. 

11.5 Structure Specifiers 

Syntactically, structure, union, and enumeration specifiers are the same 
as the types specified by the keywords int, float, etc. Semantically, how
ever, they define new types. A structure or union specifier defines an 
aggregate type with named fields, and an enumeration specifier defines 
a type and an associated set of named integral constants. Exercise 11.9 
describes enumeration specifiers. The syntax for structure and union 
specifiers is: 

struct-or-union-specifier: 
struct-or-union [ identifier ] ' { ' fields { fields } '}' 
struct-or-union identifier 

struct-or-union: struct I union 

fields: 
{ type-specifier I type-qualifier } field { , field } ; 

field: 
declarator 
[ declarator ] : constant-expression 

The identifier, which is the tag of the structure or union, is optional only 
if the specifier includes a list of fields. A struct-or-union-specifier defines 
a new type if it includes fields or if it appears alone in a declaration and 
there is no definition of a structure, union, or enumeration type with 
the same tag in the same scope. This last kind of definition caters to 
mutually recursive structure declarations. For example, the intent of 

struct head { struct node *list; ... }; 
struct node { struct head *hd; struct node *link; ... }; 

is for the 1 i st field in an instance of head to point to the nodes in a 
linked list, and for each node to point to the head of the list. The list 
is threaded through the 1 ink fields. But if node has already been de
clared as a structure or union tag in an enclosing scope, the 1 i st field 
is a pointer to that type, not to the node declared here. Subsequent as
signments of pointers to nodes to 1 i st fields will be diagnosed as errors. 
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Exchanging the two lines fixes the problem for 1 i st, but exposes head to 
the same problem. The solution is to define the new type before defining 
head: 

struct node; 
struct head { struct node *list; ... }; 
struct node { struct head *hd; struct node *link; ... }; 

The lone struct node defines a new incomplete structure type with the 
tag node in the scope in which it appears, and hides other tags named 
node defined in enclosing scopes, if there are any. If there is a structure 
tag node in the same scope as the struct node, the latter declaration has 
no effect. 

The parsing function for struct-or-union-specifier, structdcl, deals 
with tags and their definition, and calls fie 1 ds to parse fields and to 
assign field offsets. Unions and structures are handled identically, except 
for assigning field off sets. 

(decl.c functions)+= 
static Type structdclCop) int op; { 

char *tag; 

} 

Type ty; 
Symbol p; 
Coordinate pos; 

t = gettok(); 
pos = src; 
(structdcl 277) 
return ty; 

... 
274 280 ... 

structdcl begins by consuming the tag or using the empty string for 
omitted tags: 

(structdcl 277)= 

if Ct == ID) { 
tag = token; 
t = gettok(); 

} else 
tag = ""; 

277 277 ... 

If the tag is followed by a field list, this specifier defines a new tag: 

(structdcl 277)+= 
if Ct== '{') { 

static char stop[] = { IF, 
ty = newstructCop, tag); 
ty->u.sym->src = pos; 

' ' ' ' 

... 
277 278 277 ... 

0 }; 

277 
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} 

ty->u.sym->defined = 1; 
t = gettok(); 
if (istypename(t, tsym)) 

fields(ty); 
else 

error("invalid %k field declarations\n", op); 
test('}' , stop) ; 

newstruct checks for redeclaration of the tag and defines the new type. 
If the tag is empty, new st ruct calls gen 1abe1 to generate one. new st ruct 
is also used for enumeration specifiers; see Exercise 11.9. 

If the struct-or-union-specifier doesn't have fields and the tag is al
ready in use for the type indicated by op, the specifier refers to that 
type. 

... 
(structdcl 277) += 277 278 277 .... 

else if (*tag && (p = lookup(tag, types)) != NULL 
&& p->type->op == op) { 

} 

ty = p->type; 
if (t == ';' && p->scope <level) 

ty = newstruct(op, tag); 

This case also handles the exception described above: If the tag is defined 
in an enclosing scope and the specifier appears alone in a declaration, 
the specifier defines a new type. As described in Chapter 3, tags have 
their own name space, which is managed in the types table. 

If the cases above don't apply, there must be a tag, and the specifier 
defines a new type: 

(structdcl 277)+= 
else { 

} 

if (*tag == O) 
error("missing %k tag\n", op); 

ty = newstruct(op, tag); 

if (*tag && xref) 
use(ty->u.sym, pos); 

... 
278 277 

The last else clause handles the case when a specifier appears alone in 
a declaration and the tag is already defined in an enclosing scope for a 
different purpose. An example is: 

enum node { ... }; 
f(void) { 

struct node; 
struct head { struct node *list; ... }; 
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struct node { struct head *hd; struct node *link; ... }; 

} 

The else clause above handles the struct node on the third line. 
Most of the complexity of processing structure and union specifiers is 

in analyzing the fields and computing their off sets, particularly specifiers 
involving bit fields. Fields must be laid out in the order they appear in 
fields; their off sets depend on their types and the alignment constraints 
of those types. Bit fields are allocated in addressable storage units and 
when N bit fields fit in a storage unit, they must be laid out in the or
der in which they are declared, but that order can be from least to most 
significant bit or vice versa. It's conventional to use the order that fol
lows increasing addresses: least to most significant bit (right to left) on 
little-endian targets, and most to least significant bit (left to right) on 
big endians. A compiler is not obligated to split bit fields across storage 
units, and it may choose any storage unit for bit fields. 1 cc uses un
signed integers so that bit fields can be fetched and stored using integer 
loads, stores, and masking operations. 

Figure 11.l shows a structure definition and its layout on a little
endian MIPS. Unsigneds are 32 bits, and integers and unsigneds must 
be aligned on 4-byte boundaries. Addresses increase from right to left 
as suggested by the numbering of a's elements, and from top to bottom 
as suggested by the offsets on the right side of the figure. The shad
ing depicts holes that result from alignment constraints, and the darker 
shading is the hole specified by the 26-bit unnamed bit field. This ex
ample helps explain the intricacies of fie 1 ds, the parsing function for 
fields. 

fie 1 ds parses the field list and builds a list of fie 1 d structures em
anating from ty->u. sym->u. s. fl is t. The fie 1 d structure is described 
in Section 4.6. Its name, type, and offset fields give the field's name, its 
Type, and its offset in bytes from the beginning of the structure, respec-

struct { 
char a[S]; 
short sl, s2; 
unsigned code:3, used:l; 
unsigned :26; 
int amt:?, last; 
short id; 

} x; 

FIGURE 11.1 Llttle-endian structure layout example. 
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tively. For bit fields, bi tsi ze gives the number of bits in the bit field, 
and 1 sb gives the number of the bit field's least significant bit plus one, 
where bits are numbered starting at zero with the least significant bit on 
all targets. A bit field is identified by a nonzero 1 sb. The list of fie 1 d 
structures is threaded through the 1 ink fields. For the example shown 
in Figure 11.1, this list holds the fields shown in the following table. 

name type offset bitsize lsb 

a chartype 0 
sl shorttype 6 
s2 shorttype 8 
code unsignedtype 12 3 1 
used unsignedtype 12 1 4 
amt inttype 16 7 1 
last inttype 20 
id shortype 24 

fie 1 ds first builds the list of fie 1 ds, then traverses this list computing 
offsets and bit-field positions: 

... 
(decl.c functions)+= 277 286 

static void fields(ty) Type ty; { 
{ (parse fields 280) } 
{ (assign field offsets 282) } 

} 

... 

A list of fields is parsed by calling specifier to consume the field's 
specifiers, then parsing each field: 

(parse fields 280) = 
int n = O; 
while (istypename(t, tsym)) { 

} 

static char stop[]= {IF, CHAR, '}', 0 }; 
Type tyl = specifier(NULL); 
for (; ; ) { 

} 

Field p; 
char *id = NULL; 
(parse one field 281) 

n++; 
if (Aflag >= 2 && n == 128) 

warning("more than 127 fields in '%t'\n", ty); 
if Ct ! = I' ') 

break; 
t = gettok(); 

test(' ; ' , stop); 

280 
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n counts the number of fields, and is used only for the warning about 
declaring more fields than the maximum specified by the standard, which 
1 cc's -A option enables. 

Parsing a field is similar to parsing the declarator in a declaration, and 
dcl r does most of the work: 

(parse one field 281) = 281 280 ..... 
p = newfield(id, ty, dclr(tyl, &id, NULL, O)); 

newfi e 1 d allocates a fie 1 d structure, initializes its name and type fields 
to the value of id and the Type returned by dcl r, clears the other fields, 
and appends it to ty->u. sym->u. s. fl i st. As it walks down the list to 
its end, newfi e 1 d also checks for duplicate field names. 

An oncoming colon signifies a bit field, and fie 1 ds must check the 
field's type, parse its field width, and check that the width is legal: 

... 
(parse one fi.eld 281)+= 281 282 ..... 

if (t == ':') { 

} 

if (unqual(p->type) != inttype 
&& unqual(p->type) != unsignedtype) { 

error("'%t' is an illegal bit-field type\n", 
p->type); 

p->type = inttype; 
} 
t = gettok(); 
p->bitsize = intexpr(O, O); 
if (p->bitsize > 8*inttype->size I I p->bitsize < 0) { 

error('"%d' is an illegal bit-field size\n", 
p->bitsize); 

p->bitsize = 8*inttype->size; 
} else if (p->bitsize == 0 && id) { 

warning("extraneous 0-width bit field '%t %s' _ 
ignored\n", p->type, id); 

p->name = stringd(genlabel(l)); 
} 
p->lsb = 1; 

280 

As shown, a bit field must be a qualified or unqualified version of int or 
unsigned. Compilers are permitted to treat plain int bit fields as either 
signed or unsigned; 1 cc treats them as signed. An unnamed bit field 
specifies padding; for now, it's appended to the list like other fields with 
a unique integer name, but it's removed when offsets are assigned. Simi
larly, the 1 sb field is set to one for now to identify the field as a bit field; 
it's changed to the correct value when its offset is assigned. 

newfi e 1 d has done all of the work for normal fields except to check 
for missing field names and illegal types: 

265 dclr 
182 field 
280 fields 
45 genlabel 

281 

203 intexpr 
68 newfield 
29 stringd 
60 unqual 
58 unsignedtype 
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{parse one field 281)+= 
else { 

if (id == NULL) 

.... 
281 282 280 .... 

error("field name missing\n"); 
else if (isfunc(p->type)) 

error('"%t' is an illegal field 
else if (p->type->size == 0) 

error("undefined size for field 
p->type I id); 

type\n", p->type); 

'%t %s'\n", 

} 

If a field or bit field is declared const, assignments to that field are for
bidden. Structure assignments must also be forbidden. For example, 
given the definition 

struct { int code; const int value; } x, y; 

x. code and y. code can be changed, but x. va 1 ue and y. va 1 ue cannot. 
Assignments like x = y are also illegal, and they're caught in asgntree 
by inspecting the structure type's cfields flag, which is set here, along 
with the vfi e 1 ds flag, which records volatile fields: 

{parse one fi.eld 281)+= 
if (isconst(p->type)) 

ty->u.sym->u.s.cfields 
if (isvolatile(p->type)) 

ty->u.sym->u.s.vfields 

1; 

1· 
' 

.... 
282 280 

At this point, the field list for Figure 11.1 's example has nine elements: 
the eight shown in the table on page 280 plus one between used and amt 
that has a bi tsi ze equal to 26. The 1 sb fields of the elements for code, 
used, and amt are all equal to one, and all offset fields are zero. 

Next, field makes a pass over the field list computing offsets. It 
also computes the alignment of the structure, and rebuilds the field list 
omitting those fie 1 d structures that represent padding, which are those 
with integer names. 

{assign field offsets 282) = 
int bits = 0, off = 0, overflow = O; 
Field p, *q = &ty->u.sym->u.s.flist; 
ty->align = IR->structmetric.align; 
for (p = *q; p; p = p->link) { 

{compute p->offset 283) 
if (p->name == NULL 
I I !('1' <= *p->name && *p->name <= '9')) { 

*q = p; 
q = &p->link; 

} 

285 280 .... 
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} 

*q = NULL; 

off is the running total of the number of bytes taken by the fields up 
to but not including the one pointed to by p. bi ts is the number of 
bits plus one taken by bit fields beyond off by the sequence of bit fields 
immediately preceding p. Thus, bi ts is nonzero if the previous field is 
a bit field, and it never exceeds unsignedtype->size. fields must also 
cope with offset computations that overflow. It uses the macro add to 
increment off: 

(decl.c macros)= 283 .... 
#define add(x,n) (x > INT_MAX-(n) ? (overflow=l,x) : x+(n)) 
#define chkoverflow(x,n) ((void)add(x,n)) 

chkoverflow uses add to set overflow if x + n overflows. If overflow is 
one at the end of fields, the structure is too big. 

If the fields appear in a union, all the off sets are zero by definition: 

(compute p->offset 283)= 
int a= p->type->align ? p->type->align : 1; 
if (p-> l sb) 

a = unsignedtype->align; 
if (ty->op == UNION) 

off = bits = O; 

283 282 .... 

The value of a is the field's alignment; it's used below to increase the 
structure's alignment, ty->a l i gn, if necessary. It's also used to round 
up off to the appropriate alignment boundary: 

.... 
(compute p->offset 283)+= 283 284 

else if (p->bitsize == 0 I I bits == 0 
I I bits - 1 + p->bitsize > 8*unsignedtype->size) { 

off= add(off, bits2bytes(bits-1)); 
bits = O; 
chkoverflow(off, a - 1); 
off= roundup(off, a); 

} 
if (a > ty->align) 

ty->align = a; 
p->offset = off; 

(decl.c macros)+= 
#define bits2bytes(n) (((n) + 7)/8) 

.... 282 

.... 
283 

off must be rounded up if p isn't a bit field, isn't preceded by fields that 
ended in the middle of an unsigned, or is a bit field that's too big to fit 
in the unsigned partially consumed by previous bit fields. Before off is 

205 add 
78 align 

280 fields 
364 offset 

19 roundup 
109 UNION 

283 

58 unsignedtype 
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rounded up, it must be incremented past the bits occupied by previous 
bit fields in the unsigned at the current value of off. This space isn't 
accounted for until a normal field is encountered or the end of the list 
is reached. bi ts is this space in bits plus one, so it's converted to bytes 
by computing the ceiling of bits-1 divided by eight. This computation 
is correct even when bi ts is zero. 

When the field sl from Figure 11.1 is processed, off is 5, and bi ts 
is 0. sl's alignment is 2, so the code above sets off to 6, which becomes 
the offset for sl. When amt is processed, off is 12, which is the unsigned 
that holds code and used, and bi ts is 3 + 1 + 26 + 1 = 31. amt needs 7 
bits, which won't fit, so off is set to 12 + ((31 - 1) + 7)/8 = 16, which 
is on a four-byte boundary as dictated by the alignment a, and bi ts is 
reset to zero. Next, last is processed; off is 16 and bits is 7 + 1 = 8. 
Since last isn't a bit field, off is set to 16 + ((8 - 1) + 7)/8 = 17, then 
rounded up to 20. 

Once the offset to p is computed and stored, off is incremented by 
the size of p's type, except for bit fields. If p is a bit field, p-> 1 sb is 
computed and bi ts is incremented by the bit-field width: 

(compute p->offset 283)+= 
if (p->lsb) { 

if (bits == 0) 
bits = 1; 

if (IR->little_endian) 
p->lsb =bits; 

else 
p->lsb = 8*unsignedtype->size - bits + 1 

- p->bitsize + 1; 
bits += p->bitsize; 

} else 
off= add(off, p->type->size); 

if (off + bits2bytes(bits-1) > ty->size) 
ty->size =off+ bits2bytes(bits-1); 

.... 
283 282 

bi ts is the bit offset plus one in addressing order, but 1 sb is the number 
of bits plus one to the right of the bit field regardless of addressing order. 
On a little endian, bi ts and 1 sb are the same. But on a big endian with 
32-bit unsigneds, for example, the number of bits to the right of an m-bit 
field is 32 - (bits - 1) - m, where bits - 1 is the number of bits used 
for previous bit fields. The last statement in the code above updates 
ty->si ze. This code works for both structures and unions because off 
is reset to zero for union fields. For unions, including the additional 
space given by bi ts is crucial; if it's omitted, the size of 

union { int x; int a:31, b:4; }; 

would end up being 4 instead of 8 because the 4 bits for b, which are 
recorded only in bi ts, wouldn't get counted. 
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When code is processed, off is 10 and bits is zero. The round-up 
code shown above bumps off to 12 and becomes code's offset, because 
bit fields must start on a boundary suitable for an unsigned. bi ts and 
code's 1 sb are set to l. If Figure 11.l's example is compiled on a 32-bit 
big endian, code's 1 sb is 32 - 1 + 1 - 3 + 1 = 30; i.e., there are 29 bits 
to the right of code on a big endian. used is reached with off still equal 
to 12 and bits equal to 4. used fits in the unsigned at offset 12, so its 
1 sb becomes 4 and bi ts becomes 5. The padding between used and code 
causes bi ts to be incremented to 5 + 26 = 31. There isn't room in the 
unsigned at offset 12 for amt, so off and bits get changed to 16 and 
zero, as described above, and amt's 1 sb becomes one. 

Structures can appear in arrays: A structure must end on an address 
boundary that is a multiple of the alignment of the field with the strictest 
alignment, so that incrementing a pointer to element n advances the 
pointer to element n + l. For example, if a structure contains a double 
and doubles have an alignment of 8, then the structure must have an 
alignment of 8. As shown above, fie 1 ds keeps a structure's alignment, 
ty->a 1 i gn, greater than or equal to the alignments of its fields, but it 
must pad the structure to a multiple of this alignment, if necessary: 

{assign field offsets 282) += 
chkoverflow(ty->size, ty->align - 1); 
ty->size = roundup(ty->size, ty->align); 
if (overflow) { 

... 
282 280 

error("size of '%t' exceeds %d bytes\n", 
ty->size = INT_MAX&(-(ty->align - 1)); 

ty, INTJ1AX); 

} 

For the example in Figure 11.1, the loop in {assign field offsets) ends 
with ty->si ze equal to 26, the last value of off, which is not a multiple 
of 4, the value of ty->align, so this concluding code bumps ty->size 
to 28. 

11.6 Function Definitions 

A function definition is a declaration without its terminating semicolon 
followed by a compound-statement. In a definition of an old-style func
tion, an optional list of declarations intervenes. 

function-definition: 
declaration-specifiers declarator { declaration } 

compound-statement 

The parsing function is funcdefn, which is called from decl when it 
realizes that a function definition is approaching. 

78 align 
258 decl 

285 

280 fields 
286 funcdefn 

19 roundup 
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... 
{decl.c functions)+= 280 288 ..... 

static void funcdefn(sclass, id, ty, params, pt) int sclass; 
char *id; Type ty; Symbol params[]; Coordinate pt; I 

} 

int i, n; 
Symbol *callee, *caller, p; 
Type rty = freturn(ty); 

{funcdefn 286) 

funcdefn has much to do. It must parse the optional declarations for old
style functions, reconcile new-style declarations with old-style definitions 
and vice versa, and initialize the front end in preparation for parsing 
compound-statement, which contributes to the code list for the function. 
Once the compound-statement is consumed, funcdefn must finalize the 
code list for traversal when the back end calls gencode and emi tcode, 
arrange the correct arguments to the interface procedure function, and 
re-initialize the front end once code for the function has been generated. 

funcdefn's sclass, id, and ty parameters give the storage class, func
tion name, and function type gleaned from the declarator parsed by decl. 
pt is the source coordinate of the beginning of that declarator. params 
is the array of symbols built by parameters - one for each parameter, 
and an extra unnamed one if the parameter list ended with an ellipsis. 
funcdefn starts by removing this extra symbol because it's used only in 
prototypes, and it checks for illegal return types: 

{funcdefn 286)= 286 ..... 286 
if (isstruct(rty) && rty->size == 0) 

error("illegal use of incomplete type '%t'\n", rty); 
for (n = O; params[n]; n++) 

if (n > 0 && params[n-1]->name == NULL) 
params[--n] =NULL; 

params helps funcdefn build two parallel arrays of pointers to symbol
table entries. ca 11 ee is an array of entries for the parameters as seen by 
the function itself, and ca 11 er is an array of entries for the parameters 
as seen by callers of the function. Usually, the corresponding entries in 
these arrays are the same, but they can differ when argument promotions 
force the type of a caller parameter to be different than the type of the 
corresponding callee parameter, as shown in Section 1.3. The storage 
classes of the caller and callee parameters can also be different when, 
for example, a parameter is declared register by the callee but is passed 
on the stack by the caller. The details of building callee and caller 
depend on whether the definition is old-style or new-style: 

{funcdefn 286)+= 
if (ty->u.f.oldstyle) { 

... 
286 290 286 ..... 
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(initialize old-style parameters 287) 
} else { 

(initialize new-style parameters 287) 
} 
for (i = O; (p = callee[i]) != NULL; i++) 

if (p->type->size == 0) { 

} 

error("undefined size for parameter '%t %s'\n", 
p->type, p->name); 

caller[i]->type = p->type = inttype; 

New-style definitions are the easier of the two because parameters has 
already done most of the work, so pa rams can be used as ca 11 ee. The 
caller parameters are copies of the corresponding callee parameters, ex
cept that their types are promoted and they have storage class AUTO to 
indicate that they're passed in memory. 

(initialize new-style parameters 287)= 287 
callee = params; 
caller= newarray(n + 1, sizeof *caller, FUNC); 
for Ci = O; (p = callee[i]) != NULL && p->name; i++) { 

NEW(caller[i], FUNC); 

} 

*caller[i] = *p; 
caller[i]->type = promote(p->type); 
caller[i]->sclass = AUTO; 
if ('1' <= *p->name && *p->name <= '9') 

error("missing name for parameter %d to _ 
function '%s'\n", i + l, id); 

caller[i] = NULL; 

Recall that parameters uses the parameter number for a missing param
eter identifier, so funcdefn must check for such identifiers. Identif1ers 
can be omitted in declarations but not in function definitions. 

For old-style definitions, parameters has simply collected the iden
tifiers in the parameter list and checked for duplicates. funcdefn must 
parse their declarations and match the resulting identifiers with the ones 
in par ams. It uses par ams for the cal 1 er, makes a copy for use as cal 1 ee, 
and calls dee 1 to parse the declarations. 

(initialize old-style parameters 287) = 
caller = params; 
callee= newarray(n + 1, sizeof *callee, FUNC); 
memcpy(callee, caller, (n+l)*sizeof *callee); 
enterscope(); 
while (kind[t] == STATIC I I istypename(t, tsym)) 

decl(dclparam); 

288 287 ... 
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Parsing the parameter declarations adds a symbol-table entry for each 
identifier to the identifiers table. These declarations may omit integer 
parameters and they might declare identifiers that are not in ca 11 ee. 
funcdefn checks for the second condition by visiting every symbol with 
scope PARAM and changing ca 11 ee to point to that symbol: 

.... 
(initialize old-style parameters 287) += 

foreach(identifiers, PARAM, oldparam, callee); 
287 288 287 .... 

.... 
(decl.c functions)+= 286 293 

static void oldparam(p, cl) Symbol p; void *cl; { 
int i; 
Symbol *callee= cl; 

for Ci= O; callee[i]; i++) 
if (p->name == callee[i]->name) { 

callee[i] = p; 
return; 

} 
error("declared parameter '%s' is missing\n", p->name); 

} 

(initialize old-style parameters 287)+= 
for (i = O; (p = callee[i]) != NULL; i++) { 

if ( ! p->defi ned) 

.... 
288 289 .... 

callee[i] = dclparam(O, p->name, inttype, &p->src); 
*caller[i] = *p; 

} 

caller[i]->sclass = AUTO; 
if (unqual(p->type) == floattype) 

caller[i]->type doubletype; 
else 

caller[i]->type promote(p->type); 

.... 

Arguments in calls to old-style functions suffer the default argument pro
motions, so the types of the ca 11 er symbols are modified accordingly. 
For example, in 

f(c,x) char c; float x; { ... } 
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callee's two symbols have types (CHAR) and (FLOAT), but caller's sym
bols have types (INT) and (DOUBLE). As shown in Section 1.3, these dif
ferences cause assignments of the caller values to the callee values at 
the entry to f. 

The standard permits mixing old-style definitions and new-style decla
rations, as the code in this book illustrates, but the definitions must agree 
with the declarations and vice versa. If a new-style declaration precedes 
an old-style definition, the function is deemed to be a new-style function, 
and the old-style definition must provide a parameter list whose types 
are compatible with the declaration. 

... 
(initialize old-style parameters 287) += 

p = lookup(id, identifiers); 
288 289 287 

if (p && p->scope == GLOBAL && isfunc(p->type) 
&& p->type->u.f.proto) { 

} 

Type *proto = p->type->u.f .proto; 
for (i = O; caller[i] && proto[i]; i++) 

if (eqtype(unqual(proto[i]), 
unqual(caller[i]->type), 1) == 0) 
break; 

if (proto[i] I I caller[i]) 
error("conflicting argument declarations for_ 

function '%s '\n", id); 

... 

The new-style declaration cannot end in , ... because there's no compat
ible old-style definition. The code above checks that cal 1 er's types are 
compatible with the corresponding types in the new-style declaration. 
Thus, the only compatible declaration for f above is 

extern int f(int, double); 

The declaration 

extern int f(char, float); 

looks compatible because its types are the same as those for c and x 
in the definition above, but for compability purposes, it's the promoted 
types that matter. 

If a new-style declaration follows an old-style definition, the function 
remains an old-style function, but the declaration must be compatible, 
as above. 1 cc implements this check by building a prototype for the old
style function and changing the function's type to include this prototype. 
The function type's o 1dsty1 e flag is 1, so this prototype is used only by 
eqtype for these kinds of checks. 

(initialize old-style parameters 287) += 
else { 

... 
289 287 

289 
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} 

Type *proto = newarray(n + 1, sizeof *proto, PERM); 
i f (A flag >= 1) 

warning("missing prototype for '%s '\n", id); 
for Ci = 0; i < n; i ++) 

proto[i] = caller[i]->type; 
proto[i] = NULL; 
ty = func(rty, proto, 1); 

When a subsequent new-style declaration appears, redeclaration code will 
call eqtype and will use this prototype to check for compatibility. 

Once the caller and callee are built, funcdefn can define the symbol 
for the function itself, because other functions, such as statement and 
retcode, need access to the current function. This symbol is posted in 
a global variable: 

(decl.c exported data)= 
extern Symbol cfunc; 

291 .... 

Additional information for a function is carried in the symbol's u. f field: 

(function symbols 290)= 
struct { 

Coordinate pt; 
int label; 
int ncalls; 
Symbol *callee; 

} f; 

38 

pt is the source coordinate for the function's entry point, 1abe1 is the la
bel for the exit point, ncal 1 sis the number of calls made by the function, 
and the field ca 11 ee is a copy of funcdefn's local variable ca 11 ee. 

(funcdefn 286) += 
p = lookup(id, identifiers); 
if (p && isfunc(p->type) && p->defined) 

error("redefinition of '%s' previously 
p->name, &p->src); 

cfunc = dclglobal(sclass, id, ty, &pt); 
cfunc->u.f.label = genlabel(l); 
cfunc->u.f.callee = callee; 
cfunc->u.f .pt = src; 
cfunc->defined = 1; 
if (xref) 

use(cfunc, cfunc->src); 

.... 
286 291 286 .... 

defined at %w\n", 

At this point, funcdefn is finally ready to parse the function's body. It ini
tializes the symbol tables for internal labels and statement labels, initial
izes refi nc to one, sets the code list to the single Start entry, appends 
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an execution point for the function's entry point, and calls compound, 
which is described in the next section. 

(funcdefn 286)+= 

labels = table(NULL, LABELS); 
stmtlabs = table(NULL, LABELS); 
refine = 1.0; 
regcount = O; 
codelist = &codehead; 
codelist->next = NULL; 
definept(NULL); 
if (!IR->wants_callb && isstruct(rty)) 

retv = genident(AUTO, ptr(rty), PARAM); 
compound(O, NULL, O); 

( decl.c data)= 

static int regcount; 

(decl.c exported data)+= 

extern Symbol retv; 

... 
290 291 286 ... 

294 ... 
... 

290 

regcount is the number of locals explicitly declared register. As detailed 
in Section 10.8, if the interface flag wants_ca 11 b is zero, the front end 
completely implements functions that return structures. To do so, it 
creates a hidden parameter that points to the location at which to store 
the return value and posts the symbol for this parameter in retv. It also 
arranges to pass the values for this parameter in calls; see Section 9.3. 

The code list grows as the compound-statement is parsed and ana
lyzed. When compound returns, funcdefn adds a tree for a return state
ment to the code list, if necessary. The code is similar to adding a jump: 
The return is needed only if control can flow into the end of the function. 

( funcdefn 286) += 
{ 

Code cp; 

... 
291 292 286 ... 

for (cp = codelist; cp->kind <Label; cp = cp->prev) 

if (cp->kind != Jump) { 
if (rty != voidtype 

} 

&& (rty != inttype I I Aflag >= 1)) 
warning("missing return value\n"); 

retcode(NULL); 

} 
definelab(cfunc->u.f.label); 
definept(NULL); 

291 
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290 cfunc 
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The call to define 1 ab adds the exit-point label, and defi nept plants the 
accompanying execution point. lee warns about the possibility of an 
implicit return for functions that return values other than integers, or 
for all nonvoid functions if its -A option is specified. The final steps 
in parsing the function are to close the scope opened by compound and 
check for unreferenced parameters: 

(funcdefn 286)+= 
exitscope(); 
foreach(identifiers, level, checkref, NULL); 

checkref is described in the next section. 

... 
291 292 286 ... 

The code list for the function is now complete (except for the changes 
made in gencode), and funcdefn is almost ready to call the interface 
procedure function. Before doing so, however, it may have to make 
two transformations to the ca 11 er and ca 11 ee, depending on the values 
of the interface flags wants_ca 11 b and wants_argb. If wants_ca 11 b is 
zero, the hidden argument, pointed to by retv, must be inserted at the 
beginning of ca 11 ee and a copy of it must be inserted at the beginning 
of caller: 

(funcdefn 286)+= 
if (!IR->wants_callb && isstruct(rty)) { 

Symbol *a; 

} 

a= newarray(n + 2, sizeof *a, FUNC); 
a[O] = retv; 
memcpy(&a[l], callee, (n+l)*sizeof *callee); 
callee = a; 
a= newarray(n + 2, sizeof *a, FUNC); 
NEW(a[OJ, FUNC); 
*a[O] = *retv; 
memcpy(&a[l], caller, (n+l)*sizeof *callee); 
caller = a; 

... 
292 292 286 ... 

If wants_argb is zero, the front end completely implements structure 
parameters, as described in Sections 8.8 and 9.3. idtree, for example, 
generates an extra indirection for structure parameters when wants_argb 
is zero because the parameters are really the addresses of the structures. 
This lie must be corrected for the back end, however, which is done by 
changing the types of the caller and callee parameters and by lighting 
structarg to identify the identifiers so changed. 

(symbol flags 50)+= 
unsigned structarg:l; 

(funcdefn 286)+= 
if (!IR->wants_argb) 

... 
211 38 

... 
292 293 286 ... 
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for (i = O; caller[i]; i++) 
if (isstruct(caller[i]->type)) { 

} 

caller[i]->type = ptr(caller[i]->type); 
callee[i]->type = ptr(callee[i]->type); 
caller[i]->structarg = callee[i]->structarg = 1; 

Finally, funcdefn exports the function, if necessary, and passes control 
to the back end: 

(funcdefn 286)+= 
... 

292 293 286 ... 
if (cfunc->sclass != STATIC) 

(*IR->export)(cfunc); 
swtoseg(CODE); 
(*IR->function)(cfunc, caller, callee, cfunc->u.f.ncalls); 

funcdefn concludes by flushing the output, checking for undefined 
statement labels, optionally planting an end-of-function event hook, clos
ing the PARAM scope, and consuming the closing brace on the function's 
compound-statement. 

(funcdefn 286) += 
outflush(); 
foreach(stmtlabs, LABELS, checklab, NULL); 
exits cope() ; 
expect('}'); 

checkl ab is similar to check ref; see Exercise 11.4. 

11.7 Compound Statements 

The syntax of compound statements is 

compound-statement: 
' {' { declaration } { statement } '} ' 

... 
293 286 

and compound is the parsing function. It appends a Bl ockbeg entry to 
the code list, opens a new scope, parses the optional declarations and 
statements, and appends a Bl ockend entry to the code list. compound's 
arguments are the loop handle, the switch handle, and the structured 
statement nesting level. 

(decl.c functions)+= 
-void compound(loop, swp, lev) 
int loop, lev; struct swtch *swp; { 

Code cp; 
int nregs; 

... 
288 296 ... 

217 Blockbeg 
217 Blockend 
93 callee 
93 caller 

290 cfunc 
309 checklab 
296 checkref 

91 CODE 
217 Code 

42 exitscope 
142 expect 
90 export 

456 " (MIPS) 
490 " (SPARC) 
523 " (X86) 
41 foreach 

286 funcdefn 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
306 IR 

60 isstruct 
38 LABELS 
98 outflush 
38 PARAM 
61 ptr 
80 STATIC 

226 stmtlabs 
292 structarg 
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} 

walk(NULL, 0, O); 
cp = code(Blockbeg); 
enterscope(); 
(compound 294) 
cp->u.block.level =level; 
cp->u.block.identifiers =identifiers; 
cp->u.block.types = types; 
code(Blockend)->u.begin = cp; 
if (level > LOCAL) { 

} 

exits cope(); 
expect(' } ' ) ; 

compound is called from statement and from funcdefn. The only dif
ference between these two calls is that the scope is closed only on the 
call from statement. As shown above, funcdefn closes the scope that 
compound opens on its behalf so that it can call the interface procedure 
function before doing so. 

Most of compound's semantic processing concerns the locals declared 
in the block. de 11oca1 processes each local and appends it to one of the 
lists 

(decl.c data)+= 
.... 

291 
static List autos, registers; 

depending on its explicit storage class. Locals with no storage class are 
appended to autos, and static locals are handled like globals. 

If compound is called from funcdefn, it must cope with the interface 
flag wants_ca 11 b. When this flag is one, the back end handles the trans
mission of the return value for functions that return structures. The 
front end generates space for this value in the caller, but it doesn't know 
how to transmit the address of this space to the callee. It assumes that 
the back end will arrange to pass this address in a target-dependent way 
and to store it in the first local. So, compound generates the first local 
and saves its symbol-table entry in retv: 

(compound 294)= 
autos = registers = NULL; 
if (level == LOCAL && IR->wants_callb 
&& isstruct(freturn(cfunc->type))) { 

} 

retv = genident(AUTO, ptr(freturn(cfunc->type)), 
retv->defined = 1; 
retv->ref 1; 
registers= append(retv, registers); 

295 294 ... 

level); 



11.1 • COMPOUND STATEMENTS 

retv is appended to registers even though it's an AUTO to ensure that 
it's passed to the back end as the first local; this order is arranged below. 

The front end uses retv in one of two ways depending on the value of 
wants_ca 11 b. When wants_ca 11 b is one, retv is the symbol-table entry 
for the local that holds the address at which to store the return value, as 
just described. When wants_ca 11 b is zero, there is no such local because 
the front end arranges to pass this address as the value of the hidden 
first parameter; in this case, retv is the symbol-table entry for that pa
rameter. As far as retcode is concerned, retv is the symbol-table entry 
for the variable that carries the address, regardless of how it got there. 

Next, compound parses the optional block-level declarations: 

(compound 294)+= 
expect('{'); 
while (kind[t] == CHAR I I kind[t] == STATIC 
I I istypename(t, tsym) && getchr() != ':') 

decl(dcllocal); 

... 
294 295 294 .... 

The call to getch r checks for the rare but legal code exemplified by 

typedef int T; 
f() { T: ... ; goto T; } 

istypename(t) says Tis a typedef, but inside f, Tis a label. Peeking at 
the next input character avoids the misinterpretation. 

Once the locals are consumed, those on the autos list are appended 
to the registers list, which is then converted to a null-terminated array 
and assigned to the u. block. locals field of the Blockbeg code-list entry. 

(compound 294) += 
{ 

} 

int i; 
Symbol *a= ltov(&autos, STMT); 
nregs = length(registers); 
for (i = O; a[i]; i++) 

registers= append(a[i], registers); 
cp->u.block.locals = ltov(&registers, FUNC); 

... 
295 295 294 .... 

cp->u.block.locals[O .. nregs-1] are the register locals, and the au
tomatic locals begin at cp->u.block. locals[nregs]. This ordering en
sures that the register locals are announced to the back end before the 
automatic locals. 

Next, the statements are processed: 

(compound 294) += 
while (kind[t] == IF I I kind[t] 

statement(loop, swp, lev); 
ID) 

... 
295 296 294 .... 

34 append 
80 AUTO 

295 

294 autos 
217 Blockbeg 
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293 compound 
298 dcllocal 
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walk(NULL, 0, O); 
foreach(identifiers, level, checkref, NULL); 

As the statements are compiled, idtree increments the ref fields of the 
identifiers they use. Thus, at the end of statements, the ref fields iden
tify the most frequently accessed variables. checkref, described below, 
changes the storage class of any scalar variable referenced at least three 
times to REGISTER, unless its address is taken. compound sorts the locals 
beginning at cp->u. block. locals [nregs] in decreasing order of ref val
ues. 

... 
{compound 294)+= 

{ 
295 294 

} 

inti = nregs, j; 
Symbol p; 
for ( ; (p = cp->u.block.locals[i]) !=NULL; i++) { 

for (j = i; j > nregs 

} 

&& cp->u.block.locals[j-1]->ref < p->ref; j--) 
cp->u.block.locals[j] = cp->u.block.locals[j-1]; 

cp->u.block.locals[j] = p; 

Some of these locals now have REGISTER storage class, and sorting them 
on their estimated frequency of use permits the back end to assign reg
isters to those that are used most often without having it do its own 
analysis. The locals in cp->u.block. locals[O .. nregs-1] may be less 
frequently referenced than the others, but they're presented to the back 
end first because the programmer explicitly declared them as registers. 

check ref is called at the ends of compound statements for every sym
bol in the i denti fie rs table, and it does more than change storage 
classes. 

{decl.c functions)+= 
static void checkref(p, cl) Symbol p; void *cl; { 

{checkref 296) 
} 

... 
293 298 ... 

It also prevents volatile locals and parameters from landing in registers 
by lighting their addressed flags: 

{checkref 296)= 297 296 ... 
if (p->scope >= PARAM 
&& (isvolatile(p->type) I I isfunc(p->type))) 

p->addressed = 1; 

check ref warns about unreferenced statics, parameters, and locals when 
1 cc's -A option appears twice: 
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... 
(checkref 296)+= 296 297 296 ... 

if (Aflag >= 2 && p->defined && p->ref == 0) { 

} 

if (p->sclass == STATIC) 
warning("static '%t %s' is not referenced\n", 

p->type, p->name); 
else if (p->scope == PARAM) 

warning("parameter '%t %s' is not referenced\n", 
p->type, p->name); 

else if (p->scope >= LOCAL && p->sclass != EXTERN) 
warning("local '%t %s' is not referenced\n", 

p->type, p->name); 

There's more to changing a parameter's or local's storage class from AUTO 
to REGISTER than is suggested above. A parameter's storage class is 
changed only if there are no explicitly declared register locals. To do 
otherwise risks using the registers for parameters instead of for locals 
as was intended. 

... 
(checkref 296)+= 297 297 296 ... 

if (p->sclass == AUTO 
&& (p->scope == PARAM && regcount == 0 

I I p->scope >= LOCAL) 
&& !p->addressed && isscalar(p->type) && p->ref >= 3.0) 

p->sclass = REGISTER; 

dcl 1 ocal increments regcount for each local explicitly declared register 
in any block. 

check ref also helps manage the exte rna 1 s table. As shown below, 
dcllocal installs locals that are declared extern in externals as well as 
in i denti fi ers. When the local goes out of scope, check ref adds the 
value of the ref field in its i denti fie rs symbol to the ref field of its 
exte rna 1 s symbol: 

(check ref 296) += 
if (p->scope >= LOCAL && p->sclass == EXTERN) { 

Symbol q = lookup(p->name, externals); 
q->ref += p->ref; 

} 

... 
297 297 296 ... 

A ref value for an identifier in the exte rna 1 s table thus accumulates the 
references from all functions that reference that identifier. 

Finally, checkref is also called at the end of compilation to check 
for undefined static variables and functions. It tests for this call, which 
comes from fi na 1 i ze, by inspecting the current scope level: 

... 
(checkref 296)+= 297 296 

if (level == GLOBAL && p->sclass == STATIC && !p->defined 

179 addressed 
62 Aflag 
80 AUTO 

296 checkref 
298 dcllocal 

50 defined 
40 externals 
80 EXTERN 

303 finalize 
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291 regcount 
80 REGISTER 
37 scope 
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&& isfunc(p->type) && p->ref) 
error("undefined static '%t %s'\n", p->type, p->name); 

l cc doesn't complain about unreferenced static functions that are de
clared but never defined because the standard doesn't say that such dec
larations are errors. 

decl calls the last of the dclX functions, dcllocal, when it's called 
from compound for each local. 

.... 
(decl.c functions}+= 296 303 

static Symbol dcllocal(sclass, id, ty, pos) 
int sclass; char *id; Type ty; Coordinate *pos; { 

Symbol p, q; 

} 

(dcl local 298} 
return p; 

... 

Like dclglobal and dcl pa ram, dcllocal starts by checking for an invalid 
storage class: 

(dcllocal 298}= 
if (sclass == O) 

sclass = isfunc(ty) ? EXTERN : AUTO; 
else if (isfunc(ty) && sclass != EXTERN) { 

error("invalid storage class '%k' for '%t %s'\n", 
sclass, ty, id); 

sclass = EXTERN; 
} else if (sclass == REGISTER 

298 ... 

&& (isvolatile(ty) I I isstruct(ty) I I isarray(ty))) { 
warning("register declaration ignored for '%t %s'\n", 

ty' id); 
sclass = AUTO; 

} 

298 

Local variables may have any storage class, but functions must have no 
storage class or extern. Volatile locals and those with aggregate types 
may be declared register, but l cc treats them as automatics. 

Next, dcl local checks for redeclarations: 

(dell oca l 298} += 
q = lookup(id, identifiers); 
if (q && q->scope >= level 
I I q && q->scope == PARAM && level == LOCAL) 

if (sclass == EXTERN && q->sclass == EXTERN 
&& eqtype(q->type, ty, 1)) 

ty = compose(ty, q->type); 
else 

.... 
298 299 298 ... 
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error("redeclaration of '%s' previously _ 
declared at %w\n", q->name, &q->src); 

1 cc uses different scopes for parameters and for the locals in a function's 
compound-statement, but the standard treats these scopes as one. Thus, 
a local declaration is a redeclaration if there's already an identifier at the 
same scope or if a parameter has the same name and the local has scope 
LOCAL. The code 

f() {extern int x[]; extern int x[lO]; ... } 

illustrates the one case when more than one declaration for a local is 
permitted: when they're extern declarations. Here, the second extern 
declaration contributes more information about x's type - namely, its 
size. 

dcl 1 ocal next installs the identifier, initializes its fields, and switches 
on its storage class, which dictates subsequent processing . 

(dcllocal 298)+= 
p = install(id, &identifiers, level, FUNC); 
p->type = ty; 
p->sclass = sclass; 
p->src = *pos; 
switch (sclass) { 
case EXTERN: (extern local 300) break; 
case STATIC: (static local 300) break; 
case REGISTER: (register local 299) break; 
case AUTO: (autolocal299) break; 
} 

... 
298 301 298 ... 

Automatic and register locals are the easy ones; they're simply appended 
to the appropriate list: 

(register local 299)= 299 
registers= append(p, registers); 
regcount++; 
p->defined = 1; 

(auto local 299) = 
autos= append(p, autos); 
p->defined = 1; 

299 

regcount is the number of locals explicitly declared register anywhere 
in a function, and is used in checkref, above. Unlike globals, a local's 
defined flag is lit when it's declared, before it's passed to the back end, 
which occurs in gencode. Locals are treated this way because they can be 
declared only once (in a given scope), and their declarations are always 
definitions. 

Most of the work for static locals is in dealing with the optional ini
tialization, which is the same as what i ni tgl oba 1 does for globals: 

34 append 
80 AUTO 

299 

294 autos 
296 checkref 
298 dcllocal 

50 defined 
80 EXTERN 
97 FUNC 

337 gencode 
41 identifiers 

264 initglobal 
44 install 
42 level 
38 LOCAL 

291 regcount 
80 REGISTER 

294 registers 
80 STATIC 
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(static local 300} = 
(*IR->defsymbol)(p); 
initglobal(p, O); 
if (!p->defined) 

if (p->type->size > 0) { 
defglobal(p, BSS); 
(*IR->space)(p->type->size); 

} else 
error("undefined size for '%t %s'\n", 

p->type, p->name); 
p->defined = 1; 

299 

If there's no initialization, p->defined is zero when initglobal returns, 
and dcl 1oca1 must allocate space for the static local. Like uninitialized 
globals, uninitialized statics are defined in the BSS segment. 

Locals declared extern suffer the rules summarized by the column 
labelled EXTERN in the table on page 262: If there's a visible file-scope 
declaration for the identifier, the local refers to that declaration. In any 
case, the local is announced via the interface function defsymbo 1 since 
it's like a global except for scope. 

(extern local 300}= 
if (q && q->scope == GLOBAL && q->sclass 

p->sclass = STATIC; 
p->scope = GLOBAL; 
(*IR->defsymbol)(p); 
p->sclass = EXTERN; 
p->scope =level; 

} else 
(*IR->defsymbol)(p); 

300 299 .... 
STATIC) { 

As this code suggests, the presence of a visible file-scope declaration for 
a static identifier by the same name needs special treatment. A back 
end's defsymbol might treat statics and externs differently, for exam
ple, by using different conventions for their target-dependent names. 
So, de 11 oca l changes the storage class and scope for duration of the 
defsymbol call. This code also fails to check that the two identifiers 
have compatible types, because that check is made below. 

Extern locals are also installed in the externals table that, as de
scribed in Section 11.2, is used to detect inconsistencies in block-level 
extern declarations. 

(extern local300}+= 
{ 

Symbol r = lookup(id, externals); 
if (r == NULL) { 

... 
300 299 

r = install(p->name, &externals, GLOBAL, PERM); 
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} 

} 

r->src = p->src; 
r->type = p->type; 
r->sclass = p->sclass; 
q = lookupCid, globals); 
if Cq && q->sclass != TYPEDEF && q->sclass != ENUM) 

r = q; 

if Cr && !eqtypeCr->type, p->type, 1)) 
warningC"declaration of '%s' does not match previous_ 

declaration at %w\n", r->name, &r->src); 

If there's already a symbol for the identifier in externals, it must have 
a compatible type. Otherwise, the identifier is installed in externals. 
There's a tricky case that's not covered by dcl 1 oca l's redeclaration code 
shown on page 298. In 

int x; 
fCint x) { ... {extern float x; ... } } 

the extern declaration in f for x conflicts with the file-scope declaration 
for x, because they specify different types for the same x. The 1 ookup 
call in the redeclaration code returns a pointer to the symbol for the 
parameter x and assigns that pointer to q. It's this value that's used at 
the beginning {extern local) to check for file-scope identifiers; the pa
rameter x hides the file-scope x, but the latter is the one that's needed 
to check for these kinds of conflicts. Thus, dcl 1oca1 looks up the iden
tifier in globals and, if one is found, uses it to check for compatible 
types. When there's no intervening declaration that hides the file-scope 
identifier, this second call to lookup sets q to its existing value, which 
is the common case. The example above is rare, but occurs nonetheless, 
particularly in large programs. 

dcl local concludes by parsing the optional initialization. Unlike in 
initglobal, the initial value may be an arbitrary expression in some 
cases. If the local has a scalar type, its initializer may be an expres
sion or an expression enclosed in braces. If the local is a structure or 
union, its initializer can be a single expression or a brace-enclosed list 
of constant expressions. If the local is an array, its initializer can only 
be a brace-enclosed list of constant expressions. An array must either 
have an explicit size or an initializer that determines its size. de 11oca1 
handles all of these cases by generating an assignment to the local: 

(dcllocal 298)+= 
if Ct == '=') { 

Tree e; 
if Csclass == EXTERN) 

... 
299 298 

errorC"illegal initialization of 'extern %s'\n", id); 

298 dcllocal 
109 ENUM 
69 eqtype 
40 externals 
80 EXTERN 
41 globals 

264 initglobal 
45 lookup 
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I I isstruct(p->type) && t != '{') { 
if Ct == I {I) { 

t = gettok(); 
e = exprl(O); 
expect('}'); 

} else 
e = exprl(O); 

} else { 

} 

(generate an initialized static t1 302) 

e = idtree(tl); 

walk(root(asgn(p, e)), 0, O); 
p->ref = 1; 

if (!isfunc(p->type) && p->defined && p->type->size <= 0) 
error("undefined size for '%t %s'\n", p->type, id); 

For a local that has a scalar type, a structure type, or a union type, and 
whose initializer is a single expression, the initialization is an assign
ment of the initializer to the local. For a local that has an aggregate type 
and a brace-enclosed initializer, 1 cc generates an anonymous static vari
able, and initializes it as specified by the initializer. A single structure 
assignment initializes the local, even for arrays. 

(generate an initialized static t1 302) = 302 
Symbol tl; 
Type ty = p->type, tyl = ty; 
while (isarray(tyl)) 

tyl = tyl->type; 
if (!isconst(ty) && (!isarray(ty) 11 !isconst(tyl))) 

ty = qual(CONST, ty); 
tl = genident(STATIC, ty, GLOBAL); 
initglobal(tl, 1); 
if (isarray(p->type) && p->type->size 0 
&& tl->type->size > 0) 

p->type = array(p->type->type, 
tl->type->size/tl->type->type->size, O); 

This static will never be modified, so a const qualifier is added to its 
type, which causes initglobal to define it in the LIT segment. 
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11.8 Finalization 

As suggested in the previous section, checkref is also called at the end 
of compilation for each file-scope identifier, i.e., those with scope GLOBAL 
This call comes from fi na 1 i ze, which also processes externals and glob
als. 

( decl.c functions)+= 
void finalize() { 

foreach(externals, 
foreach(identifiers, 
foreach(identifiers, 
foreach(constants, 

} 

GLOBAL, 
GLOBAL, 
GLOBAL, 
CONSTANTS, 

doextern, 
doglobal, 
checkref, 
doconst, 

NULL); 
NULL); 
NULL); 
NULL); 

.... 
298 303 .... 

Each of fi na 1 i ze's four lines processes a set of symbols in the tables 
shown in the calls to foreach. The first line processes the identifiers in 
exte rna 1 s. Recall that de 11oca1 installs locals that are declared extern 
in this table. Some of these declarations ref er to identifiers that are 
also declared at file scope and thus have entries in i denti fi ers. Some, 
however, refer to identifiers declared in other translation units, and these 
must be imported by the translation unit in which the extern declarations 
occur. doexte rn imports just these identifiers by calling the interface 
function import: 

(decl.c functions)+= 
static void doextern(p, cl) Symbol p; void *cl; { 

Symbol q = lookup(p->name, identifiers); 

} 

if (q) 
q->ref += p->ref; 

else { 
(*IR->defsymbol)(p); 
(*IR->import)(p); 

} 

.... 
303 304 .... 

import cannot be called when dcllocal encounters an extern declaration 
because the local declaration can appear before the file-scope definition, 
and import must not be called for those identifiers. 

The second call to foreach finalizes tentative definitions and file-scope 
extern declarations. A file-scope declaration of an object without an ini
tializer that has no storage class or has the storage class static is a ten
tative definition. There may be more than one such declaration for an 
identifier, as long as the declarations specify compatible types. For ex
ample, the input 

303 
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int x; 
int x; 
int x; 

is valid and each declaration is a tentative definition for x. A file-scope 
declaration with an initializer is an external definition, and there may be 
only one such definition. 

At the end of a translation unit, those file-scope identifiers that have 
only tentative definitions must be finalized; this is accomplished by as
smning that the translation unit includes a file-scope external definition 
for the identifier with an initializer equal to zero. For example, x is fi
nalized by assuming 

int x = O; 

Uninitialized file-scope objects are thus initialized to zero by definition. 
dog 1oba1 processes each identifier in i denti fie rs. 

... 
(decl.c functions)+= 303 305 ... 

static void doglobal(p, cl) Symbol p; void *cl; { 

} 

if (!p->defined && (p->sclass == EXTERN 
I I isfunc(p->type) && p->sclass == AUTO)) 

(*IR->import)(p); 
else if (!p->defined && !isfunc(p->type) 
&& (p->sclass == AUTO I I p->sclass == STATIC)) { 

if (isarray(p->type) 

} 

&& p->type->size == 0 && p->type->type->size > 0) 
p->type = array(p->type->type, 1, O); 

if (p->type->size > 0) { 
defglobal(p, BSS); 
(*IR->space)(p->type->size); 

} else 
error("undefined size for '%t %s'\n", 

p->type, p->name); 
p->defined = 1; 

(print an ANSI declaration for p 305) 

If an extern identifier or nonstatic function is undefined, it's imported, 
because it refers to a definition given in some other translation unit. 
Undefined objects - those with only tentative definitions - are defined 
in the BSS segment. Back ends must ensure that this segment is cleared 
before execution. Arrays receive special treatment: If the array's size is 
unspecified, it's defined as if it were declared with one element. 

lee's -P option causes dog 1oba1 to print an ANSI-style declaration on 
the standard error output. 
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(print an ANSI declaration for p 305) = 
if (Pflag 
&& !isfunc(p->type) 
&& !p->generated && p->sclass != EXTERN) 

printdecl(p, p->type); 

304 

For functions, this output includes prototypes even if the functions are 
specified with old-style definitions. Editing this output helps convert old 
programs to ANSI C. See Exercise 4.5. 

During compilation, most constants end up in dags and thus embed
ded in machine instructions. As specified by the configuration metrics 
shown in Section 5.1, some constants cannot appear in instructions, and 
string literals never appear in instructions. For each such constant, an 
anonymous static variable is generated, and doconst arranges to initial
ize that variable to the value of the constant. 

(decl.c functions)+= 
void doconst(p, cl) Symbol p; void *cl; { 

} 

if (p->u.c.loc) { 

} 

defglobal(p->u.c.loc, LIT); 
if (isarray(p->type)) 

(*IR->defstring)(p->type->size, p->u.c.v.p); 
else 

(*IR->defconst)(ttob(p->type), p->u.c.v); 
p->u.c.loc->defined = 1; 
p->u.c.loc =NULL; 

... 
304 

The u. c. 1 oc fields of symbols in the constants table point to the symbol 
for the anonymous static. 

11.9 The Main Program 

The function main, in main.c, calls program and finalize to initiate and 
conclude compilation, and it calls the interface functions progbeg and 
progend to let a back end do its initialization and finalization. 

(main.c functions)= 
int main(argc, argv) int argc; char *argv[]; { 

(main 306) 
return errcnt > O; 

} 

errcnt is the number of errors detected during compilation, so 1 cc re
turns one when there are errors. On most systems, this exit code stops 

305 
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the compilation system from running subsequent processors, such as 
the assembler and linker. 

Before main calls the initialization functions, it must point IR to the 
appropriate interface record, as specified in Section 5.11. The back end 
initializes the array bindings to pairs of names and pointers to their as
sociated interface records. main uses its rightmost -target"'name option 
to select the desired interface record: 

(main.c data)= 
Interface *IR "' NULL; 

307 ... 

(main 306) = 
{ 

306 305 

int i, j; 
for Ci "' argc - 1; i > O; i--) 

if (strncmp(argv[i], "-target=<", 8) "'= 0) 
break; 

if Ci > O) { 
for (j = O; bindings[j].name; j++) 

... 

if (strcmp(&argv[i][8], bindings[j].name) 0) 
break; 

if (bindings[j].ir) 
IR= bindings[j].ir; 

else { 
fprint(2, "%s: unknown target '%s'\n", argv[O], 

&argv[i][8]); 
exit(l); 

} 
} 

} 
if (!IR) { 

inti; 

} 

fprint(2, "%s: must specify one of\n", argv[O]); 
for (i = O; bindings[i].name; i++) 

fprint(2, "\t-target"'%s\n", bindings[i] .name); 
exit(l); 

If no -target option is given, 1 cc lists the available targets and exits. 
Once IR points to an interface record, the front end is bound to a target 
and this binding cannot be changed for the duration of translation unit. 

Next, main initializes the front end's type system and parses its other 
options: 

(main 306)+= 
typeinit(); 
argc = doargs(argc, argv); 

.... 
306 307 305 ... 
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In addition to processing the arguments the front end understands, 
doargs sets i nfi 1 e and outfi 1 e to the first and second nonoption ar
guments. These values name the source-file input file and the assembler 
language output file. If one or both of these files is specified, main opens 
the file and sets the appropriate file descriptor. 

(main.c data)+= 
static char *infile, *outfile; 

(main 306)+= 
if (infile && strcmp(infile, "-") != 0) 

if ((infd = open(infile, 0)) < 0) { 
fprint(2, "%s: can't read '%s'\n", 

argv[O], infile); 
exit(l); 

} 
if (outfile && strcmp(outfile, "-") != 0) 

if ((outfd = creat(outfile, 0666)) < 0) { 
fprint(2, "%s: can't write '%s'\n", 

argv[O], outfile); 
exit(l); 

} 
inputinit(); 
outputini t () ; 

... 
306 

... 
306 307 305 ... 

Once the descriptors are initialized, the input and output modules are 
initialized by the Ini t functions shown above, and the back end is ini
tialized: 

(main 306)+= 
t = gettok(); 
(*IR->progbeg)(argc, argv); 

... 
307 307 305 ... 

doargs changes argv to hold just those options that it doesn't under
stand, which are assumed to be back-end options. doargs returns the 
number of these options, which is assigned to argc above. program com
piles the source code 

(main 306)+= 
program(); 

... 
307 307 305 ... 

and main concludes by calling fi na 1 i ze and the interface procedure 
progend, and by flushing the output: 

(main 306)+= 
finalize(); 
(*IR->progend)(); 
outflush(); 

... 
307 305 

307 
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Further Reading 

Ritchie (1993) gives a detailed history of C's development and describes 
the origins and peculiarities of its declaration syntax, which is one of C's 
distinguishing characteristics and the one that is most often criticized. 
Sethi (1981) summarizes the ramifications of those design decisions, and 
proposes an alternative syntax for declarators in which pointers are de
noted by the suffix A as in Pascal instead of C's prefix *. If his alternative 
had been adopted, dcl rand dcl rl would be much simpler. 

Like most high-level languages, C demands that identifiers be declared 
before they are used (functions are the lone exception). This rule forces 
language designers to permit multiple declarations and induces rules 
such as those for C's tentative definitions. Much of the code in dclX, 
doglobal, and doextern is devoted to dealing with these design deci
sions. Modula-3 (Nelson 1991) is one of the few languages that permits 
declarations and uses to appear in any order and avoids ordering rules 
altogether, which is simpler to understand. This design decision does 
have its own impact on the compiler, but that impact is no greater than 
the impact of C's rules governing multiple declarations. 

Exercises 

11.1 dcl rl accepts the erroneous declaration int *const const *p, yet 
l cc issues the expected diagnostic 

illegal type 'const const pointer to int' 

Where and how is this error detected? 

11.2 dcl rl's implementation looks peculiar. The syntax specification 
on page 266 suggests that dcl rl begin with a loop that consumes 
pointer followed by parsing the rest of declarator. Rewrite dcl rl 
using this approach. You'll find that you'll need to append the 
pointer portion of the inverted type to the inverted type constructed 
by parsing the rest of declarator. Change your implementation into 
one similar to dcl rl's by applying program transformations. 

11.3 Type names are used in casts and as operands to si zeof (see (type 
cast) and (sizeof) ). The syntax for type definitions is 

type-name: 
{ type-specifier I type-qualifier } [ abstract-declarator ] 

abstract-declarator: 
* { type-qualifier } 
pointer ' (' abstract-declarator ') ' 
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{ suffix-abstract-declarator} 
pointer { suffix-abstract-declarator } 

suffix-abstract-declarator: 
' [' [ constant-expression] ']' 
' C' parameter-list ') ' 

An abstract-declarator is a declarator without an embedded identi
fier. Implement 

(main.c exported functions}= 309 ... 
extern Type typename ARGS((void)); 

which parses type-name. dcl r parses an abstract-declarator when 
its abstract argument is one, so typename can get dcl r to do most 
of the work and takes less than 10 lines. 

11.4 Implement 

(main.c exported functions}+= 
extern void checklab ARGS((Symbol p, void *cl)); 

.... 
309 310 ... 

which is called for each symbol in stmtl abs. checkl ab issues an 
error if p is an undefined label. 

11.5 dcl 1oca1 calls i ni tgl oba 1 to parse the initialization for a static 
local, but it also parses an optional initialization. Nevertheless, 1 cc 
correctly rejects input such as 

f() { static int x = 2 3; } 
g() { static int y = 2; 3; } 

Explain how. 

11.6 In fields, the field with the largest alignment determines the align
ment of the entire structure, which is correct only because the sizes 
and alignments of the basic types must be powers of two. Revise 
fie 1 ds so that it is correct for any positive values for the sizes and 
alignments of the basic types. 

11. 7 A bit field declaration like unsigned: 0 causes subsequent bit fields 
to be placed in the next addressable storage unit, even if there's 
room in the current one. For example, if the declaration in Fig
ure 11. l is rewritten as 

struct { 
char a[S]; 
short sl, s2; 
unsigned code:3, :0, used:l; 

298 dcllocal 
265 dclr 

-

280 fields 
264 initglobal 
226 stmtlabs 
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} 

int amt:?, last; 
short id; 

the code field stays in the unsigned at offset 12, and used lands to 
the right of amt in the unsigned at 16. Explain how fields handles 
this case. 

11.8 Reading fields is excruciating. Write a new - presumably bet
ter - version and compare the two versions side-by-side. Is your 
version easier to understand? Do you have more confidence in its 
correctness? 

11.9 The syntax for enumeration specifiers is 

enum-specifier: 
enum [identifier] ' {' enumerator { , enumerator} '}' 
enum identifier 

enumerator: 
identifier 
identifier= constant-expression 

Implement the parsing function for enum-specifier 

(main.c exported functions}+= 
extern Type enumdcl ARGS((void)); 

... 
309 

enumdcl is similar to structdcl, but much simpler, and there's no 
special rule about enum-specifiers appearing alone in declarations 
because there are no mutually recursive enumeration definitions. 
So an enum-specifier with enumerators must not refer to an ex
isting enumeration type. enumdcl can use newstruct to define a 
new enumeration type, and it installs the enumeration constants in 
i denti fi ers with storage class ENUM. The integer value of an enu
meration constant is stored in the symbol's u. value field. 



12 
Generating Intermediate Code 

The remaining missing pieces of 1 cc's front end are those that convert 
trees to dags and append them to the code list, and the functions gen code 
and emi tcode, which back ends call from their function interface proce
dures to traverse code lists. These pieces appear in dag. c, which exports 
gencode and emitcode (see Section 5.10) and 

(dag.c exported functions)+= 
extern void walk ARGS((Tree e, int tlab, int flab)); 
extern Node listnodes ARGS((Tree e, int tlab, int flab)); 
extern Node newnode ARGS((int op, Node left, Node right, 

Symbol p)); 

.... 
93 

walk and listnodes manipulate the forest of dags defined in Section 5.5. 
A sequence of forests represents the code for a function. The sequence is 
formed by the Gen, Jump, and Label entries in a code list. As outlined in 
Section 10.3, 1 i stnodes constructs a sequence incrementally; it converts 
the tree e to a dag and appends that dag to the forest. Figures 5.2 and 5.3 
(pages 86 and 8 7) show examples of forests. 

wa 1 k converts the tree e to a dag by calling 1 i st nodes. It appends the 
forest to the code list in a Gen entry, and reinitializes the front end for a 
new forest. 1 i st nodes bears the complexity of converting trees to dags, 
so wa 1 k is easy: 

( dag.c functions)= 
void walk(tp, tlab, flab) Tree tp; int tlab, flab; { 

listnodes(tp, tlab, flab); 

} 

if (forest) { 

} 

code(Gen)->u.forest = forest->link; 
forest->link =NULL; 
forest = NULL; 

reset(); 
deallocate(STMT); 

(dag.c data)= 
static Node forest; 

315 ..... 

314 ..... 

forest points to the last node in the current forest, which, while it's 
under construction, is a circularly linked list threaded through the 1 ink 
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318 listnodes 
315 newnode 
317 reset 

97 STMT 

311 
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fields of nodes, so forest-> 1 ink is the first node in the forest. wa 1 k 
turns this list into a noncircular linked list as it appends the forest to 
the code list. 

The values of tlab and flab passed to listnodes and walk are label 
numbers and are used when e is a conditional expression, like a compar
ison. If tlab is nonzero, listnodes generates code that jumps to tlab 
when e is nonzero. If fl ab is nonzero, 1 i st nodes generates code that 
jumps to fl ab when e is zero. Section 10.4 shows how these labels are 
used in generating code for if statements. Only one of t 1 ab or fl ab can 
be nonzero. 

newnode allocates a node and initializes its fields with the values of its 
arguments. newnode is called by define 1 ab and jump in the front end, 
and by back ends that must build dags to spill registers, for example. 

1 i stnodes also eliminates common subexpressions - expressions that 
compute redundant values. For example, Figure 8.1(page148) shows the 
tree for the expression (a+b)+b*(a+b). The value of a+b is computed 
twice. The rvalue of b is also computed twice: once in a+b and again in 
the multiplication. The rvalue of b is a trivial computation, but a redun
dant one nonetheless. Eliminating these common subexpressions yields 
the dag shown in Figure 12.1. Lvalues can also be common expressions; 
p's !value in the forest shown in Figure 5.3 (page 87) is an example. In 
these and other figures that depict dags, the operators are shown as they 
appear in Table 5.1. Omitting the +before suffixes distinguishes trees 
from dags. 

Some trees built by the front end are really dags because they mir
ror the dags implicit in the source language by the augmented assign
ment and postfix operators. The trees for a += b, shown in Figure 8.2 
and for i ++, shown in Figure 8.3, are examples. 1 i st nodes must detect 
such idioms in order to generate intermediate code that evaluates the 
operands of these operators as dictated by the standard, which says that 
the operands of the prefix, suffix, and augmented assignment operators 
must be evaluated only once. 

ADDI 

k~ 
/"\)b 

IND I RI INDIRI 

i i 
ADDRGP 

a 
ADDRGP 

b 

FIGURE 12.1 Dag for (a+b)+b*(a+b). 
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Trees contain operators that are not part of the interface repertoire 
listed in Table 5.1. 1 i stnodes eliminates all occurrences of these oper
ators, which are listed in Table 8.1, by generating code that implements 
them. For example, it implements AND by annotating nodes for the com
parison operators with labels and by inserting jumps and defining labels 
where necessary. Similarly, it implements FIELD, which specifies bit-field 
extraction or assignment, by appropriate combinations of shifting and 
masking. 

A basic block is a sequence of instructions that have a single entry 
and a single exit with straight-line code in between; if one instruction 
in the block is executed, all the instructions are executed. Instructions 
that are targets of jumps and that follow a conditional or unconditional 
jump begin basic blocks. Compilers often use a flow graph to represent a 
function. The nodes in a flow graph are basic blocks and the directed arcs 
indicate the possible flow of control between basic blocks. 1 cc's code list 
is not a flow graph, and the forests in Gen entries do not represent basic 
blocks because they can include jumps and labels. They represent what 
might be called expanded basic blocks: They do have single entry points, 
but they can have multiple exits and multiple internal execution paths. 
As the implementation of 1 i stnodes below reveals, this design makes 
common expressions available across entire expanded basic blocks in 
some cases. It thus extends the lifetimes of these subexpressions beyond 
basic blocks with little extra effort. 

12.1 Eliminating Common Subexpressions 

1 i stnodes takes a Tree t and builds the corresponding Node n. Trees 
are defined in Section 8.1, and nodes are defined in Section 5.5. n->op 
comes from t->op, and the elements of n->syms come from t->u. sym, 
or from installing t->u. v in the constants table, or are fabricated from 
other constants by 1 i stnodes. The elements of n->ki ds come from the 
nodes for the corresponding elements of t->ki ds. n also has a count 
field, which is the number of nodes that reference n as an operand. 

Nodes are built from the bottom up: n is built by traversing tin post-
order with the equivalent of 

1 = listnodes(t->kids[O], 0, O); 
r = listnodes(t->kids[l], 0, O); 
n = node(t->op, l, r, t->u.sym); 

node allocates a new node and uses its arguments to initialize the fields. 
To eliminate common subexpressions, node must determine if the re
quested node has already been built; that is, if there's a node with the 
same fields that can be used instead of building a new one. 

node keeps a table of available nodes and consults this table before 
allocating a new node. When it does allocate a new node, it adds that 

313 

149 AND 
40 constants 

149 FIELD 
217 Gen 
318 listnodes 
315 node 



314 

node 315 

CHAPTER 12 • GENERA TING INTERMEDIATE CODE 

Called With 

ADDRG+P 
INDIR+I 1 
ADDRG+P 
INDIR+I 3 
ADD+! 2 4 
ADDRG+P 
INDIR+I 3 
ADDRG+P 
INDIR+I 1 
ADDRG+P 
INDIR+I 3 
ADD+! 2 4 
MUL+I 3 5 
ADD+! 5 6 

a 

b 

b 

a 

b 

Builds 

l=(ADDRGP a) 
2=(INDIRI 1) 
3=(ADDRGP b) 
4=(INDIRI 3) 
S=(ADDI 2 4) 

6=(MULI 3 5) 
?=(ADDI 5 6) 

TABLE 12.1 Calls to node for (a+b)+b*(a+b). 

Returns 

1 
2 
3 
4 
5 
3 
4 
1 
2 
3 
4 
5 
6 
7 

node to the table. Building the dag shown in Figure 12.1 from the tree 
shown in Figure 8.1 (page 148) illustrates how this table is constructed 
and used. Table 12.1 shows the sequence of calls to node, the node 
each builds, if any, and the value returned. The middle column shows 
the evolution of the table consulted by node. The nodes are denoted by 
numbers. The first call is for the ADDRG+P tree in the lower left corner of 
Figure 8.1; node's table is empty, so it builds a node for the ADDRG+P and 
returns it. The next four calls, which traverse the remainder of the tree 
for a+b, are similar; each builds the corresponding node and returns it. 
As nodes are returned, they're used as operands in other nodes. When 
node is called for the ADDRG+P node at the leaf of the left operand of the 
MUL+I, it finds that node in the table (node 3) and returns it. Similarly, it 
also finds that node 4 corresponds to (INDIRI 3). node continues to find 
nodes in the table, including the node for the commmon subexpression 
a+b. 

The nodes depicted in the second column of the table above are stored 
in a hash table: 

(dag.c data}+= 
static struct dag { 

struct node node; 
struct dag *hlink; 

} *buckets[16]; 
int nodecount; 

.... 
311 333 ..... 

dag structures hold a node and a pointer to another dag in the same 
hash bucket. nodecount is the total number of nodes in buckets. The 
hash table rarely has more than a few tens of nodes, which is why it 
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has only 16 buckets. node searches buckets for a node with the same 
operator, operands, and symbol and returns it if it's found; otherwise, it 
builds a new node, adds it to buckets, and returns it. 

( dag.c functions)+= 
static Node node(op, 1, r, sym) 
int op; Node l, r; Symbol sym; { 

int i; 
struct dag *p; 

.... 
311 315 ..... 

i = (opindex(op)A((unsigned)sym>>2))&(NELEMS(buckets)-1); 
for (p = buckets[i]; p; p = p->hlink) 

if (p->node.op op && p->node.syms[O] sym 
&& p->node.kids[O] == 1 && p->node.kids[l] r) 

} 

return &p->node; 
p = dagnode(op, 1, r, sym); 
p->hlink = buckets[i]; 
buckets[i] = p; 
++nodecount; 
return &p->node; 

dagnode allocates and initializes a new dag and its embedded node. It 
also increments the count fields of the operand nodes, if there are any. 

(dag.c functions)+= 
static struct dag *dagnode(op, l, r, sym) 
int op; Node l, r; Symbol sym; { 

} 

struct dag *p; 

NEWO(p, FUNC); 
p->node.op = op; 
if ((p->node.kids[OJ 

++1->count; 
if ((p->node.kids[l] 

++r->count; 
p->node.syms[O] = sym; 
return p; 

1) != NULL) 

r) != NULL) 

.... 
315 315 ..... 

1 i stnodes calls node to use a node for a common subexpression or to 
allocate a new node. It calls newnode to bypass the search and build a 
new node that is not added to buckets: 

( dag.c functions)+= 
Node newnode(op, l, r, 

return &dagnode(op, 
} 

.... 
315 316 ..... 

sym) int op; Node l, r; Symbol sym; { 
l, r, sym)->node; 
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314 dag 
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98 opindex 
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Only newnode can be used by back ends to build nodes for their own 
uses, such as generating code to spill registers. 

Nodes appear in buckets as long as the values they represent are 
valid. Assignments and function calls can invalidate some or all nodes 
in buckets. For example, in 

c = a + b; 
a= a/2; 
d = a + b; 

the value of a+b computed in the third line isn't the same as the value 
computed in the first line. The second line's assignment to a invalidates 
the node (INDIRI a) where a is the node for the !value of a. Operators 
with side effects, such as ASGN and CALL, must remove the nodes that 
they invalidate. While these nodes are different for each such operator, 
1 cc handles only two cases: Assignments to an identifier remove nodes 
for its rvalue, and all other operators with side effects remove all nodes. 
ki 11 handles assignments: 

( dag.c functions)+= 
static void kill(p) Symbol p; { 

inti; 

} 

struct dag **q; 

for (i = O; i < NELEMS(buckets); i++) 
for (q = &buckets[i); *q; ) 

if ((*qrepresentsp'srvalue316)) { 
*q = (*q)->hlink; 
--nodecount; 

} else 
q = &(*q)->hlink; 

... 
315 317 ... 

The obvious rvalue of p is a dag of the form (INDIR (ADDRxP p)), where 
the ADDRxP is any of the address operators. The less obvious case is a 
dag of the form (INDIR oc) where oc is an arbitrary address computation, 
which might compute the address of p. Both cases are detected by 

(*q represents p's rvalue 316)= 
generic((*q)->node.op) == INDIR && 
(!isaddrop((*q)->node.kids[O]->op) 
I I (*q)->node.kids[O]->syms[O] == p) 

316 

Only the INDIR nodes must be removed, because that's enough to make 
subsequent searches fail. For example, after the assignment a = a/2, 
the node for a+b remains in buckets. But the a+b in the assignment to d 
won't find it because the reference to the rvalue of a builds a new node, 
which causes a new node to be built for a+b. The sequence of calls to 
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Called With 

ADDRG+P c 
ADDRG+P a 
INDIR+I 2 
ADDRG+P b 
INDIR+I 4 
ADD+! 3 5 
ASGN+I 1 6 

ADDRG+P a 
INDIR+I 2 
CNST+I 2 
DIV+! 3 8 
ASGN+I 2 9 

ADDRG+P d 
ADDRG+P a 
INDIR+I 2 
ADDRG+P b 
INDIR+I 4 
ADD+! 12 5 
ASGN+I 11 13 

Builds 

l=(ADDRGP c) 
2=(ADDRGP a) 
3=(INDIRI 2) 
4=(ADDRGP b) 
5=(INDIRI 4) 
6=(ADDI 3 5) 

8=(CNSTI 2) 
9=(DIVI 3 8) 

ll=(ADDRGP d) 

12=(INDIRI 2) 

13=(ADDI 12 5) 

Kills 

3 

Returns 

1 
2 
3 
4 
5 
6 
7 

2 
3 
8 
9 
10 

11 
2 

12 
4 
5 

13 
14 

TABLE 12.2 Calls to node for c = a + b; a = a/2 ; d = a + b. 

node for this example appears in Table 12.2. The rvalue of a ind = a + b 
reuses the lvalue but builds a new INDIRI node because the assignment 
a = a/2 killed node 3. Assignments build nodes by calling newnode, so 
they don't appear in buckets. 

reset removes all nodes in buckets by clearing both buckets and 
nodecount: 

(dag.c functions)+= 
static void reset() { 

if (nodecount > 0) 

} 

memset(buckets, 0, sizeof buckets); 
nodecount = O; 

12.2 Building Nodes 

.... 
316 318 ..... 

1 i stnodes builds a node for its argument tree by calling itself recur
sively on the tree's operands, calling node or newnode depending on the 
operator, and calling ki 11 or reset when necessary. 

317 

316 kil 1 
318 listnodes 
315 newnode 
314 nodecount 
315 node 
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... 
(dag.c functions)+= 317 321 ... 

Node listnodes(tp, tlab, flab) Tree tp; int tlab, flab; { 

} 

Node p =NULL, l, r; 

if (tp == NULL) 
return NULL; 

if (tp->node) 
return tp->node; 

switch (generic(tp->op)) { 
(1 i stnodes cases 318) 
} 
tp->node = p; 
return p; 

tp->node points to the node for the tree tp. This field marks the tree 
as visited by 1 i stnodes, and ensures that 1 i stnodes returns the correct 
node for trees that are really dags, such as those shown in Figures 8.2 
and 8.3 (pages 167 and 158). The multiply referenced subtrees in these 
idioms are visited more than once; the first visit builds the node and the 
subsequent visits simply return it. 

The switch statement in 1 i stnodes collects the operators into groups 
that have the same traversal and node-building code: 

(1 i stnodes cases 318)= 
case AND: { (AND 323) } break; 
case OR: { (OR) } break; 
case NOT: { (NOT 322) } 
case COND: { (COND 325) } break; 
case CNST: { (CNST 327) } break; 
case RIGHT: { (RIGHT335) } break; 
case JUMP: { {JUMP321}} break; 
case CALL: { (CALL 332) } break; 
case ARG: { (ARG 334) } break; 
case EQ: case NE: case GT: case GE: case LE: 
case LT: { (EQ .. LT321) } break; 
case ASGN: { (ASGN 328) } break; 
case BOR: case BAND: case BXOR: 
case ADD: case SUB: case RSH: 
case LSH: { (ADD .. RSH319)} break; 
case DIV: case MUL: 
case MOD: { (DIV .. MOD)} break; 
case RET: { (RET) } break; 
case CVC: case CVD: case CVF: case CVI: 
case CVP: case CVS: case CVU: case BCOM: 
case NEG: { (CVx,NEG,BCOM319) } break; 

318 
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case INDIR: { (INDIR 319) } break; 
case FIELD: { (FIELD 320) } break; 
case ADDRG: 
case ADDRF: { (ADDRG,ADDRF319) } break; 
case ADDRL: { (ADDRL319)} break; 

The largest operator group is the one for the unary operators. The traver
sal code visits the lone operand and builds the node: 

(CVx, NEG, BCOM 319): 
1 = listnodes(tp->kids[O], 0, O); 
p = node(tp->op, l, NULL, NULL); 

The traversal code for the binary operators is similar: 

(ADD .. RSH 319) = 
1 = listnodes(tp->kids[O], 0, O); 
r = listnodes(tp->kids[l], 0, O); 
p = node(tp->op, l, r, NULL); 

318 

318 

DIV, MUL, and MOD aren't included in this case because they must be 
treated as calls if the interface flag mulops_cal 1 sis set; see Exercise 12.5. 

The three address operators build nodes for the lvalues of the symbols 
they reference: 

(ADDRG,ADDRF 319)= 
p = node(tp->op, NULL, NULL, tp->u.sym); 

(ADDRL 319): 
if (tp->u.sym->temporary) 

addlocal(tp->u.sym); 
p = node(tp->op, NULL, NULL, tp->u.sym); 

319 

319 

If a local is a temporary, it may not yet appear on the code list. addl oca 1 
adds a Loca 1 code list entry for the temporary, if necessary. These en
tries are not made earlier because some temporaries are never used and 
thus need never be announced. Waiting until the last possible moment to 
generate Loca 1 code-list entries effectively discards unused temporaries. 

INDIR trees build nodes for rvalues, but locations declared volatile 
demand special treatment: 

(INDIR 319): 319 
Type ty = tp->kids[O]->type; 
1 = listnodes(tp->kids[O], 0, O); 
if (isptr(ty)) 

ty = unqual(ty)->type; 
if (isvolatile(ty) 
I I (isstruct(ty) && unqual(ty)->u.sym->u.s.vfields)) 

219 addlocal 
149 FIELD 
60 isptr 

319 

60 isstruct 
60 isvolatile 

318 listnodes 
217 Local 

87 mulops_calls 
315 node 

50 temporary 
60 unqual 
65 vfields 
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p = newnode(tp->op, l, NULL, NULL); 
else 

p = node(tp->op, l, NULL, NULL); 

If the lvalue has a type (POINTER T), INDIR is treated like the other unary 
operators. But if the lvalue has a type (POINTER (VOLATILE T)), every 
read of the rvalue that appears in the source code must actually read the 
rvalue at execution. This constraint means that the rvalue must not be 
treated as a common subexpression, so the node is built by newnode. This 
constraint also applies to lvalues with types (POINTER (STRUCT ... )) 
and (POINTER (UNION ... ) ) where one or more fields of the structure 
or union are declared volatile. 

Bit fields are referenced by FIELD trees. An assignment to a bit field 
appears as an ASGN tree with a FIELD tree as its left operand; the case for 
ASGN, described in Section 12.4, detects this idiom. Appearances of FIELD 
in other trees denote the rvalue of the bit field. FIELD operators can 
appear only in trees, so list nodes must synthesize bit-field extraction 
from other operations, such as shifting and masking. 

There are two cases for extracting a bit field of s bits that lies m bits 
from the right of the unsigned or integer in which it appears. If the field 
is unsigned, it could be extracted by shifting it to the right m bits then 
ANDing it with a mask of s ones. If the field is signed, however, its most 
significant bit is treated as a sign bit and must be extended when the 
field is fetched. Thus, a signed field can be extracted by code like 

((int)((*p)«(32 - m)))»(32 - s) 

assuming a 32-bit word and that p points to the word that holds the field. 
This expression shifts the word left so the field's most significant bit is 
in the sign bit, then shifts it right arithmetically, which drags the sign bit 
into the vacated bits. This expression also works for the unsigned case 
by replacing the cast to an int with a cast to an unsigned, which is what 
l i stnodes uses for both cases. 

(FIELD 320)=: 
Tree q = shtree(RSH, 

shtree(LSH, tp->kids[O], 
consttree(fieldleft(tp->u.field), inttype)), 

consttree(8*tp->type->size - fieldsize(tp->u.field), 
inttype)); 

p = listnodes(q, 0, O); 

319 

fieldleft is 32 - m and the first argument to consttree is 32 -s. The 
type of the tree built by the inner call to shtree depends on the type of 
tp->kids[O] and will be int or unsigned, which causes the outer shtree 
to generate an RSH+I or an RSH+U. 
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12.3 Flow of Control 

The unary and binary operators described in the previous section con
tribute nodes to the node table, and they're referenced by other nodes, 
but, except for INDIR nodes, they never appear as roots in the forest. A 
node appears as a root if it has a side effect or if it must be evaluated 
before the nodes in the dags further down the forest. The appearance of 
the INDIRP node as a root in Figure 5.3 on page 87 is an example of this 
second case. Assignments, calls, returns, labels, jumps, and conditional 
jumps are examples of the first case. Some of these operators also af
fect the node table because they can alter flow of control. Jumps are the 
simplest: 

(JUMP 321)= 
l = listnodes(tp->kids[O], 0, O); 
list(newnode(JUMPV, l, NULL, NULL)); 
reset(); 

318 

The node table must be reset at jumps since none of the expressions in 
the table can be used in the code that follows the jump. The JUMPV node 
is listed - appended to the forest as a root - by list: 

(dag.c functions)+= 
static void list(p) Node p; { 

if (p && p->link ==NULL) { 
if (forest) { 

} 
} 

p->link = forest->link; 
forest->link = p; 

} else 
p->link = p; 

forest = p; 

... 
318 323 ..... 

forest is a circularly linked list, so it points to the last node on the list, 
unless it's null, which causes list to initialize forest. The link field 
also marks the node as a root, and list won't list roots more than once. 

The comparison operators illustrate the use of the arguments tlab 
and flab to listnodes. Only one of tlab or flab can be nonzero. The 
operator jumps to tl ab if the outcome of the comparison is true and to 
fl ab if the outcome is false. Nodes for comparison operators carry the 
destination as a label symbol in their syms [OJ fields. This symbol is the 
destination when the comparison is true; there is no way to specify a 
destination for a false outcome. The case for the comparison operators 
thus uses the inverse operator when fl ab is nonzero: 

(EQ •• LT321)= 
Node p; 

318 

321 

311 forest 
318 listnodes 
315 newnode 
317 reset 
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l = listnodes(tp->kids[O], 0, O); 
r = listnodes(tp->kids[l], 0, O); 
if (tlab) 

list(newnode(tp->op, l, r, findlabel(tlab))); 
else if (flab) { 

} 

int op= generic(tp->op); 
switch (generic(op)) { 
case EQ: op= NE+ optype(tp->op); break; 
case NE: op= EQ + optype(tp->op); break; 
case GT: op= LE+ optype(tp->op); break; 
case LT: op= GE+ optype(tp->op); break; 
case GE: op= LT+ optype(tp->op); break; 
case LE: op= GT+ optype(tp->op); break; 
} 
list(newnode(op, l, r, findlabel(flab))); 

if (forest->syms[O]) 
forest->syms[O]->ref++; 

1 i stnodes also handles the control-flow operators that appear only in 
trees: AND, OR, NOT, and COND. NOT is handled by simply reversing the true 
and false labels in a recursive call to 1 i stnodes: 

(NOT 322)= 318 
return listnodes(tp->kids[O], flab, tlab); 

AND and OR use short-circuit evaluation: They must stop evaluating 
their arguments as soon as the outcome is known. For example, in 

if Ci>= 0 && i < 10 && a[i] >max) max= a[i]; 

a[i] must not be evaluated if i is less than zero or greater than or equal 
to 10. The operands of AND and OR are always conditional expressions or 
constants (andtree calls cond for each operand), so the cases for these 
operators need only define the appropriate true and false labels and pass 
them to the calls on l i stnodes for the operands. 

Suppose tlab is zero and flab is L; the short-circuit code generated 
for e1 && e2 has the form 

if e1 == 0 goto L 
if e2 == 0 goto L 

In other words, if e1 is zero, execution continues at L and e2 is not eval
uated. Otherwise, e2 is evaluated and execution continues at L if e1 is 
nonzero but e2 is zero. Control falls through only when both e1 and e2 
are nonzero. When t 1 ab is L and fl ab is zero, control falls through when 
e1 or e2 is zero, and execution continues at L only when e1 and e2 are 
both nonzero. The generated code has the form 
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L': 

if e1 0 goto L' 
if e2 != 0 goto L 

In this case, if e1 is zero, control falls through without evaluating e2. The 
1 i stnodes code for AND is thus 

(AND 323)= 
if (flab) { 

listnodes(tp->kids[O], 0, flab); 
listnodes(tp->kids[l], 0, flab); 

} else { 

} 

flab= genlabel(l); 
listnodes(tp->kids[O], 0, flab); 
listnodes(tp->kids[l], tlab, O); 
labelnode(flab); 

The code for OR is similar; see Exercise 12.2. 
1abe1 node appends a LABELV node to the forest: 

318 

.... 
(dag.c functions)+= 321 327 .... 

static void labelnode(lab) int lab; { 

} 

if (forest && forest->op == LABELV) 
equatelab(findlabel(lab), forest->syms[O]); 

else 
list(newnode(LABELV, NULL, NULL, findlabel(lab))); 

reset(); 

If the last node in the forest is a label, there's no reason to append an
other one; the new label, 1 ab, is made a synonym for the existing label 
as described in Section 10.9. Common subexpressions in the node table 
must be discarded at a label because there can be more than one path 
to the subsequent code, so 1abe1 node calls reset. 

As detailed in Section 8.6, OR and AND are treated as right-associative 
operators, so expressions such as e1 && e2 && ... && en build right-heavy 
trees, as depicted in Figure 12.2. 

This arrangement guarantees that the recursive calls to 1 i stnodes in 
the code above visit the expressions ei in the correct order to yield short
circuit evaluation. It also helps eliminate common subexpressions that 
appear in the ei. For example, in 

if (a[i] && a[i]+b[i] > 0 && a[i]+b[i] < 10) ... 

where a and b are integer arrays, the address computation 4*i, the rval
ues of a[i] and b[i], and the sum a[i]+b[i] are each computed once 
and reused as necessary. The AND tree is passed to 1 i stnodes with 
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149 AND 
248 equatelab 
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311 forest 
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FIGURE 12.2 Tree for e1 && e2 && . . . && en . 

fl ab equal to, say, 2, and the recursive calls descend the tree pass
ing 2 as fl ab. There are no intervening calls to reset, so the second 
and third subexpressions can reuse values computed in first and second 
subexpressions. The forest for this statement is shown in Figure 12.3. 
The 2s under the comparison operators and under the LABELV denote 
the symbol-table pointers to the label 2 in their syms [OJ fields. 

The expression e ? l : r yields the COND tree shown in Figure 12.4. 
The RIGHT tree serves only to carry the two assignment trees. The gen
erated code is similar to the code for an if statement: 

if e == 0 goto L 
t1 = l 
goto L + 1 

L: t1 = r 
L + 1: 

EQI - - - - - - - - - - - - - _,..LEI - - - - _,..GE! - _,.. · · · - •LABELV 

L2~ k!---/2~ 2 
INDIRI~ ~~TI ~DOI CNSTI 

i ~ ~ 10 

ADDP IND I RI 

k ~ i 
LSHI ADDRGP ADDP 

/ ~ a ~ 
INDIRI CNSTI ADDRGP i 2 b 

ADDRGP 

FIGURE 12.3 Forest for a[i] && a[i ]+b[i] > 0 && a[i ]+b[i] < 10. 
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COND 

/tl~ 
e RIGHT 

/~ 
ASGN ASGN 

/~ /~ 
ADDRL+P l ADDRL+P r 

tl tl 

FIGURE 12A Tree for e ? l : r. 

The rvalue of t1 is the result of the COND expression. The assignments to 
tl are omitted if the value of the conditional expression is not used or 
if both l and r are void expressions. The code for COND begins by adding 
a LOCAL code list entry for tl, if it's present; generating Land L + 1; and 
traversing the conditional expression e with L as the false label. 

(COND 325}= 
Tree q = tp->kids[l]; 
if (tp->u.sym) 

addlocal(tp->u.sym); 
flab= genlabel(2); 
listnodes(tp->kids[O], 0, flab); 
reset(); 

325 318 ... 

Next, the code for this case generates nodes for first assignment, the 
jump, L, the second assignment, and L + 1: 

.... 
(COND 325}+= 

listnodes(q->kids[O], 0, O); 
(equate LABEL to L + 1 325} 
list(jump(flab + 1)); 
labelnode(flab); 
listnodes(q->kids[l], 0, 0); 
(equate LABEL to L + 1 325} 
labelnode(flab + 1); 

325 326 318 ... 

(equate LABEL to L + 1 325}= 325 
if (forest->op == LABELV) { 

} 

equatelab(forest->syms[O], findlabel(flab + 1)); 
unlist(); 

If the last node in either arm is a label, it can be equated to L + 1 and 
removed from the forest, which is what un 1 i st does. Removing this label 
in the first arm can eliminate a branch to a branch; see Exercise 12.7. 

219 addlocal 
149 COND 
248 equatelab 

46 findlabel 
311 forest 
45 genlabel 

247 jump 
323 labelnode 
321 list 
318 listnodes 

38 LOCAL 
317 reset 
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The value of the conditional expression, if there is one, is in the tem
porary tl. The COND tree has contributed the nodes that generate the 
assignments to tl, but the COND tree itself has no value. The node that's 
returned - and that annotates the COND tree - is the result of generating 
a node for the rvalue of tl: 

.... 
325 318 (COND 325)+= 

if (tp->u.sym) 
p = listnodes(idtree(tp->u.sym), 0, O); 

The call to reset after traversing tp->ki ds [OJ, the tree fore, discards 
common subexpressions before traversing l or r, because conditional 
operands may be evaluated before other operands in subexpressions. 
For example, in the assignment 

n = a[i] + (i>O?a[i]:O); 

the conditional is evaluated before the addition's left operand even 
though the left operand's tree is traversed first. Without the call to reset, 
the node for the common subexpression a [ i ] would appear in the node 
table when the tree for (i>O?a[i] :0) is traversed, and the generated 
code would be equivalent to 

if i <= 0 goto L1 
t2 = a[i] 
t1 = t2 
goto L2 

L1: t1 = 0 
L2: n = t2 + tl 

where t1 holds the value of the conditional, and t2 holds the value of 
a [ i]. t2 is computed only in the then arm of the conditional, but is used 
to compute the sum. reset must be called whenever the evaluation order 
might be different than the traversal order, and when the generated code 
might have multiple execution paths. 

Most constants appear as operands to the unary and binary operators, 
but constant folding makes it possible for an integer constant to appear 
as the first operand to the comparisons and hence to COND. For example, 
the statement 

if (2.5) ... 

causes con di tiona 1 to build the expression 2 . 5 ! = 0. 0, which si mp 1 i fy 
folds to a tree for the integer constant 1. i fstmt passes this tree to 
1 i stnodes with a nonzero fl ab. For an integer CNST tree, 1 i stnodes 
generates a jump if t 1 ab is nonzero and the constant is nonzero, or if 
fl ab is nonzero and the constant is zero: 
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(CNST327)=: 327 318 
Type ty = unqual(tp->type); 
if (tlab I I flab) { 

} 

if (tlab && tp->u.v.i != 0) 
list(jump(tlab)); 

else if (flab && tp->u.v.i == 0) 
list(jump(flab)); 

.... 

For the example above, nothing is generated for the CNST tree, which is 
exactly what the programmer intended. A jump is generated for code 
like 

while (1) ... 

Constants that don't appear in conditiona~ contexts yield CNST nodes, 
unless their types dictate that they should be placed out of line: ... 
(CNST327)+= 327 318 

else if (ty->u.sym->addressed) 
p = listnodes(cvtconst(tp), 0, O); 

else 
p = node(tp->op, NULL, NULL, constant(ty, tp->u.v)); 

typeinit sets the addressed flag in a basic type's symbol-table entry to 
one if constants of that type cannot appear in instructions. Thus, a con
stant whose type's symbol has addressed set is placed in a variable and 
references to it are replaced by references to the rvalue of the variable. 
The constant 0.5 in Figure 1.2 (page 6) is an example; it appears in the 
tree, but ends up in a variable as shown in Figure 1.3. cvtconst gener
ates the anonymous static variable, if necessary, and returns a tree for 
the rvalue of that variable: 

(dag.c functions)+= 
Tree cvtconst(p) Tree p; { 

} 

Symbol q = constant(p->type, p->u.v); 
Tree e; 

if (q->u.c.loc ==NULL) 
q-~u.c.loc = genident(STATIC, p->type, GLOBAL); 

if (isarray(p->type)) { 
e = tree(ADDRG+P, atop(p->type), NULL, NULL); 
e->u.sym = q->u.c.loc; 

} else 
e = idtree(q->u.c.loc); 

return e; 

... 
323 337 .... 

These variables are initialized when finalize calls doconst at the end 
of compilation. 

327 

179 addressed 
62 atop 
47 constant 

305 doconst 
303 finalize 
49 genident 
38 GLOBAL 

168 idtree 
60 isarray 

247 jump 
321 list 
318 listnodes 
315 node 

80 STATIC 
150 tree 

58 typelnit 
60 unqual 



328 CHAPTER 12 • GENERATING INTERMEDIATE CODE 

addrtree 210 
align 78 

computed 211 
FIELD 149 

forest 311 
intconst 49 
isaddrop 179 
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12.4 Assignments 

Nodes for assignments are always listed and return no value. Trees for 
assignments, however, mirror the semantics of assignment in C, which 
returns the value of its left operand. The l i stnodes case for assignment 
traverses the operands, and builds and lists the assignment node. It 
begins by processing the operands: 

(ASGN 328)= 
if (tp->kids[O]->op == FIELD) { 

(l, r - for a bit-field assignment329) 
} else { 

} 

l listnodes(tp->kids[O], 0, O); 
r = listnodes(tp->kids[l], 0, O); 

list(newnode(tp->op, l, r, NULL)); 

328 318 .... 

forest->syms[O] = intconst(tp->kids[l]->type->size); 
forest->syms[l] = intconst(tp->kids[l]->type->align); 

An ASGN's syms fields point to symbol-table entries for constants that 
give the size and alignment of the value (see page 83). Assignments to 
bit fields are described below. 

An assignment invalidates nodes in the node table that depend on the 
previous value of the left operand. l cc handles just two cases: 

... 
328 329 318 .... (ASGN 328) += 

if (isaddrop(tp->kids[O]->op) 
&& !tp->kids[O]->u.sym->computed) 

kill(tp->kids[O]->u.sym); 
else 

reset(); 

If the left operand is the address of a source-language variable or a tem
porary, the assignment kills only nodes for its rvalue. If the left operand 
is the address of a computed variable or a computed address, the assign
ment clears the node table. A computed variable represents the address 
of variable plus a constant, such as a field reference, and is generated by 
addrtree. Assignments to computed variables are like assignments to ar
ray elements - an assignment to a single element kills everything. Less 
drastic measures require more sophisticated analyses; those that offer 
the most benefit, like global common subexpression elimination, require 
data-flow analysis of the entire function, which l cc is not designed to 
accommodate. 

The value of an assignment is the new value of the left operand, which 
is the possibly converted value of the right operand, so l i stnodes ar
ranges for that node to annotate the ASGN tree: 
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... 
328 318 (ASGN 328)+= 

p = listnodes(tp->kids[l], 0, O); 

tp->ki ds [1] has already been visited and annotated with the node that's 
assigned to r above. Sop usually equals r, except for assignments to bit 
fields, which compute r differently and may not visit tp->ki ds [1] at all, 
as detailed below. 

A FIELD tree as the left operand of ASGN tree identifies an assign
ment to a bit field. These assignments are compiled into the appro
priate sequence of shifts and bitwise logical operations. Consider, for 
example, the multiple assignment w = x. amt = y where x is defined in 
Figure 11.1 on page 279 and wand y are global integers. The first assign
ment, x. amt = y, is compiled into the equivalent of 

*~ = ((*~)&OxFFFFFFF80) I (y&Ox7F); 

where~ denotes the address x+16. The word at x+16 is fetched, the bits 
corresponding to the field amt are cleared, the rightmost 7 bits of y are 
ORed into the cleared bits, and the resulting value is stored back into 
x+16. This expression isn't quite correct: The value of x. amt = y, which 
is assigned tow, is not y, it's the new value of x. amt. This value is equal 
to y unless its most significant bit is one, in which case that bit must be 
sign-extended if the result of the assignment is used. So, if y is 255, w 
becomes -1. 

1 i stnodes handles this case by building an ASGN tree whose right 
operand computes the correct value. For w = x. amt = y, it builds a right 
operand that's equivalent to (y«25)»25, which is what should appear 
in place of yin the assignment to*~ above. Figure 12.5 shows the com
plete tree for this multiple assignment. 

The code for a bit-field assignment builds a tree for the expression 
shown above, and calls 1 i stnodes to traverse it. 

(1, r - for a bit-field assignment 329) = 
Tree x = tp->kids[O]->kids[O]; 
Field f = tp->kids[O]->u.field; 
reset(); 
1 = listnodes(lvalue(x), 0, O); 
if (fieldsize(f) < 8*f->type->size) { 

unsigned int fmask = fieldmask(f); 
unsigned int mask= fmask<<fieldright(f); 
Tree q = tp->kids[l]; 
(q - the r.h.s. tree 330) 
r = listnodes(q, 0, O); 

} else 
r = listnodes(tp->kids[l], 0, 0); 

328 

The u. sym field of the FIELD tree tucked under the ASGN tree points to a 
field structure that describes the bit field. For the amt field, fmask and 
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y 

FIGURE 12.5 Tree for w "" x . amt "" y. 

mask are both 7F15; the complement of mask is FFFFFFF8015. 1 i stnodes 
treats an assignment to a bit field like an assignment to an array element, 
and thus clears the node table. 

There are two cases of assigning constants to bit fields that merit 
special treatment. If the constant is zero, the assignment clears the field, 
which can be done more simply by ANDing the word with the complement 
of mask: 

{q .__ the r.h.s. tree 330)= 
if (q->op """" CNST+I && q->u.v.i ="" 0 

330 ... 329 

I I q->op := CNST+U && q->u.v.u """" 0) 
q "" bittree(BAND, x, consttree(-mask, unsignedtype)); 

If the constant is equal to 25 - 1 where s is the size of the bit field, the 
assignment sets all of the bits in the field, which can be done by ORing 
the word with mask: 

.... 
{q .__ the r.h.s. tree 330)+= 330 331 329 ... 

else if (q->op """" CNST+I && (q->u.v.i&fmask) fmask 
I I q->op """" CNST+U && (q->u.v.u&fmask) fmask) 

q"" bittree(BOR, x, consttree(mask, unsignedtype)); 

These improvements make assignments of constants to 1-bit fields as ef
ficient as the more verbose logical operations. For example, x. used "" 1 
is compiled into the equivalent of 

*DC "" *DC I Ox8; 

where DC denotes the address x+12. 
The general case requires the two ANDS and the OR shown in the as

signment to * f3 above. 
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(q .._ the r.h.s. tree 330) += 
else { 

listnodes(q, 0, O); 
q = bittree(BOR, 

.... 
330 329 

bittree(BAND, rvalue(lvalue(x)), 
consttree(-mask, unsignedtype)), 

bittree(BAND, shtree(LSH, cast(q, unsignedtype), 
consttree(fieldright(f), inttype)), 
consttree(mask, unsignedtype))); 

} 

Figure 12 .6 shows the forest for the multiple assignment w = x . amt = y, 
which falls into this general case. In all three cases, q is the tree for the 
right-hand side of the assignment to the bit field, but tp->ki ds [1] is 
the tree that represents the value of the assignment. For example, it's 
the RSHI node in Figure 12.6 that annotates the bit-field ASGN+I tree in 
Figure 12.5, and is thus used as the right operand for the assignment tow. 

The final else clause in (q .._ the r.h.s. tree) rebuilds the rvalue of the 
word that holds the field because that word may have been changed by 
tp->ki ds [1]. For example, in 

struct { int b:4, c:4; } x; 
x.c = x.b++; 

ASGNI - - - - - - - - - - - - - - - - - - - - - - - - - -> ASGNI 

/~ / 
ADDRGP BORU ADDRGP 

X+l6 / ~ w 

BANDU BAN DU 

/~ /~ 
CVIU CNSTU CVIU CNSTU i Oxffffff80 i Ox7f 

IND IR RSHI 

/~ 
LSH~ j""'CNSTI 

/ '-.___/ 25 

IND I RI 

i 
ADDRGP 

y 

FIGURE 12.6 Forest for w = x. amt = y. 
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175 cast 
193 consttree 
66 fi el dri ght 

318 listnodes 
169 lvalue 
361 mask 
169 rvalue 

58 unsignedtype 
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x. b++ changes the word that holds x. c. The tree returned by bi ttree's 
second argument, rval ue(lvalue(x)) in the fragment above, causes that 
word to be fetched again. If x were used instead, the assignment to x. c 
would use the value of the word before x . b is changed, and the new value 
of x. b would be lost. 

12.5 Function Calls 

Figure 12.7 shows the form of a CALL+B tree, which is the most general 
form of CALL. As explained in Section 9.3, the right operand is the address 
of a temporary to which the value returned is assigned. The other CALLs 
have only one operand. 

CALL+B complicates the 1 i stnodes case for CALL, because if the inter
face wants_ca 11 b is zero, the right operand is passed as a hidden first 
argument and a CALLV node is used instead of a CALLB node. Another 
complication is that the ARG trees appear down in the CALL tree's left 
operand, but the corresponding nodes are listed, and the CALL node's 
left operand is the address of the function (see page 85). The inter
face flag 1 eft_to_ri ght supplies the last complication: The arguments 
are evaluated left to right if that flag is one and right-to-left if it's zero. 
This evaluation order also applies to the hidden first argument when 
wants_callb is zero. Figure 12.8 shows the form of forest generated for 
the tree in Figure 12.7 when wants_callb is zero and left_to_right is 
one. The leading ARGP node is the hidden first argument. 

The 1 i stnodes case for CALL is 

(CALL 332)= 318 
Tree save= firstarg; 

CALL+B 

/~ 
RIGHT ADDRL+P 

/~ 
ARG f 

temp 

/ "·· ·~ 
en ARG 

/~ 
e2 ARG 

/ 
FIGURE 12.7 Tree for f (ei, e2, ... , en) where f returns a structure. 
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ARGP- - -. ARG - - -. ARG - - -. - - -. ARG- - -.CALLV 

i i i }" } ADDRLP 
temp 

FIGURE 12.s Forest for f (e1 , e2 , ... , en) where f returns a structure. 

firstarg = NULL; 
if (tp->op == CALL+B && !IR->wants_callb) { 

{list CALL+B arguments 333) 
p = newnode(CALLV, l, NULL, NULL); 

} else { 

} 

1 = listnodes(tp->kids[O], 0, 0); 
r = listnodes(tp->kids[l], 0, 0); 
p = newnode(tp->op, 1, r, NULL); 

list(p); 
reset(); 
cfunc->u.f.ncalls++; 
firstarg =save; 

(dag.c data)+= 
static Tree firstarg; 

.... 
314 343 ..... 

When necessary, fi rstarg carries the tree for the hidden first argument, 
as described below. It's saved, reinitialized to null, and restored so that 
arguments that include other calls don't overwrite it. A call is always 
listed, and it kills all nodes in the node table. The nca 11 s field in a 
symbol-table entry for a function records the number of CALLs that func
tion makes. This value supplies the fourth argument to the interface 
procedure function, which is called from funcdefn. 

As Figure 12.7 shows, tp->ki ds [OJ is a RIGHT tree that holds both the 
arguments and the tree for the function address. Traversing this tree 
thus lists the arguments and returns the node for the function address, 
which becomes the left operand of the CALL node. 

For CALL+B trees, the tree for the hidden first argument is assigned to 
fi rstarg: 

{list CALL+B arguments 333) = 
Tree argO = tree(ARG+P, tp->kids[l]->type, 

tp->kids[l], NULL); 
if (IR->left_to_right) 

firstarg = argO; 
1 = listnodes(tp->kids[O], 0, O); 
if (!IR->left_to_right I I firstarg) { 

firstarg =NULL; 

333 

290 cfunc 
286 funcdefn 

333 

92 function 
448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
306 IR 
88 left_to_right 

321 list 
318 listnodes 
315 newnode 
317 reset 
149 RIGHT 
150 tree 
88 wants_callb 
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listnodes(argO, 0, O); 
} 

If 1 eft_to_ri ght is one, fi rstarg gets the tree for the hidden argument 
just before the arguments are visited, which occurs when 1 i stnodes tra
verses tp->ki ds [OJ, and the hidden argument will be listed before the 
other arguments. When left_to_right is zero, fi rstarg is unnecessary 
because the hidden argument is listed last anyway. 

The last if statement in the fragment above also traverses the tree 
for the hidden argument when 1 eft_to_ri ght is one and fi rstarg is 
nonnull. This case occurs for a call to a function that returns a structure 
but that has no arguments. For this case, the fi rstarg will not have 
been traversed by the ARG code below because tp->ki ds [OJ contains no 
ARG trees for this call. 

An ARG subtree is built as the arguments are parsed from left to right, 
and thus it always has the rightmost argument as the root, as shown 
in Figure 12.7. The ARG nodes can be listed left to right by visiting 
tp->ki ds [lJ before tp->ki ds [OJ; visiting the operands in the other or
der lists the ARG nodes right-to-left. 

{ARG 334):: 
if (IR->left_to_right) 

listnodes(tp->kids[lJ, 0, O); 
if (fi rstarg) { 

} 

Tree arg = firstarg; 
firstarg =NULL; 
listnodes(arg, 0, O); 

1 = listnodes(tp->kids[OJ, 0, O); 
list(newnode(tp->op, 1, NULL, NULL)); 
forest->syms[OJ = intconst(tp->type->size); 
forest->syms[lJ = intconst(tp->type->align); 
if (!IR->left_to_right) 

listnodes(tp->kids[lJ, 0, O); 

318 

Like an ASGN node, the syms field of an ARG node points to symbol-table 
entries for constants that give the size and alignment of the argument. 

The first time execution reaches the test of fi rstarg when the flag 
1 eft_to_ri ght is one is when the ARG for the first argument - the one 
for e1 in Figure 12.7 - is traversed. If fi rstarg is nonnull, it's listed be
fore the tree for the first argument and reset to null so that it's traversed 
only once. 



12.6 •ENFORCING EVALUATION ORDER 

12.6 Enforcing Evaluation Order 

There are only a few operators for which the standard specifies an or
der of evaluation. It specifies short-circuit evaluation for AND and OR 
and the usual if-statement evaluation for COND. The left operand of the 
comma operator must be evaluated before its right operand. 1 cc rep
resents e 1 , e2 with the tree (RIGHT e1 e2), so the 1 i stnodes case for 
RIGHT evaluates the left operand first, then evaluates and returns the 
right operand: 

(RIGHT 335)= 
if ( (tp is a tree fore++ 336)) { 

(generate nodes fore++ 336) 
} else if (tp->kids[l]) { 

listnodes(tp->kids[O], 0, O); 
p = listnodes(tp->kids[l], tlab, flab); 

} else 
p = listnodes(tp->kids[O], tlab, flab); 

318 

As Chapters 8 and 9 and this code suggest, RIGHT trees are used for 
purposes other than the comma operator, and they may have one or two 
operands. The value of a RIGHT tree is the value of its rightmost operand. 

For example, RIGHT trees are used to unnest nested calls - those that 
have calls as arguments. ca 11 hoists all such arguments into the left 
operand of a RIGHT tree so that they are listed before the ARGs of the call 
in which they appear. Figure 12.9 shows the tree for f (e1, g(e2), e3). 

CALL 

i 
RIGHT 

~f 
CALL 

i 
RIGHT ARG 

/~ ~ 
ARG B ARG 

/ / 
e2 

149 AND 
186 call 
149 COND 

335 

318 listnodes 
149 OR 
149 RIGHT 
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FIELD 149 
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listnodes 318 
postfix 166 

RIGHT 149 
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ARG - - - - _,..CALL - - - - _,.. ARG - - - - _,.. ARG - - - - _,.. ARG - - - - _,..CALL 

t, ~~ t, } 
FIGURE 12.10 Forest for f (e1, g(e2), e3). 

Compare this figure to Figure 12.7. The arguments in Figure 12.9 ap
pear as the right operand of an extra RIGHT node, which is shaded, and 
the left operand of that node is the tree for the nested call g(e2). f's 
second ARG node refers to the value of the call to B. 

1 i stnodes traverses this tree in the code for CALL described in Sec
tion 12.5. When the left and only operand of the topmost CALL is tra
versed, the RIGHT trees cause the nested call to B to be traversed and 
listed before any of the arguments to f. Figure 12.10 shows the result
ing forest. 

RIGHT trees are also used to enforce the correct semantics for the ex
pressions e++ and e--. Figure 12.11 shows the tree built by postfix for 
i ++. The RIGHT nodes collaborate to return the value of i before it's 
incremented, but there's an additional complication. To enforce an eval
uation order that evaluates the INDIR+I first, that tree must be traversed 
and its node listed in the forest before the assignment to i, and the node 
must annotate the RIGHT tree. Listing this INDIR node is what requires 
special treatment for the RIGHT idiom depicted by the lower RIGHT node 
in Figure 12.11. 

(tp is a tree fore++ 336)= 
tp->kids[O] && tp->kids[l] 

&& generic(tp->kids[l]->op) == ASGN 
&& (generic(tp->kids[O]->op) == INDIR 
&& tp->kids[O]->kids[O] == tp->kids[l]->kids[O] 
I I (tp->kids[O]->op == FIELD 

&& tp->kids[O] == tp->kids[l]->kids[O])) 

335 

As this test indicates, for postincrement or postdecrement of a bit field, 
a FIELD node appears instead of an INDIR node, and this FIELD node is 
the target of the assignment. 

When e is a not a bit field, the INDIR tree is traversed, and its node is 
listed before traversing the RIGHT tree's second operand: 

(generate nodes fore++ 336) = 
if (generic(tp->kids[O]->Op) == INDIR) { 

p = listnodes(tp->kids[O], 0, 0); 
list(p); 
listnodes(tp->kids[l], 0, 0); 

} 

337 335 ... 
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RIGHT 

/ 
RIGHT 

~ 
INDIR+I ASGN+I 

i~~ 
ADDRG+P ADD+I 

~ 
CNST+I 

1 

FIGURE 12.11 Tree for i ++. 

Figure 5.3 (page 87) shows the forest for the assignment i = *p++. The 
INDIR node for p's rvalue appears before the assignment to p. 

Bit fields are problematic. l i stnodes can't list a FIELD node be
cause there isn't one - FIELD operators appear only in trees. Instead, 
l i stnodes must look below the FIELD tree to the INDIR tree that fetches 
the word in which the bit field appears, traverse that tree, and list its 
node: 

(generate nodes fore++ 336) += 
else { 

} 

list(listnodes(tp->kids[O]->kids[O], 0, O)); 
p = listnodes(tp->kids[O], 0, O); 
listnodes(tp->kids[l], 0, O); 

12. 7 Driving Code Generation 

... 
336 335 

Once the code list for a function is complete, funcdefn calls the inter
face procedure function to generate and emit the code. As described in 
Section 5.10, this interface function makes two calls back into the front 
end: It calls gen code to generate code, and it calls emi tcode to emit the 
code it generates. Each of these functions makes a pass over the code 
list, calling the appropriate interface function for each code-list entry. 

funcdefn builds two arrays of pointers to symbol-table entries: The 
callee array holds the parameters of the function as seen from within 
the function, and ca 11 er holds the parameters as seen by any callers of 
the functions. These arrays are passed to function, which passes them 
to gencode: ... 
(dag.c functions)+= 327 340 ... 

void gencode(caller, callee) Symbol caller[], callee[]; { 

337 

93 callee 
93 caller 

341 emitcode 
149 FIELD 
286 funcdefn 

92 function 
448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
321 list 
318 listnodes 
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} 

Code cp; 
Coordinate save; 

save = src; 
(generate caller to callee assignments 338) 
cp = codehead.next; 
for ( ; errcnt <= 0 && cp; cp = cp->next) 

switch (cp->kind) { 
case Address: (gencode Address339) break; 
case Blockbeg: (gencode Blockbeg339) break; 
case Blockend: (gencode Blockend339) break; 
case Defpoint: src = cp->u.point.src; break; 
case Gen: case Jump: 
case Label: (gencode Gen,Jump,Label 340) break; 
case Local: (*IR->local)(cp->u.var); break; 
case Switch: break; 
} 

src = save; 

The assignments to s re are made so that diagnostics issued during code 
generation will include the source coordinate of the offending expres
sion. 

Before making its pass through the code list, gencode inspects the 
symbols in ca 11 er and ca 11 ee. For most functions, corresponding sym
bols in these arrays describe the same variable. For character and short 
parameters, however, the front end always promotes the argument to 
an integer or an unsigned; an example of this case is described in Sec
tion 5.5. When this promotion occurs, the types of the caller symbol 
and its corresponding ca 11 ee symbol are different, and gen code must 
generate an assignment of the ca 11 er to the ca 11 ee. This assignment 
must also occur if the storage classes of a caller and callee are dif
ferent, which can occur, for example, when the back end changes the 
storage class of the ca 11 er or ca 11 ee to conform to the target's calling 
convention. 

These assignments change the code list, and they must be inserted 
before the first entry for the body of the function. 

(generate caller to cal lee assignments 338)= 
{ 

int i; 
Symbol p, q; 
cp = codehead.next->next; 
codelist = codehead.next; 
for (i = O; (p = callee[i]) != NULL 

&& (q = caller[i]) != NULL; i++) 

338 
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} 

if (p->sclass != q->sclass I I p->type != q->type) 
walk(asgn(p, idtree(q)), 0, O); 

codelist->next = cp; 
cp->prev = codelist; 

The manipulations of codehead and codelist before the loop collabo
rate to split the code list into two pieces: codel i st points to the single 
Start entry and cp points to the rest of the code list. The call to walk 
appends each assignment to the code list pointed to by codel i st, as 
usual. After the assignments are appended, the rest of the code list is 
reattached. These list manipulations are similar to those used in Sec
tion 10.7 and illustrated in Figure 10.2 to insert the selection code for 
the switch statement in the correct position. 

The cases for Blockbeg and Blockend code-list entries announce the 
beginnings and ends of source-level compound statements. 

(gencode Blockbeg 339)= 
{ 

} 

Symbol *p = cp->u.block.locals; 
(*IR->blockbeg)(&cp->u.block.x); 
for ( ; *p; p++) 

if ((*p)->ref != 0.0) 
(*IR->local)(*p); 

(gen code Bl ockend 339) = 
(*IR->blockend)(&cp->u.begin->u.block.x); 

338 

338 

The interface functions blockbeg and blockend are passed the address 
of an Env value associated with the block. Back ends can use this value 
to save values that must be restored at the end of the block, such as sets 
of busy registers and frame off sets. 

Bl ockbeg entries include an array of pointers to symbol-table entries 
for the locals declared in the block, and these are announced by the 
interface function local. Other locals, such as temporaries, appear in 
Local entries and are announced similarly, as shown above. 

Address entries carry the information necessary to define symbols 
that depend on the addresses of locals or parameters and are created by 
add rt ree. These symbols are announced by calling the interface function 
address: 

(gencode Address 339)= 
(*IR->address)(cp->u.addr.sym, cp->u.addr.base, 

cp->u.addr.offset); 

338 

For locals, these entries appear on the code list after the Blockbeg or 
Loe al entries that carry the symbols on which they depend. Once these 

90 address 
217 Address 

339 

457 address (MIPS) 
490 " (SPARC) 
521 " (X86) 
210 addrtree 

95 blockbeg 
217 Blockbeg 
365 blockbeg 
95 blockend 

217 Blockend 
365 blockend 
217 codehead 
217 codelist 
365 Env 
168 idtree 
306 IR 

90 local 
217 Local 
447 local (MIPS) 
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364 offset 

38 ref 
217 Start 
311 walk 
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latter symbols have been announced to the back end, the interface func
tion address can be called to define the symbols in Address entries. 
These entries can also define symbols that depend on parameters, which 
have already been announced. 

Gen, Jump, and Label entries carry forests that represent the code for 
expressions, jumps, and label definitions. These forests are passed to 
the interface function gen: 

(gencode Gen, Jump, Label 340}= 338 
if (!IR->wants_dag) 

cp->u.forest = undag(cp->u.forest); 
fixup(cp->u.forest); 
cp->u.forest = (*IR->gen)(cp->u.forest); 

gen returns a pointer to a node. Usually, it annotates the nodes in forest, 
and perhaps reorganizes and returns the forest, but this interface per
mits gen to return something else that can represented by a pointer to a 
node. All of the back ends in this book return a pointer to a list of nodes 
for the instructions in the forest. If gen returns null, the corresponding 
call to the interface function emit, described below, is not made. 

As detailed in previous sections, the forests in Gen entries can have 
nodes that are referenced more than once because they represent com
mon subexpressions. If the interface flag wants_dag is one, gen is 
passed forests with these kinds of nodes. If wants_dag is zero, how
ever, undag generates assignments that store common subexpressions 
in temporaries, and replaces references to the nodes that compute them 
by references to the temporaries. Section 12.8 reveals the details. 

The syms [OJ fields of nodes for the comparison operators and jumps 
point to symbol-table entries for labels. These labels might be synonyms 
for the real label, described in Section 10.9. fi xup finds these nodes and 
changes their syms [OJ fields to point to the real labels. 

(dag.c functions}+= 
static void fixup(p) Node p; { 

for ( ; p; p = p->link) 
switch (generic(p->op)) { 
case JUMP: 

} 

if (p->kids[OJ->op == ADDRG+P) 
p->kids[OJ->syms[OJ = 

equated(p->kids[OJ->syms[OJ); 
break; 

case EQ: case GE: case GT: case LE: case 
p->syms[OJ = equated(p->syms[OJ); 

} 

.... 
337 341 ... 

LT: case NE: 

When equate lab makes Li a synonym for L2, it sets the u .1. equatedto 
field of the symbol-table entry for L1 to the symbol-table entry for L2• 
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equated follows the list of symbols formed by these fields, if there is 
one, to find the real label at the end: 

(dag.c functions)+= 
static Symbol equated(p) Symbol p; { 

while (p->u.l.equatedto) 
p = p->u.l.equatedto; 

return p; 
} 

... 
340 341 .... 

fi xup need inspect only the root nodes in the forest, because JUMP and 
the comparison operators always appear as roots. 

Once gencode returns, the interface procedure function has all the 
information it needs, such as the size of the frame and the number of 
registers used, to generate the function prologue. When it's ready to emit 
the generated code, it calls emi tcode: 

(dag.c functions)+= 
void emitcode() { 

Code cp; 
Coordinate save; 

save = src; 
cp = codehead.next; 
for ( ; errcnt <= 0 && cp; cp cp->next) 

switch (cp->kind) { 
case Address: break; 
case Blockbeg: (emitcode Blockbeg) break; 
case Blockend: (emitcode Blockend) break; 
case Defpoint: (emitcode Defpoint341) break; 
case Gen: case Jump: 

... 
341 343 .... 

case Label: (emitcode Gen,Jump,Label 342) break; 
case Local: (emitcode Local) break; 
case Switch: ( emi tcode Switch 342) break; 
} 

src = save; 
} 

(emi tcode Defpoi nt 341) = 341 
src = cp->u.point.src; 

The cases for the code-list entries for Defpoi nt, Bl ockbeg, Bl ockend, and 
Local don't emit code. If lee's -g option is specified, however, these 
cases call the stab interface functions to emit symbol-table information 
for debuggers. 

Gen, Jump, and Labe 1 entries carry the forests returned by the interface 
function gen, and emi tcode passes the nonnull forests to the interface 
function emi t: 

341 
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217 codehead 
217 Code 
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(emitcode Gen,Jump,Label 342)= 
if (cp->u.forest) 

(*IR->emit)(cp->u.forest); 

341 

Switch code-list entries carry branch tables for switch statements gen
erated by swcode. The u. swtch. va 1 ues and u. swtch. 1abe1 s arrays in 
these entries hold u. swtch. size value-label pairs that form the table. 
emi tcode generates a global variable for the table whose symbol-table 
entry is in the u. swtch. table field, and initializes the table to the ad
dresses specified by the labels. 

(emitcode Switch 342)= 
{ 

} 

inti, k = cp->u.swtch.values[O]; 
defglobal(cp->u.swtch.table, LIT); 
for (i = O; i < cp->u.swtch.size; i++) { 

while (k++ < cp->u.swtch.values[i]) 
(*IR->defaddress)(equated(cp->u.swtch.deflab)); 

(*IR->defaddress)(equated(cp->u.swtch.labels[i])); 
} 
swtoseg(CODE); 

341 

The value-label pairs in u. swtch. va 1 ues and u. swtch. 1abe1 s are sorted 
in ascending order by value, but those values may not be contiguous. 
The default label in u. swtch. de fl ab is used for the missing values. 

12.8 Eliminating Multiply Referenced Nodes 

The front end builds trees, but some of those trees are dags. 1 i stnodes 
takes these trees and builds dags so that it can eliminate common subex
pressions. This section describes undag, which takes dags and turns 
them back into proper trees, though they're still called dags. 1 cc's un
fortunate abuse of proper terminology is perhaps best dealt with by re
membering that "trees" refers to the intermediate representation built 
and manipulated by the front end, and "dags" refers to the intermediate 
representation passed to and manipulated by the back ends. 

1 i stnodes could be eliminated, but this would also sacrifice common
subexpression elimination, which contributes significantly to the qual
ity of the generated code. The earliest versions of 1 cc did the oppo
site: the front end built dags directly. This approach was abandoned for 
the present scheme because dags made code transformations, like those 
done by si mp 1 i fy, much more complicated. Maintaining the reference 
counts, for example, was prone to error. 

A node that represents a common subexpression is pointed to by the 
elements of the kids arrays in at least two other nodes in the same forest, 
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and its count field records the number of those pointers. Back ends 
can generate code directly from the dags in each forest passed to the 
interface function gen, but these multiply referenced nodes complicate 
code generation in general and register allocation in particular. Some 
compilers thus eliminate these nodes, either in their front end or in their 
code generator. They generate code to assign their values to temporaries, 
and they replace the references to these nodes with references to their 
temporaries. As mentioned in Section 12.7, setting the interface flag 
wants_dag to zero causes 1 cc's front end to generate these assignments 
and thus eliminate multiply referenced nodes. If wants_dag is zero, the 
front end also generates assignments for CALLs that return values, even 
if they're referenced only once, because listing a CALL node will give it a 
hidden reference from the code list. All the code generators in this book 
set wants_dag to zero. 

gencode calls undag with each forest in the code list before passing 
the forest to the interface function gen. undag builds and returns a new 
forest, adding the necessary assignments to the new forest as it visits 
each node in the old one. 

( dag.c data)+= 
static Node *tail; 

(dag.c functions)+= 
static Node undag(forest) Node forest; { 

Node p; 

} 

tail = &forest; 
for (p = forest; p; p = p->link) 

if (generic(p->op) == INDIR 
I I iscall(p) && p->count >= 1) 

visit(p, 1); 
else { 

} 

visit(p, 1); 
*tail = p; 
tail = &p->link; 

*tail = NULL; 
return forest; 

.... 
333 

.... 
341 345 ..... 

The two arms of the if statement handle nodes that do not appear as 
roots in the new forest and those that do. Listed INDIR nodes and calls 
referenced by other nodes are replaced in the new forest by assignments 
of their values to temporaries. All other listed nodes, such as nodes for 
the comparisons, JUMP, LABEL, ASGN, and CALLS executed for side effect 
only, are appended to the new forest. Here, calls includes the multiplica
tive operators if the interface flag mu 1ops_ca11 s is one: 

81 count 
311 forest 
337 gencode 
92 gen 

402 gen 
344 iscall 

343 

87 mulops_calls 
345 visit 
89 wants_dag 
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undag 343 
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{dag.c macros)= 
#define iscall(p) (generic((p)->op) ==CALL \ 

I I IR->mulops_calls \ 
&& ((p)->OP==DIV+I I I (p)->OP==MOD+I I I (p)->OP==MUL+I \ 
I I (p)->OP==DIV+U I I (p)->OP==MOD+U I I (p)->OP==MUL+U)) 

vi sit traverses a dag looking for nodes that are referenced more than 
once - those whose count fields exceed one. On the first encounter with 
each such node, vi sit generates a temporary, builds an assignment of 
the node to the temporary, and appends that assignment to the new 
forest. When that node is encountered again, either in the same dag or 
in a subsequent dag, visit replaces the reference to the node with a 
new node that references the appropriate temporary. The effect is that 
an assignment to a temporary appears in the new forest just before the 
root of the dag that first references it. 

An example helps illustrate visit's details. The forest for the state
ment in 

register int n, *q; 
n = *q++ = f(n, n); 

is shown in Figure 12.12. There are five common subexpressions and 
thus five multiply referenced nodes: The lvalues of q and n, the rvalues 
of q and n, and the call to f. Figure 12.13 shows the forest returned by 
undag. Only two of these common subexpressions have been replaced by 
temporaries: t2 is assigned the rvalue of q and t3 is assigned the value 
returned by the call to f. There are no temporaries for the lvalues of q 
and n because it's just as easy to recompute them, which is why there 

INDIRP- - -.ASGNP- - - - - - - - - - - - - - - -. ARGI- - - -> ARGI -

ADJRX ~DP mot:: -, 
qLP \__,,) ~ i 

,, .... ---------------------- _____________ ,,.,' 
CN~TI \;ADDnRLP _,' 

' 
-~ 
, CArI- - - - - - - - ->ASGNI- - - - - - ->ASGNI 

ADDRGP 
f 

FIGURE12.12 Forestforn = *q++ = f(n, n). 



12.8 • ELIMINATING MULTIPLY REFERENCED NODES 

ASGNP-------------~ASGNP-------------~ ARGI---~ARGI-, 

/ "'\.. / "'\.. i i 
ADDRLP INDIRP ADDRLP ADDP INDIRI INDIRI 

t 2 i q / "'\.. i i 
ADDRLP 

q 
IND I RP CNSTI ADDRLP ADDRLP 

i 
ADDRLP 

t2 

4 n n 

- - - - -> ASGNI- - - - - - - - - - - - - - • ASGNI- - - - - - - - - - - - - -~ ASGNI 

/ "'\.. / "'\.. / "'\.. 
ADDRLP CALLI INDIRP INDIRI ADDRLP INDIRI 

t 3 i i i n i 
ADDRGP ADDRLP 

f t2 
ADDRLP 

t3 
ADDRLP 

t3 

FIGURE 12.13 Forest for n = *q++ = f(n, n) when wants_dag is zero. 

are two (ADDRLP q) nodes and three (ADDRLP n) nodes in Figure 12.13. 
As detailed below, there's no temporary for the rvalue of n because n is 
a register, so it's cheaper to replicate the INDIR node that references n, 
which is why there are two (INDIRI (ADDRLP n)) dags in Figure 12.13. 
The forest shown in Figure 12.13 is what might be generated if the state
ment above were written as 

register int n, *q, *t2, t3; 
t2 = q; 
q = *t2 + 1; 
t3 = f(n, n); 
*t2 = t3; 
n = t3; 

visit traverses the dag rooted at p and returns either p or a node for 
the temporary that holds the value represented by p: 

(dag.c functions)+= 
static Node visit(p, listed) Node p; int listed; { 

if (p) 

} 

(visit 346); 
return p; 

.... 
343 346 ..... 

1 i sted is one when undag calls visit, and it's zero when visit calls 
itself recursively. 

345 

343 undag 
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count 81 

defined 50 
IR 306 

isunsigned 60 
LOCAL 38 
local 90 
Local 217 

(MIPS) local 447 
(SPARC) " 483 

(X86) " 518 
newnode 315 

ref 38 
REGISTER 80 

temporary 50 
ttob 73 

visit 345 
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When visit generates a temporary for a node p, it stores the symbol
table entry for that temporary in p->syms [2], which is not otherwise used 
by the front end. visit must also announce the temporary by calling the 
interface function 1oca1 just as if there were a Loca 1 code-list entry for 
the temporary: 

(p->syms [2] - a generated tempora.zy 346) = 348 
p->syms[2] = temporary(REGISTER, btot(p->op), LOCAL); 
p->syms[2]->ref = 1; 
p->syms[2]->u.t.cse = p; 
(*IR->local)(p->syms[2]); 
p->syms[2]->defined = 1; 

(temporaries 346) = 
struct { 

Node cse; 
} t; 

38 

Symbol-table entries for temporaries that hold common subexpressions 
are identified as such by having nonnull u. t. cse fields. These fields 
point to the nodes that represent their values. Back ends may use this 
information to identify common subexpressions that are cheaper to re
compute than to burn a register for. 

A nonnull p->syms [2] also marks p as a common subexpression, so 
references to p must be replaced by references to the temporary, which 
is visit's first step: 

(visit346)= 347 345 ... 
if (p->syms[2]) 

p = tmpnode(p); 

tmpnode builds and returns the dag (INDIR (ADDRLP p->syms [2]) ), which 
references the temporary's rvalue: 

(dag.c functions)+= 
static Node tmpnode(p) Node p; { 

Symbol tmp = p->syms[2]; 

} 

if (--p->count == 0) 
p->syms[2] = NULL; 

p = newnode(INDIR + (type suffix fortmp->type 346), 
newnode(ADDRLP, NULL, NULL, tmp), NULL, NULL); 

p->count = 1; 
return p; 

(type suffix for tmp->type 346) = 
(isunsigned(tmp->type) ? I ttob(tmp->type)) 

... 
345 348 ... 

346 348 
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p->count is the number of references to p. tmpnode decrements p->count 
for each reference and clears p->syms [2] on the last one. Setting the 
value of p->syms [2] to null reinitializes it for use by the back end. 

For nodes that are referenced only once and calls made for side effect 
only, visit traverses and rewrites their operands: 

.... 
(visit 346) += 346 347 345 

else if (p->count <= 1 && !iscall(p) 
I I p->count == 0 && iscall(p)) { 

(visit the operands 347) 
} 

(visit the operands 347)= 
p->kids[O] = visit(p->kids[O], O); 
p->kids[l] = visit(p->kids[l], 0); 

... 

347 348 

Calls that are referenced from other nodes are not processed here be
cause they're replaced by assignments even if they have only one refer
ence. They're treated as common subexpressions, as shown below. 

As suggested above, temporaries are not generated for the addresses 
of locals and parameters because it's usually cheaper to recompute their 
addresses instead of using a register to save them. visit thus builds 
and returns a new node for all ADDRLP and ADDRFP nodes: 

.... 
(visit 346)+= 347 347 345 

else if (p->op == ADDRLP I I p->op == ADDRFP) { 
p = newnode(p->op, NULL, NULL, p->syms[O]); 
p->COUnt = 1; 

} 

... 

Similarly, it's usually wasteful to store the rvalue of a register variable 
in another register. It's better to build a new dag for each reference to 
the register's rvalue, as shown in Figure 12.13 for the two references to 
n. Figure 12.13 shows that q's rvalue is copied to a temporary. The two 
references to q's rvalue must not be duplicated because the INDIRP is 
listed, which indicates that the value must be copied, because q might 
be changed. vi sit thus looks for the pattern (INDIR (ADDRxP v)) where 
v is a register, but steers clear of those in which the INDIR is listed . 

.... 
347 348 ... (visit 346)+= 

else if (generic(p->op) == INDIR && !listed 
&& (p->kids[O]->op == ADDRLP I I p->kids[O]->op == ADDRFP) 
&& p->kids[O]->syms[O]->sclass == REGISTER) { 

} 

p = newnode(p->op, newnode(p->kids[O]->op, NULL, NULL, 
p->kids[O]->syms[O]), NULL, NULL); 

p->COUnt = 1; 

345 

347 

81 count 
344 iscall 
315 newnode 

80 REGISTER 
346 tmpnode 
345 visit 
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This case also reveals why undag can't be called earlier - for example, 
from walk. The storage class of locals and parameters isn't certain un
til the back end has seen the function. Once consumed, funcdefn calls 
checkref, which changes the storage class of frequently accessed locals 
and parameters to REGISTER. If undag were called from wa 1 k, it would 
generate temporaries for automatic locals and parameters that might 
later become registers. 

The last two cases cover INDIRB nodes and nodes for common subex
pressions. Registers can't hold structures, so there's no point in copying 
them to temporaries; vi sit just replicates the INDIRB node: 

(visit 346) += 
else if (p->op == INDIRB) { 

--p->count; 
p = newnode(p->op, p->kids[O], NULL, NULL); 
p->count = 1; 
(visit the operands 347) 

} else { 

} 

(visit the operands 347) 
(p->syms [2] - a generated temporary346) 
*tail= asgnnode(p->syms[2], p); 
tail = &(*tail)->link; 
if ( ! 1 i sted) 

p = tmpnode(p); 

.... 
347 345 

The else clause handles the first encounter with a common subexpres
sion. After traversing the operands, visit generates a temporary, as 
described above, and calls 

(dag.c functions)+= 
static Node asgnnode(tmp, p) Symbol tmp; Node p; { 

p = newnode(ASGN + (type suffix fortmp->type 346), 

} 

newnode(ADDRLP, NULL, NULL, tmp), p, NULL); 
p->syms[O] = intconst(tmp->type->size); 
p->syms[l] = intconst(tmp->type->align); 
return p; 

.... 
346 

to generate an assignment to that temporary. It then appends the assign
ment to the new forest. This code is responsible for the assignments to 
t2 and t3 in Figure 12.13. If 1 i sted is zero, pis referenced from another 
node, so visit must return a reference to the temporary. Otherwise, p 
is referenced from the old forest, which isn't included in p->count and 
thus doesn't consume a reference to the temporary. 
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Further Reading 

Using the code list to represent a function's code is idiosyncratic to 1 cc. 
A flow graph is the more traditional representation. As detailed in tradi
tional compiler texts, such as Aho, Sethi, and Ullman (1986), the nodes 
in a flow graph are basic blocks and the edges represent branches from 
blocks to their successors. A flow graph is the representation usually 
used for optimizations that 1 cc doesn't do. Many intra-procedural op
timization algorithms that discover and improve the code in loops use 
flow graphs, for example. 

The bottom-up hashing algorithm used by node to discover common 
subexpressions is also known as value numbering, and it's been used in 
compilers since the late 1950s. The node numbers shown in Tables 12.l 
and 12.2 are the value numbers of the nodes with which they are associ
ated. Value numbering is also used in data-flow algorithms that compute 
information about available expressions in a flow graph. This informa
tion can be used to eliminate common subexpressions that are used in 
more than one basic block. 

The scheme used in Section 12 .3 to generate short-circuit code for the 
&& and I I operators is similer to the approach described by Logothetis 
and Mishra (1981). That approach and lee's propagate true and false 
labels. Another approach, called backpatching, propagates lists of holes 
- the empty targets of jumps. Once the targets are known, these lists 
are traversed to fill the jumps. This approach works particularly well 
with syntax-directed translations in bottom-up parsers (Aho, Sethi, and 
Ullman 1986). 

Most compilers generate code from trees, but some use dags; Aho, 
Sethi, and Ullman (1986) describe the relevant code-generation algo
rithms for trees and dags and weigh their pros and cons. Earlier ver
sions of 1 cc included code generators that accepted dags. Instruction 
selection in these code generators was described with compact "pro
grams" in a language designed specifically for generating code from 1 cc's 
dags (Fraser 1989). This language was used to write code generators for 
the VAX, Motorola 68030, SPARC, and MIPS. All the code generators in 
this book use trees. 

Exercises 

12.1 ki 11 continues searching buckets for rvalues of p even after it's 
found and removed the first one. Give a C fragment that illustrates 
why there can be more than one kind of IND IR node for p in buckets 
at the same time. Hint: casts. 

12.2 Implement {OR), the case in 1 i st nodes for the OR operator. 

349 

316 kill 
318 listnodes 
315 node 
149 OR 
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12.3 Draw the forest generated for the statement 

while (a[i] && a[i]+b[i] > 0 && a[i]+b[i] < 10) ... 

where a and b are integer arrays. 

12.4 Implement (RET); RET nodes are always roots. 

12.5 Implement (DIV .. MOD); make sure your code handles the interface 
flag mul ops_ca 11 s properly. 

12.6 Implement unlist, which is described in Section 12.3. 

12.7 Give an example of a conditional expression where the calls to 
equatelab and unlist in (COND) eliminate a branch to a branch. 
Hint: nested conditional expressions. 

12.8 For code of the form 

if (1) S1 else S2 

1 cc generates 

S1 
goto L + 1 

L: S2 
L + 1: 

Revise 1 cc to omit the goto and the dead code S2. 

12. 9 Figure 12. 5 is the tree for the assignment w = x . amt = y; the lower 
ASGN+I tree is the tree for the single assignment x. amt = y. If 
the value of a bit-field assignment isn't used, asgntree's efforts 
in building a tree for the right operand that computes the correct 
result of the assignment are wasted and generate unnecessary code. 
Whenever the front end realizes that the value of a tree isn't used, 
it passes the tree to root and uses the tree returned in place of the 
original; see exprO and expr for examples. Study root and extend 
it to simplify the right-hand sides of bit-field assignments when 
possible. 

12.10 asgntree and the 1 i stnodes code in Section 12.4 collaborate to 
compute the result of a bit-field assignment by sign-extending or 
masking when necessary. Similar cases occur for other assign
ments. For example, 

int i; 
short s; 
i = s = OxFFFF; 



EXERCISES 

sets i to -1 on targets that have 16-bit shorts and 32-bit integers. 
There's no special code for these kinds of assignments, but l cc 
generates the correct code for this assignment. Explain how. 

12.11 Draw the forest for the tree shown in Figure 12.7 when the flag 
lefLto_right is zero. 

12.12 Draw the tree and the forest for the augmented assignment in 

struct { int b:4, c:4; } x; 
x.c += x.b++; 

The bit fields b and c are in the same word, so that word is fetched 
twice and stored twice. 

12.13 Managing labels and their synonyms is an instance of the union
find problem, which is described in Chapter 30 of Sedgewick (1990). 
Replace equatelab, fixup, and equated with versions that use the 
path-compression algorithm commonly used for solving union-find 
problems. Measure the improvement in l cc's execution time. If 
there's no significant improvement, explain why. 

12.14 Why doesn't visit treat ADDRGP nodes like ADDRLP and ADDRFP 
nodes? 
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341 equated 
248 equatelab 
340 fixup 

88 left_to_right 
345 visit 
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13 
Structuring the Code Generator 

The code generator supplies the front end with interface functions that 
find target-dependent instructions to implement machine-independent 
intermediate code. Interface functions also assign variables and tempo
raries to registers, to fixed cells in memory, and to stacks, which are also 
in memory. 

A recurring priority throughout the design of 1 cc's back end has been 
overall simplicity. Few compiling texts include any production code gen
erators, and we present three. Typical modest handwritten code gener
ators require 1,000-1,500 lines of C. Careful segregation of the target
specific material has cut this figure roughly in half. The cost is about 
1,000 lines of machine-independent code, but we break even at two tar
gets and profit from there on out; more important, it's easier to get a 
new code generator right if we use as much preexisting (i.e., machine
independent) code as possible. 

1 cc segregates some target-specific material by simply reorganizing 
mostly machine-independent functions into a large machine-independent 
routine that calls a smaller target-specific routine. It segregates other 
material by isolating it in tables; for example, 1 cc's register allocator is 
largely machine-independent, and processes target-specific data held in 
structures that have a target-independent form. Finally, 1 cc segregates 
some target-specific material by capturing it in languages specialized for 
concise expression of the material; for example, 1 cc uses a language 
tailored for expressing instruction selectors, and this language includes 
a sublanguage for driving a code emitter. 

To the machine-independent part of the code generator, target-specific 
operations are like hot coals; they must be handled indirectly, with 
"tongs." If a machine-independent routine must emit a store instruc
tion, for example, it can't just call print. It must create an ASGN dag and 
generate code for it, or escape to a target-specific function that emits the 
instruction, or emit a predefined target-specific template. All these solu
tions need more code than a print call, but they can still pay off because 
they simplify retargeting. For example, a less machine-independent reg
ister spiller with target-dependent parts for each of three targets might 
take less code overall than 1 cc's machine-independent spiller. But de
bugging spillers is hard, so it can save time to debug one machine
independent spiller instead of three simpler target-specific ones. 

The next chapters cover instruction selection, register allocation, and 
the machine-specific material. This chapter describes the overall orga-
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nization of the code generator and its data structures. It also treats a 
few loose ends that are machine-independent but don't fit cleanly under 
instruction selection or register allocation. 

The rest of this book uses the term tree to denote a tree structure 
stored in node records, where the previous chapters use the term dag 
for structures built from nodes. To make matters worse, the previous 
chapters use the term tree for structures that multiply reference at least 
some nodes, so they aren't really trees. Changing terms in midstream 
is confusing, but the alternative is even worse. l cc originally used code 
generators that worked on dags, but the code generators in this book 
require trees; if subsequent text used "dag," it would be wrong, because 
some of the algorithms fail if the inputs are not pure trees. l cc still 
constructs dags in order to eliminate common subexpressions, but the 
code in this book clears wants_dag. 

13.1 Organization of the Code Generator 

Table 13.1 illustrates the overall organization of the back end by show
ing highlights from the call graph. Indentation shows which routines call 
which other routines. This table and section necessarily omit many de
tails and even many routines. They'll simply orient us; they can't answer 
all questions. 

Name of Routine 

function 

gen code 
gen 

rewrite 
pre label 

_label 
reduce 

prune 
linearize 
ralloc 

emitcode 
emit 

requate 
moveself 
emitasm 

emit2 

Purpose 

emits the function prologue and epilogue and calls 
gen code 
interprets the code llst and passes trees to gen 
drives rewrite, prune, linearize, and ralloc 
drives pre 1abe1, _ 1abe1, and reduce 
changes the tree to cope with register variables and 
spedal targets 
labels tree with all plausible implementations 
selects the cheapest implementation 
projects subinstructions out of the tree 
orders instructions for output 
allocates registers 
interprets the code llst and passes nodes to emit 
runs down the llst of instructions and drives emi tasm 
eliminates some register-to-register copies 
eliminates instructions that copy a register to itself 
interprets assembler templates and emits most 
instructions 
emits a few instructions too complex for templates 

TABLE 13.1 Simplified back-end call tree. 
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356 emit2 
444 " (MIPS) 
478 " (SPARC) 
511 " (X86) 
391 emitasm 
341 emitcode 

92 emit 
393 emit 

92 function 
448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
337 gencode 

92 gen 
402 gen 
413 linearize 
394 moveself 
315 node 
398 prelabel 
386 prune 
417 ralloc 
382 reduce 
394 requate 
402 rewrite 

89 wants_dag 
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emit2 356 
(MIPS) " 444 

(SPARC) " 478 
(X86) " 5ll 
emitasm 391 

emitcode 341 
emit 92 
emit 393 

function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 
gencode 337 

gen 92 
gen 402 

1 i neari ze 413 
moveself 394 
prelabel 398 

prune 386 
ralloc 417 
reduce 382 

requate 394 
rewrite 402 
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The front end calls the interface procedure function to generate code 
for a routine. function decides how to receive and store the formals, 
then calls gencode in the front end. gencode calls gen in the back end 
for each forest in the code list. When gencode returns, the back end has 
seen the entire routine and has computed the stack size and registers 
used, so function emits the procedure prologue, then calls emi tcode in 
the front end, which calls emit in the back end for each forest in the 
code list. When emit returns, function emits the epilogue and returns. 

gen coordinates the routines that select instructions and allocate regis
ter temporaries for those instructions: rewrite, prune, 1 i neari ze, and 
ra 11 oc. rewrite selects in~tructions for a single tree. prune projects 
subinstructions - operati6ns such as those computed by addressing 
modes - out of the tree pecause they don't need registers, and elimi
nating them now simplifies the register allocator. 1 i neari ze orders for 
output the instructions that remain. ra 11 oc accepts one node, allocates 
a target register for it, and frees any source registers that are no longer 
needed. 

rewrite coordinates the routines that select instructions: pre 1abe1, 
_label, and reduce. prelabel identifies the set of registers that suits 
each node, and edits a few trees to identify more explicitly nodes that 
read and write register variables. _ l abe 1 is automatically generated from 
a grammar that describes the target machine's instructions. It labels a 
tree with all plausible implementations that use the target instructions. 
reduce selects the implementation that's cheapest. 

emit coordinates the routines that emit instructions and that iden
tify some instructions that need not be emitted: emi tasm, requate, 
and movese 1 f. requate identifies some unnecessary register-to-register 
copies, and movese 1 f identifies instructions that copy a register to itself. 
emi tasm interprets assembler templates that are a bit like pri ntf format 
strings. emi tasm escapes to a target-specific emi t2 for a few instructions 
too complex for templates. 

13.2 Interface Extensions 

The material in the back end falls into two categories: target-specific 
versus machine-independent, and private to the back end versus visible 
to the front end. The two categories combine to divide the back end four 
ways. Here's a sample routine of each kind from Table 13.1: 

Routine Name Private? Target-specifi.c? 

gen no no 
function no yes 
rewrite yes no 
_label yes yes 
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Chapter 5 presents the public interface. This section summarizes the 
back end's private internal interface; Chapters 16-18 supply example im
plementations of this private interface, so they can help answer detailed 
questions. 

Four routines in the public interface - blockbeg, blockend, emit, 
and gen - are target-independent. They could be moved into the front 
end, but that would complicate using the front end with different code
generation technologies. So one can retarget 1 cc by replacing all routines 
in the public interface or by replacing all but blockbeg, blockend, emit, 
and gen and implementing the private interface instead. 

The Xinterface structure extends the interface record: 

(config.h 355) = 
typedef struct { 

(Xi nterface 355) 
} Xinterface; 

357 ... 

This type collects all machine-specific data and routines that the target
independent part of the back end needs to generate code. It is to the 
target-independent part of this back end what the main body of the in
terface record is to the front end. 

It starts with material that helps generate efficient code for ASGNB and 
ARGB, which copy blocks of memory. 1 cc generates loops to copy large 
blocks, but it unrolls short loops into straight-line code because loop 
overhead can swamp the cost of data movement for, say, an eight-byte 
block copy. The block-copy generator has machine-specific and machine
independent parts. The machine-specific material is a small integer and 
three procedures: 

(Xi nterface initializer 355)= 
blkfetch, blkstore, blkloop, 

379 432 464 498 ... 
Code generators need not use the block-copy generator; for example, 
Chapter 18's code generator uses the X86 block-copy instructions, so it 
implements only stubs for the routines above. 

The integer x. max_una 1 i gned_ load gives the maximum width in bytes 
that the target machine can load and store unaligned: 

(Xinterface 355)= 356 355 .... 
unsigned char max_unaligned_load; 

For example, the SPARC architecture implements no unaligned loads, so 
its x. max_una 1 i gned_ load is one, because only load-byte instructions 
require no alignment. The MIPS architecture, however, does support un
aligned 2- and 4-byte loads, so its x.max_unaligned_load is four. 

The procedure x. bl kfetch emits code to load a register from a given 
cell: 

355 

356 blkfetch 
460 " (MIPS) 
492 " (SPARC) 
513 " (X86) 
356 blkloop 
460 " (MIPS) 
493 " (SPARC) 
513 " (X86) 
356 blkstore 
461 " (MIPS) 
493 " (SPARC) 
513 " (X86) 
95 blockbeg 

365 blockbeg 
95 blockend 

365 blockend 
92 emit 

393 emit 
92 gen 

402 gen 



356 

emit 92 
emit 393 
gen 92 
gen 402 
reg 403 
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... 
(Xi nterface 355) += 355 356 355 .... 

void (*blkfetch) ARGS((int size, int off, int reg, int tmp)); 

It emits code to load register tmp with size bytes from the address 
formed by adding register reg and the constant offset off. The pro
cedure x. b 1 ks to re emits code to store a register into a given cell: 

(Xinterface 355)+= 3'!'6 356 355 .... 
void (*blkstore) ARGS((int size, int off, int reg, int tmp)); 

It emits code to store size bytes from register tmp to the address formed 
by adding register reg and offset off. 

The procedure x.blkloop emits a loop to copy a block in memory: 

(Xinterface 355)+= 
... 

356 356 355 .... 
void (*blkloop) ARGS((int dreg, int doff, 

int sreg, int soff, 
int size, int tmps[])); 

x.blkloop emits a loop to copy size bytes in memory. The source ad
dress is formed by adding register sreg and offset soff, and the desti· 
nation address is formed by adding register dreg and offset doff. tmps 
is an array of three integers that represent registers available to help 
implement the loop. 

After the interface to the block-copy generator comes the interface to 
the instruction selector: 

... 
356 356 355 .... (Xinterface 355)+= 

(interface to instruction selector 379) 

This fragment captures most of the target-specific code and data needed 
by the machine-independent gen and emit. It is generated automatically 
from a compact specification. The retargeter thus writes the specifica
tion instead of the interface code and data. Neither the specification nor 
the interface to the instruction selector can be described without prelim· 
inaries. The introduction to Chapter 14 elaborates. 

x. emi t2 emits instructions that cannot be handled by emitting simple 
instruction templates: 

... 
356 356 355 .... (Xi nterface 355) += 

void (*emit2) ARGS((Node)); 

Every machine - and many calling conventions - have a few idiosyn
cracies that can be hard to accommodate without emi t2's escape clause. 

x. doarg computes the register or stack cell assigned to the next argu
ment: 

(Xi nterface 355) += 
void (*doarg) ARGS((Node)); 

... 
356 357 355 .... 
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The back end makes several passes over the forest of trees. The first 
pass calls x. doarg as it encounters each ARG node. 1 cc needs doarg in 
order to emit code compatible with tricky calling conventions. 

x. target marks tree nodes that must be evaluated into a specific reg
ister: 

... 
356 357 355 .... (Xinterface 355)+= 

void (*target) ARGS((Node)); 

For example, return values must be developed into the return register, 
and some machines develop quotients and remainders into fixed regis
ters. The mark takes the form of an assignment to the node's syms [RX], 
which records the result register for the node. Section 13.5 elaborates. 

x . c 1 ob be r spills to memory and later reloads all registers destroyed 
by a given instruction: 

... 
357 355 (Xinterface 355)+= 

void (*clobber) ARGS((Node)); 

It usually takes the form of a switch on the node's opcode; each of the 
few cases calls spi 11, which is a machine-independent procedure that 
saves and restores a given set of registers. 

13.3 Upcalls 

Just as the back end uses some code and data in the front end, so 
the target-specific code in the back end uses some code and data in 
the machine-independent part of the back end. Most front-end routines 
reached by upcalls are simple and at or near leaves in the call graph, 
so it is easy for Chapter 5 to explain them. The back end's internal 
analogues are less simple and cannot, in general, be described out of 
context. They're summarized here so that retargeters can find them all 
in one spot; consult the page cited in the mini-index for the definition 
and - perhaps better yet - consult Chapters 16-18 for sample uses. In
deed, perhaps the best way to retarget 1 cc is to adapt one of the existing 
code generators; having a complete set of sample upcalls is one of the 
attractions. 

(conflg.h 355)+= 
... 

355 358 .... 
extern int askregvar ARGS((Symbol, Symbol)); 
extern void blkcopy ARGS ( (int, i nt , int, 

int, int, int[])); 
extern int getregnum ARGS((Node)); 
extern int mayrecalc ARGS((Node)); 
extern int mkactual ARGS((int, int)); 
extern void mkauto ARGS((Symbol)); 

357 

412 askregvar 
367 blkcopy 
356 doarg 
445 " (MIPS) 
477 " (SPARC) 
512 " (X86) 
385 mayrecalc 
366 mkactual 
365 mkauto 
427 spill 
356 x.doarg 



358 

argoffset 366 
dalign 368 
dflag 370 

framesize 366 
freemask 410 

maxargoffset 366 
maxoffset 365 

mkreg 363 
mkwildcard 363 

move 394 
node 315 

notarget 404 
offset 364 

parseflags 370 
range 388 

rmap 398 
rtarget 400 
salign 368 
setreg 399 
spill 427 

swap 371 
tmask 410 

usedmask 410 
vmask 410 
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extern Symbol 
extern Symbol 
extern int 
extern int 
extern void 
extern int 
extern void 
extern void 
extern void 

mkreg ARGS((char *, int, int, int)); 
mkwildcard ARGS((Symbol *)); 
move ARGS((Node)); 
notarget ARGS((Node)); 
parseflags ARGS((int, char**)); 
range ARGS((Node, int, int)); 
rtarget ARGS((Node, int, Symbol)); 
setreg ARGS((Node, Symbol)); 
spill ARGS((unsigned, int, Node)); 

extern int 
extern int 
extern int 
extern int 
extern unsigned 
extern int 
extern Symbol 

argoffset, maxargoffset; 
bflag, dflag; 
dalign, salign; 
framesize; 
freemask[], usedmask[]; 
offset, maxoffset; 
rmap[]; 

extern int swap; 
extern unsigned tmask[], vmask[]; 

13.4 Node Extensions 

The code generator operates mainly by annotating extensions to the front 
end's nodes. Annotations record such data as the instructions selected 
and the registers allocated. The extension field in the node structure is 
named x and has type Xnode: 

(config.h 355)+= 
typedef struct { 

(Xnode flags 359) 
(Xnode fields 358) 

} Xnode; 

.... 
357 361 .... 

The instruction selector identifies the instructions and addressing modes 
that can implement the node, and it uses x. state to record the results: 

(Xnode fields 358) = 
void *state; 

359 358 .... 

Chapter 14 elaborates on the information represented by the structure 
at which x. state points. 

Nodes implemented by instructions can need registers, but those real
ized by addressing modes don't, so it is useful to distinguish these two 
classes once the instruction selector has identified them. The back end 
uses x. inst to mark nodes that are implemented by instructions: 
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(Xnode fields 358) += 
short inst; 

... 
358 359 358 ... 

x. inst is nonzero if the node is implemented by an instruction. The 
value helps identify the instruction. 

The back end forms in x. kids a tree of the instructions: 
... 

359 359 358 ... (Xnode fields 358)+= 
Node kids[3]; 

The tree parallels the one in the front end's kids, but the nodes com
puted by subinstructions like addressing modes are projected out, as 
shown in Figure 1.5. That is, x. kids stores the solid lines in Figure 1.5 
on page 9; kids stores all lines there. 

x. kids has three elements because 1 cc emits SPARC and X86 instruc
tions that read up to three source registers, namely those that store one 
register to an address formed by adding two others. 1 cc once generated 
VAX code and used instructions with up to three operands that used up 
to two registers each - a base register and an index register - so that 
version of the compiler had six elements in its x. kids. 

At some point, the code generator must order the instructions for out
put. The back end traverses the projected instruction tree in postorder 
and forms in x. prev and x. next a doubly linked list of the instructions 
in this execution order: 

(Xnode fields 358) += 
Node prev, next; 

... 
359 359 358 ... 

For example, Figure 13.1 shows this list for Figure 1.5. It omits the trees 
threaded through kids and x. kids. 

The register allocator uses x. prevuse to link all nodes that read and 
write the same temporary: 

(Xnode fields 358) += 
Node prevuse; 

... 
359 359 358 ... 

Some calling conventions pass the first few arguments in registers, so the 
back end helps out by recording the argument number in the x. argno 
field of ARG nodes: 

(Xnode fields 358) += 
short argno; 

... 
359 358 

Each node extension holds several flags that identify properties of the 
node. Roots in the forest need some special treatment from, for example, 
the register allocator, so the back end flags them using x. 1 i sted: 

(Xnode flags 359)= 
unsigned listed:!; 

360 358 ... 

81 kids 
358 x. inst 

359 
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gen's return value 

l1NDIRD 
"fld qword ptr %0\n" 

lASGNF 
"fstp dword ptr %0\n" 

lINDIRF 
"fld dword ptr %0\n" 

lcvFD 
"# nop\n" 

lADDD 
"fadd%1\n" 

lcvo1 
"sub esp,4\n 
fistp dword ptr O[esp]\n 
pop %c\n" 

lRETI 
"# ret\n" 

lLABELV 
"%a:\n" 

FIGURE 13.1 Figure 1.5 linearized. 

The register allocator and the emitter can traverse some nodes more 
than once, but they must allocate a register and emit the node only at 
the first traversal, so they set x. registered and x. emitted to prevent 
reprocessing: 

(Xnode flags 359)+= 
unsigned registered:!; 
unsigned emitted:!; 

.... 
359 360 358 ... 

1 cc rearranges some expression temporaries to eliminate instructions; 
to facilitate these optimizations, the back end uses x. copy to mark all 
instructions that copy one register to another, and it uses x. equatable to 
mark those that copy a register to a common-subexpression temporary: 

(Xnode flags 359)+= 
unsigned copy:!; 
unsigned equatable:!; 

.... 
360 361 358 ... 

Some common subexpressions are too cheap to deserve a register. To 
save such registers, the back end flags uses x .mayrecal c to mark nodes 
for computing common subexpressions that can be reevaluated safely. 
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(Xnode flags 359) += 
unsigned mayrecalc:l; 

... 
360 358 

The back end adds two generic opcodes for node structures. LOAD 
represents a register-to-register copy. The back end inserts a LOAD node 
when a parent needs an input in one register and the child yields a differ
ent register. For example, if a function is called and its value is assigned 
to a register variable, then the child CALL yields the return register, and 
the parent needs a LOAD to copy it to the register variable. 

If the back end assigns a local or formal to a register, it substitutes 
VREG for all ADDRFP or ADDRLP opcodes for the variable. Register and 
memory references need different code, and a different opcode tells us 
which to emit. There is sure to be an ASGN or INDIR node above the 
VREG; otherwise, the program computes the address of a register variable, 
which is forbidden. The INDIR is not torn out of the tree even though 
programs fetch register variables with no true indirection. 

The target-independent Regnode structure describes a target-specific 
register: 

(confi.g.h 355)+= 
typedef struct { 

Symbol vbl; 
short set; 
short number; 
unsigned mask; 

} *Regnode; 

... 
358 361 .... 

If the register has been assigned to hold a variable - as opposed to a 
temporary value - vbl points to the symbol structure for that variable. 
set can handle a large number of register sets, but it handles all current 
targets with just IREG and FREG: 

... 
361 362 .... (confi.g.h 355)+= 

enum { IREG=O, FREG=l }; 

IREG and FREG distinguish general registers from floating-point regis
ters. number holds the register number; even if registers are identified 
by a name instead of a number (as in X86 assemblers) there is usually 
a companion numeric encoding used by binary emitters and debuggers. 
mask has ones in bit positions corresponding to the underlying hardware 
registers occupied. Most single-width registers have just a single one 
bit, and most double-width registers have exactly two. For example, the 
mask 1 identifies the single-width register 0, and the mask 6 identifies 
the double-width register that occupies single-width registers 1 and 2. 
The X86 architecture has one-, two-, and four-byte integer registers, so 
its masks have one, two, or four one-bits. This representation is general 
enough to describe most but not all register sets; see Exercise 13.2. 

361 

385 mayrecalc 
315 node 
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function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 

mkreg 363 
offset 364 

Regnode 361 
symbol 37 

syms 81 

13.S Symbol Extensions 

The back end also extends symbo 1 structures. The field is named x and 
has type Xsymbo 1: 

{confi.g.h 355)+= 

typedef struct { 
char *name; 
int offset; 
{fi.elds for temporaries 362) 

{fi.elds for registers 362) 

} Xsymbol; 

.... 
361 362 .... 

x . name is what the back end emits for the symbol. For globals, it can 
equal name on some targets. For locals and formals, it is a digit string 
equivalent to x . offset, which is a stack off set. Off sets for local variables 
are always negative, but off sets for parameters can be positive, which 
explains why x. offset is signed. 

If the symbol is a temporary in which the front end has stored a com
mon subexpression, then the back end links all nodes that read or write 
the expression using x. 1 astuse, and it computes the number of such 
uses into x. usecount: 

{fi.elds for temporaries 362) = 

Node lastuse; 
int usecount; 

362 

During initialization, the back end allocates one register symbol for 
each allocable register. It represents the register allocated to a node with 
a symbol so that the emitter can output register names and numbers 
using the same mechanism that emits identifiers and constants, which 
are also held in syms. These register symbols use two unique fields: 

{fi.elds for registers 362)= 363 362 .... 
Regnode regnode; 

The back end points x. regnode at a structure that describes the register, 
and it sets x. name to the register's name or number. When it allocates a 
register to a node p, it stores the corresponding symbol in p->syms [RX]. 
The back end sets RX to two to avoid having to move the values that the 
front end passes it in syms [OJ and syms [1]: 

{confi.g.h 355) += 

enum { RX=2 }; 

.... 
362 365 .... 

Once the front end calls function, however, all elements of syms become 
the property of the back end. The front end is done with them, and the 
back end can change them as it sees fit. Most of its changes are to the 
Xsymbol field and to syms[RX], but some changes are to other fields. 

mkreg creates and initializes a register symbol: 
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(gen.c functions)= 
Symbol mkreg(fmt, n, mask, set) 
char *fmt; int n, mask, set; { 

Symbol p; 

} 

NEWO(p, PERM); 
p->x.name = stringf(fmt, n); 
NEWO(p->x.regnode, PERM); 
p->x.regnode->number = n; 
p->x.regnode->mask = mask<<n; 
p->x.regnode->set =set; 
return p; 

363 ... 

stri ngf is used to create a register name that includes the register num
ber. For example, if i is 7, then mkreg("r%d", i, 1, !REG) creates a 
register named r7. Acalllikemkreg("sp", 29, 1, !REG) is used if reg
ister 29 is generally called sp instead of r29. 

The back end also represents sets of registers; for example, if a node 
must be evaluated into a specific register, the back end marks the node 
with the register, but if the node can be evaluated into any one of a set 
of registers, then the mark is given a value that represents the set. The 
back end represents a set of registers by storing a vector of pointers to 
register symbols in the x. wi l dcard field of a special wildcard symbol: 

... 
362 362 (fields for registers 362) += 

Symbol *wildcard; 

For example, the back end for a machine with 32 integer registers would 
allocate 32 register symbols and store them in a 32-element vector. Then 
it would allocate one wildcard symbol and store in its x. wi l dcard the 
address of the vector. mkwi l dcard creates a register-set symbol: 

(gen.c functions)+= 
Symbol mkwildcard(syms) Symbol *syms; { 

Symbol p; 

} 

NEWO(p, PERM); 
p->x.name = "wildcard"; 
p->x.wildcard = syms; 
return p; 

... 
363 365 ... 

The x. name "wi l dcard" should never appear in l cc's output, but x. name 
is initialized nonetheless, so that the emitter doesn't crash - and even 
emits a telling register name - when the impossible happens. 

361 mask 
24 NEWO 

361 number 
97 PERM 

361 set 

363 

99 stringf 
362 x.name 
362 x.regnode 
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mkauto 365 

13.6 Frame Layout 

A procedure activation record, or frame, holds all the state information 
needed for one invocation of a procedure, including the automatic vari
ables, return address, and saved registers. A stack stores one frame for 
each active procedure invocation. The stack grows down, toward lower 
addresses. For example, if main calls f, and f calls itself recursively 
once, the stack resembles the illustration shown in Figure 13.2. The 
stack grows into the shaded area. 

A logical frame pointer points somewhere into a stack frame. On all 
targets, the locals have negative offsets from the frame pointer. Formals 
and other data can be at positive or negative off sets, depending on the 
target's convention. Figure 13.3 shows a typical frame. 

Some targets hold the frame pointer in a physical register; for example, 
Figure 18.1 shows that the X86 frame pointer is stored in register ebp, 
and it points at one of the registers saved in the frame. Other targets 
store only the stack pointer and represent the frame pointer as the sum 
of the stack pointer and a constant; the MIPS code generator, for example, 
does this. The virtual frame pointer for a routine with an 80-byte frame 
is the address 80($sp) (80 plus the value of the stack pointer, $sp), and 
-4+80($sp) references the local assigned offset -4 (see Figure 16.1). 

offset is the absolute value of the stack offset for the last automatic 
variable, and mkauto arranges aligned stack space for the next one: 

(gen.c data)= 
int offset; 

high addresses 

low addresses 

frame for ma i n 

frame for f 

frame for f 
..---- frame pointer 

..---- stack pointer 

FIGURE 13.2 Three stack frames. 

365 ..... 
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high addresses 
return address 

saved registers 

+-----frame pointer 

locals 

outgoing arguments 
low addresses ....._ ______ ___.+-----stack pointer 

FIGURE 13.3 Typical frame. 

.... 
(gen.c functions)+= 363 365 ... 

void mkauto(p) Symbol p; { 
offset= roundup(offset + p->type->size, p->type->align); 
p->x.offset = -offset; 
p->x.name = stringd(-offset); 

} 

Using the absolute value avoids questions about rounding when divid
ing negative integers, and we don't assume that all offsets are negative 
because for some formals, for example, they aren't. 

At the beginning of each block, the front end calls blockbeg to save 
the current stack offset and allocation status of each register: 

(config.b 355)+= 
typedef struct { 

int offset; 
unsigned freemask[2]; 

} Env; 

(gen.c functions)+= 
void blockbeg(e) Env *e; { 

} 

e->offset = offset; 
e->freemask[IREG] freemask[IREG]; 
e->freemask[FREG] = freemask[FREG]; 

blockend restores the saved values at the end of the block: 

(gen.c data)+= 
int maxoffset; 

(gen.c functions)+= 
void blockend(e) Env *e; { 

.... 
362 377 ... 

.... 
365 365 ... 

.... 
364 366 ... 
.... 

365 366 ... 

365 

78 align 
410 freemask 
361 FREG 
361 IREG 
364 offset 
19 roundup 
29 stringd 

362 x.name 
362 x.offset 
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align 78 
blockend 95 
blockend 365 

docall 367 
freemask 410 

FREG 361 
function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 

IREG 361 
maxoffset 365 

off set 364 
roundup 19 
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} 

if (offset > maxoffset) 
maxoffset = offset; 

offset = e->offset; 
freemask[IREG] e->freemask[IREG]; 
freemask[FREG] = e->freemask[FREG]; 

blockend also computes the maximum value of offset for the current 
routine. The interface procedure function sets framesize 

(gen.c data)+= 
int framesi ze; 

.... 
365 366 

"" 

to maxoffset - or more to save space to store data like registers that 
must be saved by the callee - and it emits a procedure prologue and 
epilogue that adjust the stack pointer by framesi ze to allocate and deal
locate stack space for all blocks in the routine at once. 

Each routine's stack frame includes an argument-build area, which is 
a block of memory for outgoing arguments, as shown in Figure 13.3. 1 cc 
can pass arguments by pushing them onto the stack; the push instruc
tions allocate the block of memory implicitly. Current RISC machines, 
however, have no push instructions, and simulating them with multiple 
instructions is slow. On these machines, 1 cc allocates a block of mem
ory and moves each argument into its cell in the block. It creates one 
block for each routine, making the block big enough for the largest set 
of outgoing arguments. 

The code and data that compute the off sets and block size in the 
argument-build area resemble the ones above that manage automatics. 
argoffset is the next available block off set. mkactua 1 rounds it up to a 
specified alignment, returns the result, and updates argoffset: 

(gen.c data)+= 
int argoffset; 

(gen.c functions)+= 
int mkactual(align, size) int align, size; { 

int n = roundup(argoffset, align); 

} 

argoffset = n + size; 
return n; 

.... 
366 366 

"" 

.... 
365 367 

"" 

do ca 11 is invoked on the CALL node that ends each list of arguments. 
It clears argoffset for the next set of arguments, and computes in 
maxargoffset the size of the largest block of outgoing arguments: 

(gen.c data)+= 
.... 

366 368 
"" int maxargoffset; 
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(gen.c functions)+= 
static void docall(p) Node p; { 

p->syms[O] = intconst(argoffset); 
if (argoffset > maxargoffset) 

maxargoffset = argoffset; 
argoffset = O; 

} 

.... 
366 367 ... 

doca 11 records in p->syms [O] the size of this call's argument block, so 
that the caller can pop it off the stack if necessary. The X86 code gener
ator illustrates this mechanism. 

13. 7 Generating Code to Copy Blocks 

ASGNB and ARGB copy blocks of memory. 1 cc generates loops to copy 
large blocks, but it unrolls short loops into straight-line code because 
loop overhead can swamp the cost of data movement for, say, an eight
byte block copy. 

bl kcopy is the entry point into the block-copy generator. It is machine
independent and shares b 1k1 oop's signature: 

(gen.c functions)+= 
void blkcopy(dreg, doff, sreg, soff, size, tmp) 
int dreg, doff, sreg, soff, size, tmp[]; { 

(bl kcopy 367) 
} 

.... 
367 368 ... 

blkcopy emits code to copy size bytes in memory. The source address 
is formed by adding register sreg and offset soff, and the destination 
address is formed by adding register dreg and offset doff. tmps gives 
the numbers of three registers available for use as temporaries by the 
emitted code. 

bl kcopy calls bl kl oop for long blocks, but it unrolls the loops for 
blocks of 16 or fewer bytes; we chose this limit somewhat arbitrarily 
after determining what some other compilers used. bl kcopy is recursive, 
so it starts by confirming that there's something left to copy: 

(bl kcopy 367) = 
if (size == 0) 

return; 

367 367 ... 

If fewer than four bytes remain, bl kcopy calls bl kun ro 11 to emit code to 
copy them: 

.... 
(blkcopy367)+= 367368 367 ... 

else if (size <= 2) 
blkunroll(size, dreg, doff, sreg, soff, size, tmp); 

367 

366 argoff set 
356 blkloop 
460 " (MIPS) 
493 " (SPARC) 
513 " (X86) 
368 blkunroll 
49 intconst 

366 maxargoffset 
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blkcopy 367 
blkfet:ch 356 
(MIPS) " 460 

(SPARC) " 492 
(X86) " 513 
blkloop 356 

(MIPS) " 460 
(SPARC) " 493 

(X86) " 513 
blkst:ore 356 
(MIPS) " 461 

(SPARC) " 493 
(X86) " 513 

IR 306 
x.blkloop 356 
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else if (size == 3) { 

} 

blkunroll(2, dreg, doff, sreg, soff, 2, tmp); 
blkunroll(l, dreg, doff+2, sreg, soff+2, 1, tmp); 

If the block has 4 to 16 bytes, bl kcopy rounds size down to a multiple of 
four (using size&-3) and calls blkunroll to copy that number of bytes 
four at a time. It then calls itself recursively to handle the remaining 
zero to three bytes: 

.... 
(blkcopy367)+= 367368 367 ... 

else if (size <= 16) { 

} 

blkunroll(4, dreg, doff, sreg, soff, size&-3, tmp); 
blkcopy(dreg, doff+(size&-3), 

sreg, soff+(size&-3), size&3, tmp); 

Loops copy blocks exceeding 16 bytes: 
.... 

(blkcopy367)+= 368 367 
else 

(*IR->x.blkloop)(dreg, doff, sreg, soff, size, tmp); 

bl kunrol l shares a signature with bl kcopy and bl kloop, except for an 
extra leading integer k, which is the number of bytes to copy at a time 
and must be one, two, or four: 

.... 
(gen.c functions)+= 367 370 ... 

static void blkunroll(k, dreg, doff, sreg, soff, size, tmp) 
int k, dreg, doff, sreg, soff, size, tmp[]; { 

int i; 

(reduce k? 369) 
(emit unrolled loop 369) 

} 

In a perfect world, blkunroll would interleave calls on blkfetch and 
bl ks tore to copy a block k bytes at a time. In this world, the alignments 
of the source or destination addresses may not be multiples of k, and 
some targets can't load or store k-byte units unless the address is a mul
tiple of k. b 1 kcopy's original caller sets globals sa 1 i gn and da 1 i gn to the 
alignment for the source and destination blocks: 

(gen.c data)+= 
int dalign, salign; 

.... 
366 370 ... 

If the compiler knows nothing about a source or destination alignment, 
then it sets sa 1 i gn or da 1 i gn to one, since all blocks have an address 
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that's divisible by one. Using globals for da 1 i gn and sa 1 i gn is a trade
off: it would be cleaner to pass them as arguments, but the procedures 
have too many arguments already, and packaging the arguments as struc
tures is a cure worse than the disease. bl kunrol l uses these values and 
x. max_una 1 i gned_ load to reduce k, and thus copy smaller chunks if k 
exceeds the maximum size for unaligned loads and the alignment of the 
source or destination: 

{reduce k?369)= 
if Ck > IR->x.max_unaligned_load 
&& Ck > salign I I k > dalign)) 

k = IR->x.max_unaligned_load; 

368 

So, a large block with, say, 32-bit alignment for the destination but only 
16-bit alignment for the source gets copied 16 bits at a time. Copying the 
first 16 bits would give 32-bit alignment for the rest of the source, but it 
would drop the rest of the destination down to 16-bit alignment, so this 
step alone wouldn't help us generate better code; see Exercise 13.3. 

bl kunrol l's other complication caters to machines that stall when 
a load comes right before an instruction that uses the value loaded. 
b 1 kun ro 11 cuts such stalls by emitting two loads and then two stores, 
so stores don't follow their companion loads immediately: 

{emit unrolled loop 369) = 

for Ci = O; i+k < size; 
C*IR->x.blkfetch)Ck, 
C*IR->x.blkfetch)Ck, 
C*IR->x.blkstore)(k, 
C*IR->x.blkstore)Ck, 

} 

i += 2*k) { 
soff+i, sreg, 
soff+i+k, sreg, 
doff+i, dreg, 
doff+i+k, dreg, 

tmp[O]); 
tmp[l]); 
tmp[O]); 
tmp[l]); 

369 368 ... 

Each trip through the for loop emits one pair. It quits when no pairs 
remain, and emits one last copy if the call requested an odd number: 

{emit unrolled loop 369) + = 
if Ci < size) { 

} 

(*IR->x.blkfetch)(k, i+soff, sreg, tmp[O]); 
C*IR->x.blkstore)(k, i+doff, dreg, tmp[O]); 

... 
369 368 

Figure 13.4 shows lee generating MIPS code to copy a 20-byte structure 
with four-byte alignment of the source and destination. The first col
umn traces the calls to the procedures above. The second shows the 
corresponding emitted code. tmps is initialized to {3, 9, 10}. Chapter 16 
describes the MIPS instructions and the MIPS bl kl oop, bl kfetch, and 
b 1 kun ro 11. Its b 1k1 oop copies eight bytes at a time. It calls b 1 kcopy 
recursively to copy the four bytes left over just before the loop. 

369 

367 blkcopy 
356 blkfetch 
460 " (MIPS) 
492 " (SPARC) 
513 " (X86) 
356 blkloop 
460 " (MIPS) 
493 " (SPARC) 
513 " (X86) 
368 blkunroll 
368 dalign 
306 IR 
368 salign 
355 x.blkfetch 
356 x.blkstore 
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blkcopy(25, 0, 8, 0, 20, {3,9,10}) 
blkloop(25, 0, 8, 0, 20, {3,9,10}) 

blkcopy(lO, 0, 8, 0, 4, {3,9,10}) 
blkunroll(4, 10, 0, 8, 0, 4, {3,9,10}) 
blkfetch(4, 0, 8, 3) 
blkstore(4, 0, 10, 3) 

blkcopy(lO, 0, 8, 0, 0, {3,9,10}) 

blkcopy(lO, 0, 8, 0, 8, {3,9,10}) 
blkunroll(4, 10, 0, 8, 0, 8, {3,9,10}) 
blkfetch(4, 0, 8, 3) 
blkfetch(4, 4, 8, 9) 
blkstore(4, 0, 10, 3) 
blkstore(4, 4, 10, 9) 

addu $8,$8,16 
addu $10, $25, 16 

lw $3,0($8) 
SW $3,0($10) 

L. 3: 
addu $8,$8,-8 
addu $10,$10,-8 

lw $3,0($8) 
lw $9,4($8) 
SW $3,0($10) 
SW $9,4($10) 

bltu $25,$10,L.3 

FIGURE 13.4 Generating a structure copy. 

13.8 Initialization 

parse.flags recognizes the command-line options that affect code gen
eration. -d enables debugging output, which helps when retargeting 1 cc. 
This book omits the calls that emit debugging output, but they're on the 
companion diskette. 

(gen.c data)+= 
int dflag = O; 

(gen.c functions)+= 
void parseflags(argc, argv) int argc; char *argv[]; { 

inti; 

for (i = O; i < argc; i++) 
if (strcmp(argv[i], "-d") 0) 

dflag = 1; 
} 

... 
368 371 .... 

... 
368 382 .... 

1 cc can run on one machine - the host - and emit code for another 
- the target. One machine can be a big endian and the other a little en
dian, which subtly complicates emitting doub 1 e constants, and is another 
matter that benefits from attention during initialization. 

1 cc assumes that it is running on and compiling for machines with 
IEEE floating-point arithmetic. The host and target machines need not 
be the same, but both must use IEEE floating-point arithmetic. This as
sumption was once constraining, but it sacrifices little now. 



FURTHER READING 

The discussion about the interface procedure defconst in Chapter 5 
explained that code generators for C must encode floating-point numbers 
themselves. That is, they must emit equivalent hexidecimal constants 
and shun the assembler directives that convert a textual representation 
of a floating-point constant to its internal form. 

1 cc can emit a single word for each single-precision float, but it must 
emit two words for doubles. If 1 cc is running on a little endian and 
compiling for a little endian, or if both machines are big endian, then 
both encode doubles the same way, and the code generator can emit in 
order the two words that comprise the double. But if one machine is a 
big endian and the other a little endian, then one expects the high-order 
word first and the other expects the low-order word first. defconst must 
exchange the two halves as it emits them. 

The interface flag 1itt1 e_endi an classifies the target, but nothing in 
the interface classifies the host. 1 cc classifies the host automatically 
during initialization: 

(gen.c data)+= 
int swap; 

(shared p rogbeg 3 71) = 
{ 

} 

union { 
char c; 
int i; 

} u; 
u. i = O; 
u.c = 1; 
swap= (u.i == 1) != IR->little_endian; 

... 
370 394 ... 

433 466 498 

Llttle-endian machines define u. c on top of the low bits of u. i, so the 
assignment to u . c above sets u . i to 1. Big-endian machines define u . c 
on top of the high bits of u. i, so the assignment to u. c to sets u. i to 
OxOlOOOOOO on 1 cc's 32-bit targets. 

Further Reading 

From this chapter on, it helps to be up to date on computer architecture. 
For example, b 1kunro11 's load-load-store-store pattern makes little sense 
without an understanding of how loads and stores typically interact on 
current machines. Patterson and Hennessy (1990) surveys computer ar
chitecture. 

371 

368 blkunroll 
91 defconst 

455 " (MIPS) 
490 " (SPARC) 
522 " (X86) 
306 IR 

87 little_endian 
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Exercises 

13.1 Parts of 1 cc assume that the target machine has at most two regis
ter sets. Identify these parts and generalize them to handle more 
register sets. 

13.2 Parts of 1 cc assume that the target machine has at most N registers 
in each register set, where N is the number of bits in an unsigned. 
Identify these parts and generalize them to handle larger register 
sets. 

13.3 The first column in Figure 13.4 gives a call trace for 

blkcopy(25, 0, 8, 0, 20, {3, 9, 10}) 

when the source and destination addresses are divisible by four. 
Give the analogous trace when the source and destination addresses 
are divisible by two but not four. 

13.4 1 cc unrolls loops that copy structures of 16 or fewer bytes. This 
limit was chosen somewhat arbitrarily. Run experiments to deter
mine if another limit suits your machine better. 



14 
Selecting and Emitting Instructions 

The instruction selectors in this book are generated automatically from 
compact specifications by the program 1 burg, which is a code-generator 
generator. 1 cc has had other instruction selectors - some written by 
hand, some written by other code-generator generators - but none 
of them appear in this book. 1 burg's code generators can misbehave 
if nodes are traversed more than once, so all back ends in this book 
clear wants_dag and act on trees, although the tree elements have type 
struct node, not struct tree. 

1 burg accepts a compact specification and emits a tree parser written 
in C that selects instructions for a target machine. Just as the front end's 
parser partitions its input into units like statements and expressions, a 
tree parser accepts a subject tree of intermediate code and partitions it 
into chunks that correspond to instructions on the target machine. The 
partition is called a tree cover. This chapter refers to the generated tree 
parser as BURM, but 1 cc needs one parser for each target machine, so 
emits one BURM into each of mi ps. c, spare. c, and x86. c. 

The core of an 1 burg specification is a tree grammar. Like conven
tional grammars, a tree grammar is a list of rules, and each rule has a 
nonterminal on the left and a pattern of terminals - operators in the 
intermediate code - and nonterminals on the right. 

Typical rules associate with each pattern an addressing mode or in
struction that performs the operator that appears in the pattern. Con
ventional patterns are compared with a linear string, but tree patterns are 
compared with a structured tree, so tree patterns must describe the op
erators they match and the relative positions of those operators in the 
pattern. 1 burg specifications describe this structure with a functional 
notation and parentheses. For example, the pattern 

ADDI(reg, con) 

matches a tree at an ADDI node if the node's first child recursively 
matches the nonterminal reg and the second child recursively matches 
the nonterminal con. The rule 

addr: ADDI(reg, con) 

states that the nonterminal addr matches this sample pattern, and the 
rule 

stmt: ASGNI(addr, reg) 

430 mips.c 
463 sparc.c 

89 wants_dag 
496 x86.c 

373 
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addr: ADDP(addr,con) 

reg: INDIRP(addr) 

addr: ADDRLP 

stmt: ASGNI(addr,reg) 

reg: con 
con: CNSTI 

CNS TI 

FIGURE14.1 Cover for ASGNI (ADDP(INDIRP(ADDRLP(p)), CNSTI (4)), CNSTI (5)). 

states that the nonterminal stmt matches each ASGNI node whose chil
dren recursively match the nonterminals addr and reg. 

The generated code generator - that is, the output of the code
generator generator l burg - produces a tree cover, which completely 
covers each input tree with patterns from the grammar rules that meet 
each pattern's constraints on terminals and nonterminals. For example, 
Figure 14.1 gives a cover for the tree 

ASGNI(ADDP(INDIRP(ADDRLP(p)),CNSTI(4)),CNSTI(5)) 

using the two rules above plus a few more shown in the figure. The rules 
to the side of each node identify the cover, and the shaded regions each 
correspond to one instruction on most machines. 

Tree grammars that describe instruction sets are usually ambiguous. 
For example, one can typically increment a register by adding one to it 
directly, or by loading one into another register then adding the second 
register to the first. We prefer the cheapest implementation, so we aug
ment each rule with a cost, and prefer the tree parse with the smallest 
total cost. Section 14.2 shows tree labels with costs. 

A partial cover that looks cheap low in the tree can look more expen
sive when it's completed, because the cover from the root down to the 
partial cover can be costly. When matching a subtree, we can't know 
which matches will look good when it is completed higher in the tree, 
so the generated code generator records the best match for every non
terminal at each node. Then the higher levels can choose any available 
nonterminal, even those that don't look cheap at the lower levels. This 
technique - recording a set of solutions and picking one of them later 
- is called dynamic programming. 

The generated code generator makes two passes over each subject 
tree. The first pass is a bottom-up labeller, which finds a set of patterns 
that cover each subtree with minimum cost. The second pass is a top
down reducer, which picks the cheapest cover from the set recorded by 
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the labeller. It generates the code associated with the minimum-cost 
patterns. 

14.1 Specifications 

The following grammar describes 1 burg specifications. term and non
term denote identifiers that are terminals and nonterminals: 

grammar: 
'%{' configuration '%}' { dcl } %".-6 { rule} [ %% C code ] 

dcl: 
%start nonterm 
%term { term= integer} 

rule: 
nonterm : tree template [ C expression ] 

tree: 
term [ ' ( ' tree [ , tree ] ' ) ' ] 
non term 

template: 
11 

{ any character except double quote } 11 

1 burg specifications are line oriented. The tokens %{, %} , and %% must 
appear alone in a line, and all of a dcl or rule must appear on a line. 
The configuration is C code. It is copied verbatim into the beginning of 
BURM. If there's a second%%, the text after it is also copied verbatim into 
BURM. at the end. 

The configuration interfaces BURM and the trees being parsed. It de
fines NODEPTIL TYPE to be a visible type name for a pointer to a node 
in the subject tree. BURM uses the functions or macros OP_LABEL(p), 
LEFT_CHILD(p), and RIGHT_CHILD(p) to read the operator and children 
from the node pointed to by p. 

BURM computes and stores a void pointer state in each node of the 
subject tree. The configuration section defines a macro STATE_LABEL(p) 
to access the state field of the node pointed to by p. A macro is required 
because 1 burg uses it as an lvalue. The other configuration operations 
may be implemented as macros or functions. 

All 1 burg specifications in this book share one configuration: 

(]burg prefix375)= 431463 496 
#include 11 c.h 11 

#define NODEPTILTYPE Node 
#define OP_LABEL(p) ((p)->op) 
#define LEFT_CHILD(p) ((p)->kids[O]) 
#define RIGHT_CHILD(p) ((p)->kids[l]) 
#define STATE_LABEL(p) ((p)->x.state) 

375 

358 x.state 
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OP_LABEL 375 
stmt 403 
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The %start directive names the nonterminal that the root of each tree 
must match. If there is no %start directive, the default start symbol is 
the nonterminal defined by the first rule. 

The %term declarations declare terminals - the operators in subject 
trees - and associate a unique, positive integral opcode with each one. 
OP_LABEL(p) must return a valid opcode for node p. Each terminal has 
fixed arity, which lburg infers from the rules using that terminal. lburg 
restricts terminals to at most two children. 1 cc's terminal declarations, 
for example, include: 

(terminal declarations 3 76) = 431 463 496 

%start stmt 
%term ADDD=306 ADDF=305 ADDI=309 ADDP=311 ADDU=310 
%term ADDRFP=279 
%term ADDRGP=263 
%term ADDRLP=295 
%term ARGB=41 ARGD=34 ARGF=33 ARGI=37 ARGP=39 

Figure 14.2 holds a partial 1 burg specification for lee and a subset of 
the instruction set of most machines. The second and third lines declare 
terminals. 

Rules define tree patterns in a fully parenthesized prefix form. Ev
ery nonterminal denotes a tree. A chain rule is a rule whose pattern is 
another nonterminal. In Figure 14.2, rules 4, 5, and 8 are chain rules. 

The rules describe the instruction set and addressing modes offered 
by the target machine. Each rule has an assembler code template, which 
is a quoted string that specifies what to emit when this rule is used. 
Section 14.6 describes the format of these templates. In Figure 14.2, the 
templates are merely rule numbers. 

Rules end with an optional cost. Chain rules must use constant costs, 
but other rules may use arbitrary C expressions in which a denotes the 

%start stmt 
%term ADDI=309 ADDRLP=295 ASGNI=53 
%term CNSTI=21 CVCI=85 INDIRC=67 
%% 
con: CNSTI "1" 
addr: ADDRLP "2" 
addr: ADDI(reg,con) "3" 
re: con "4" 
re: reg "5" 
reg: ADDI (reg, re) "6" 1 
reg: CVCI(INDIRC(addr)) "7" 1 
reg: addr "8" 1 
stmt: ASGNI(addr,reg) "9" 1 

FIGURE 14.2 Sample 1 burg specification. 
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node being matched. For example, the rule 

con: CNSTU (a->syms[O]->u.c.v.u < 256 ? 0 : LBURG_MAX) 

notes that unsigned constants cost nothing if they fit in a byte, and have 
an infinite cost otherwise. All costs must evaluate to integers between 
zero and LBURG_MAX inclusive. LBURG_MAX is defined as the largest short 
integer: 

( confi.g.h 355) += 
... 

365 
#define LBURG_MAX SHRT_MAX 

Omitted costs default to zero. The cost of a derivation is the sum of the 
costs for all rules applied in the derivation. The tree parser finds the 
cheapest parse of the subject tree. It breaks ties arbitrarily. 

In Figure 14.2, con matches constants. addr matches trees that can be 
computed by address calculations, like an ADDRLP or the sum of a register 
and a constant. re matches a constant or a reg, and reg matches any tree 
that can be computed into a register. Rule 6 describes an add instruction; 
its first operand must be in a register, its second operand must be a 
register or a constant, and its result is left in a register. Rule 7 describes 
an instruction that loads a byte, extends the sign bit, and leaves the result 
in a register. Rule 8 describes an instruction that loads an address into 
a register. stmt matches trees executed for side effect, which include 
assignments. Rule 9 describes an instruction that stores a register into 
the cell addressed by some addressing mode. 

14.2 Labelling the Tree 

BURM starts by labelling the subject tree. It works bottom-up and left
to-right, computing the rules that cover the tree with the minimum cost. 
Figure 14.3 shows the tree for the assignment in the fragment: 

{inti; char c; i = c + 4; } 

The other annotations in Figure 14.3 describe the labelling. (N, C, M) 
indicates that the pattern associated with rule M with rule number N 
matches the node with cost C. Each C sums the costs of the nonterminals 
on the rule's right-hand side and the cost of the relevant pattern or chain 
rule. 

For example, rule 2 of Figure 14.2 matches the node ADDRLP i with 
zero cost, so the node is labelled with (2, 0, addr: ADDRLP). Rule 8 says 
that anything that matches an add r also matches a reg - with an addi
tional cost of one - so the node is also labelled with (8, 1, reg: addr). 
And rule 5 says that anything that matches a reg also matches an re -
at no extra cost - so the node is also labelled with (5, 1, re: reg). As it 
happens, the next match higher in the tree needs an addr, so the chain 

377 
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ASGNI (9, 3, stmt: ASGNI(addr, reg)) 

(2, 0, add r: ADDRLP) / "" 
(8, 1, reg: addr) ~ (6, 2, reg: ADDI(reg, re)) 
(5, 1, re: reg) ADDRLP ADDI (5, 2, re: reg) 

/ ~· 1, addr: ADDI(reg,con)) 

(7, 1, reg: cver(INDIRe(addr))) ever eNSTI 
(5, 1, re: reg) I 4 

t (1, 0, con: CNSTI) 
INDIRe (4 O ) i , , re: con 

ADDRLP (2, 0, addr: ADDRLP) 
c (8, 1, reg: addr) 

(5, 1, re: reg) 

FIGURE 14.3 Labelled tree for i = c + 4. 

rules aren't needed here. They are needed for, say, the CNSTI node, which 
matches only con directly, but its parent needs re, and only a chain rule 
records that every con is also an re. A bottom-up tree matcher can't 
know which matches are needed at a higher level, so it records all of 
them and lets the top-down reduction pass select the ones required by 
the winner. 

Patterns can specify subtrees beyond the immediate children. For ex
ample, rule 7 of Figure 14.2 refers to the grandchild of the CVCI node. 
No separate pattern matches the INDIRC node, but rule ?'s pattern cov
ers that node. The cost is the cost of matching the ADDRLP c as an addr 
(using rule 2) plus one. 

Nodes are annotated with (N, C, M) only if C is less than all previ
ous matches of the nonterminal in rule M. For example, the ADDI node 
matches a reg using rule 6; the total cost is 2. It also matches an addr 
using rule 3, so chain rule 8 gives a second match for reg, also at a to
tal cost of 2. Only one of these matches for reg will be recorded. 1 burg 
breaks ties arbitrarily, so there's no easy way to predict which match will 
win, but it doesn't matter because they have the same cost. 

lburg generates the function 

(BURM signatllre 378) = 379 ... 
static void _label ARGS((NODEPTR_TYPE a)); 

which labels the entire subject tree pointed to by a. State zero labels un
matched trees; such trees may be corrupt or merely inconsistent with the 
grammar. lburg starts all generated names with an underscore to avoid 
colliding with names in BURM's C prologue and epilogue. The identifiers 
are declared static and their addresses are stored in an interface record 
so that 1 cc can include multiple code generators. One fragment collects 
the identifiers' declarations for a structure declarator: 
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(interface to instruction selector379}= 
void (*_label) ARGS((Node)); 

356 

Another collects the names for the C initializer that records the names 
of the statics: 

(Xi nterface initializer355} += 
.... 

355 432 464 498 
_label, 

The other identifiers that l burg defines in BURM have corresponding en
tries in the two fragments above, but the text below elides them to cut 
repetition. 

14.3 Reducing the Tree 

BURM's labeller traverses the subject tree bottom-up. It can't know which 
rule will match at the next higher level, so it can't know which non
terminal that rule will require. So it uses dynamic programming and 
records the best match for all nonterminals. The label encodes a vector 
of rule numbers, one for each nonterminal. lburg creates a structure 
type _state in which _label stores the best (N, C, M) for each nonter
minal: 

struct _state { 

} ; 

short cost[MA)(_NONTERMINALS]; 
short rule[MA)(_NONTERMINALS]; 

The cost vector stores the cost of the best match for each nonterminal, 
and the rule vector stores the rule number that achieved that cost. (Part 
of the declaration above is a white lie: l burg compresses the rule field 
using bit fields, but l burg supplies functions to extract the fields, so we 
needn't waste time studying the encoding.) 

l burg writes a function _rule, which accepts a tree's state label and 
an integer representing a nonterminal: 

(BURM signature 378}+= 
.... 

378 380 .... 
static int _rule ARGS((void *state, int nt)); 

It extracts from the label's encoded vector of rule numbers the number 
of the rule with the given nonterminal on the left. It returns zero if no 
rule matched the nonterminal. 

BURM's second pass, or reducer, traverses the subject tree top-down, 
so it has the context that the labeller was missing. The root must match 
the start nonterminal, so the reducer extracts the best rule for the start 
nonterminal from the vector of rule numbers encoded by the root's la
bel. If this rule's pattern includes nonterminals, then they identify a new 

379 
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frontier to reduce and the nonterminals that the frontier must match. 
The process begun with the root is thus repeated recursively to expose 
the best cover for the entire tree. The display below traces the process 
for Figure 14.3: 

_rule(root, stmt) = 9 
_rule(root->kids[O], addr) = 2 
_rule(root->kids[l], reg)= 6 
_rule(root->kids[l]->kids[O], reg)= 7 
_rule(root->kids[l]->kids[O]->kids[O]->kids[O], addr) 2 

_rule(root->kids[l]->kids[l], re)= 5 
_rule(root->kids[l]->kids[l], con)= 1 

Each rule's pattern identifies the subject subtrees and nonterminals 
for all recursive visits. Here, a subtree is not necessarily an immediate 
child of the current node. Patterns with interior operators cause the 
reducer to skip the corresponding subject nodes, so the reducer may 
proceed directly to grandchildren, great-grandchildren, and so on. On the 
other hand, chain rules cause the reducer to revisit the current subject 
node, with a new nonterminal, so x is also regarded as a subtree of x. 

1 burg represents the start nonterminal with 1, so nt for the initial, 
root-level call on _rule must be 1. BURM defines and initializes an array 
that identifies the values for nested calls: 

{BURM signature 378) += 
static short *_nts[]; 

... 
379 381 .... 

_nts is an array indexed by rule numbers. Each element points to a zero
terminated vector of short integers, which encode the nonterminals for 
that rule's pattern, left-to-right. For example, the following code imple
ments _nts for Figure 14.2: 

static short _rLnts[] { 0 }; 
static short _rLnts[] { 4, 1, 0 } ; 
static short _r4_nts[] { 1, 0 }; 
static short _r5_nts [] { 4, 0 }; 
static short _r6_nts[] { 4, 3, 0 } ; 
static short _r7_nts[] { 2, 0 }; 
static short _r9_nts[] { 2' 4, 0 } ; 

short *_nts[] = { 
0, /* (no rule zero) */ 
_rl_nts, /* con: CNSTI */ 
_rl_nts, /* addr: ADDRLP */ 
_r3_nts, /* addr: ADDI(reg,con) */ 
_r4_nts, /* re: con */ 
_rs_nts, /* re: reg */ 
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_r6_nts, /* reg: ADDI(reg,rc) */ 
_r7_nts, /* reg: CVCI(INDIRC(addr)) */ 
_r7_nts, /* reg: addr */ 
_r9_nts, /* stmt: ASGNI(addr,reg) */ 

}; 

The user needs only _rule and _nts to write a complete reducer, but 
the redundant _kids simplifies many applications: 

..... 
(BURM signature 378) += 380 389 ..... 

static void _kids 
ARGS((NODEPTR_TYPE p, int rulenum, NODEPTR_TYPE kids[])); 

It accepts the address of a tree p, a rule number, and an empty vector of 
pointers to trees. The procedure assumes that p matched the given rule, 
and it fills in the vector with the subtrees (in the sense described above) 
of p that must be reduced recursively. kids is not null-terminated. 

The code below shows the minimal reducer. It traverses the best cover 
bottom-up and left-to-right, but it doesn't do anything during the traver
sal. parse labels the tree and then starts the reduction. reduce gets 
the number of the matching rule from _rule, the matching frontier from 
_kids, and the nonterminals to use for the recursive calls from _nts. 

parse(NODEPTR_TYPE p) { 
_label(p); 
reduce(p, 1); 

} 

reduce(NODEPTR_TYPE p, int nt) { 

} 

inti, rulenum = _rule(STATE_LABEL(p), nt); 
short *nts = _nts[rulenum]; 
NODEPTR_TYPE kids[lO]; 

_kids(p, rulenum, kids); 
for (i = O; nts[i]; i++) 

reduce(kids[i], nts[i]); 

This particular reducer does nothing with any node. If the node were 
processed - for example, emitted or allocated a register - in preorder, 
the processing code would go at the beginning of the reducer. Postorder 
processing code would go at the end, and inorder code would go between 
reduce's recursive calls on itself. A reducer may recursively traverse sub
trees in any order, and it may interleave arbitrary actions with recursive 
traversals. 

Multiple reducers may be written, to implement multipass algorithms 
or independent single-pass algorithms. 1 cc has three reducers. One 
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CHAPTER 14 • SELECTING AND EMITTING INSTRUCTIONS 

identifies the nodes that need registers, another emits code, and a third 
prints a tree cover to help during debugging. They all use get ru 1 e, which 
wraps _rule in some (elided) assertions and encapsulates the indirection 
through IR: 

(gen.c functions)+= 
static int getrule(p, nt) Node p; int nt; { 

int rulenum; 

} 

rulenum = (*IR->x._rule)(p->x.state, nt); 
return rulenum; 

... 
370 382 ... 

The first reducer prepares for register allocation. It augments the min
imal reducer to mark nodes that are computed by instructions and thus 
may need registers: 

(gen.c functions)+= 
static void reduce(p, nt) Node p; int nt; { 

int rulenum, i; 

} 

short *nts; 
Node kids[lO]; 

p = reuse(p, nt); 
rulenum = getrule(p, nt); 
nts = IR->x._nts[rulenum]; 
(*IR->x._kids)(p, rulenum, kids); 
for Ci= O; nts[i]; i++) 

reduce(kids[i], nts[i]); 
if (IR->x._isinstruction[rulenum]) { 

p->x.inst = nt; 
(count uses of temporaries 384) 

} 

... 
382 384 ... 

1 burg flags in x. i si nstructi on rules that emit instructions, in contrast 
to those that emit subinstructions like addressing modes; it does so by 
examining the assembler template, which Section 14.6 explains. 

x. inst above is more than just a flag; it also identifies the nonterminal 
responsible for the mark. The register allocator linearizes the instruction 
tree, and the emitter reduces each instruction in isolation, so the emitter 
needs a record of the nonterminal used in the instruction's reduction. 

reduce collaborates with reuse to reverse excessive common subex
pression elimination. The front end assigns common subexpressions to 
temporaries and uses the temporaries to avoid recalculation, but this 
can increase costs in some cases. For example, MIPS addressing hard
ware adds a 16-bit constant to a register for free, so when such a sum 
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is used only as an address (that is, by instructions that reference mem
ory), putting it in a register would only add an instruction and consume 
another register. 

So 1 burg extends the labeller to look for trees that read registers -
INDIRx(VREGP). If the register holds a common subexpression, and if 
the expression may be profitably recalculated, the labeller augments the 
label with bonus matches equal to the set of all free matches of the 
expression assigned to the temporary. 

For example, consider the code for p->b=q->b when, say, pis in regis
ter 23, q is in register 30, and the field b has offset 4. Figure 14.4 shows 
the trees of intermediate code. 

The first tree copies the common subexpression 4 to a temporary reg
ister, and the second tree uses the temporary twice to complete the state
ment. The first label on the INDIRI node results from a typical pattern 
match, but the second is a bonus match. Without the bonus match, 1 cc's 
MIPS code generator would emit five instructions: 

1 a $2 5, 4 load the constant 4 into register 2 5 
add $24, $30, $25 compute the address of q->b into register 24 
lw $24, ($24) load value of q->b into register 24 
add $25, $23, $25 compute the address of p->b into register 25 
sw $24, ($25) store the value of q->b into p->b 

The bonus match enables several others, and together they save three 
instructions and one register: 

lw $24,4($30) load value of i into register 24 
sw $24,4($23) store register 24 into x[O] 

lee's reducers call reuse(p, nt) to see if the reduction of node p using 
nonterminal nt uses a bonus match. If so, reuse returns the common 
subexpression instead of p, and thus has the reducer reprocess the com
mon subexpression and ignore the temporary: 

----~ASGNI ---------------~ASGNI 

I\ /~ 
VREGP CNSTI ADDP INDIRI 

3 4 I\ i 
INDIRP INDIRI ADDP 

i i I\ 
VREGP 

p 
VREGP 

3 
INDIRP INDIRI 

i i 
VREGP VREGP 

q 3 

conventional 
(match 

reg: INDIRI(VREGP) 
con: CNSTI 

(bonus match 

FIGURE 14.4 Excessive common subexpression elimination in p->b=q->b. 
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(gen.c functions)+= 
static Node reuse(p, nt) Node p; int nt; { 

struct _state { 
short cost[l]; 

} ; 
Symbol r = p->syms[RX]; 

.... 
382 385 ... 

if (generic(p->op) == INDIR && p->kids[O]->OP == VREG+P 
&& r->u.t.cse && p->x.mayrecalc 
&& ((struct _state*)r->u.t.cse->x.state)->cost[nt] == 0) 

return r->u.t.cse; 
else 

return p; 
} 

The first return effectively ignores the tree p and reuses the definition 
of common subexpression. If p uses a common subexpression, then the 
definition of that subexpression is guaranteed to have been labelled al
ready, so the reducer that called reuse can't wander off into the wind. 
The cast and artificial _state above are necessary evils to access the la
beller's cost of matching the tree to nonterminal nt. This book doesn't 
expose the form of the state record - except for here, it's needed only in 
code generated automatically from the 1 burg specification - though it's 
easy to understand if you examine the companion diskette's source code 
once you understand labelling. The length of the actual, target-specific 
cost vector can't be known here, but it isn't needed, so the declaration 
can pretend that the length is one. 

reduce also counts the number of remaining uses for each temporary: 

(count uses of temporaries 384) = 
if (p->syms[RX] && p->syms[RX]->temporary) { 

p->syms[RX]->x.usecount++; 
} 

382 

If reuse leaves a temporary with no readers, the register allocator will 
eliminate the code that loads the temporary. 

The initial version of reuse was implemented one type suffix at a time, 
which illustrates what really matters in at least some C programs. 1 cc 
comes with a testbed of 18 programs comprising roughly 9,000 lines. We 
store baseline assembler code for these programs, which we compare 
with the new code every time we change 1 cc. The first cut at reuse 
eliminated only free common subexpressions with the type suffix I. It 
saved the MIPS testbed 58 instructions. Adding the suffixes C, S, D, F, 
and B saved nothing, but adding P saved 382 instructions. 

A common subexpression can't be recalculated if even one of its inputs 
has changed. Before allowing a bonus match, the labeller calls may re ca 1 c 
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to confirm that the common subexpression can be reevaluated, and it 
records the answer in x.mayrecalc: 

(gen.c functions)+= 
int mayrecalc(p) Node p; { 

Node q; 

(mayrecalc 385) 
} 

.... 
384 385 ... 

mayrecalc fails if the node does not represent a common subexpression: 

(mayrecalc 385)= 
if (!p->syms[RX]->u.t.cse) 

return O; 

385 385 ... 

It also fails if any tree earlier in the forest clobbers an input to the com
mon subexpression: 

(mayrecalc 385)+= 
for (q =head; q && q->x.listed; q = q->link) 

if (generic(q->op) == ASGN 
&& trashes(q->kids[O], p->syms[RX]->u.t.cse)) 

return O; 

.... 
385 385 385 ... 

If neither condition holds, then the common subexpression can safely be 
reevaluated: 

(mayrecalc 385)+= 

p->x.mayrecalc = 1; 
return 1; 

.... 
385 385 

trashes(p, q) traverses the common subexpression q and reports if the 
assignment target p is read anywhere in q: 

(gen.c functions)+= 
static int trashes(p, q) Node p, q; { 

if ( ! q) 

} 

return O; 
else if (p->op 

return 1; 
else 

q->op && p->syms[O] 

return trashes(p, q->kids[O]) 
I I trashes(p, q->kids[l]); 

.... 
385 386 ... 

q->syms[O]) 

When reduce and its helpers are done, gen calls prune. It uses the 
x. inst mark to construct a tree of just instructions in the x. kids fields. 
The register allocator runs next, and only instructions need registers. 

346 cse 
92 gen 

402 gen 
386 prune 
382 reduce 
362 RX 

385 

358 x. inst 
359 x.kids 
359 x.listed 
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The rest of the nodes - for example, ADDP nodes evaluated automatically 
by addressing hardware - need no registers, so 1 cc projects them out 
of the tree that the register allocator sees. The original tree remains in 
the kids fields. The call to prune follows a reducer, but prune itself isn't 
a reducer. 

(gen.c functions)+= 
static Node *prune(p, pp) Node p, pp[]; { 

(prune 386) 
} 

... 
385 388 ... 

pp points to an element of some node's x. kids vector, namely the next 
element to fill in. p points at the tree to prune. If p represents an in
struction, prune stores the instruction into *pp and returns pp+l, which 
points at the next empty cell. Otherwise, prune stores nothing, returns 
pp, and does not advance. 

If the tree pis empty, prune is done: 

(prune 386)= 
if (p == NULL) 

return pp; 

386 386 ... 

Otherwise, prune clears any trash in the node's x. kids fields: 

(prune 386) += 
p->x.kids[O] = p->x.kids[l] = NULL; 

... 
386 386 386 ... 

If p is not an instruction, prune looks for instructions in the subtrees, 
starting with the first child: 

... 
(prune 386) += 386 386 386 ... 

if (p->x.inst == O) 
return prune(p->kids[l], prune(p->kids[O], pp)); 

Each recursive call can store zero or more instructions. Nesting the calls 
above ensures that prune returns the cumulative effect on pp. 

If p is an instruction that sets a temporary, and if the temporary's 
x. usecount is less than two, then the temporary is set (by the instruction) 
but never used, the instruction is omitted from the tree, and the traversal 
continues as above: 

(prune 386)+= 
else if (p->syms[RX] && p->syms[RX]->temporary 
&& p->syms[RX]->x.usecount < 2) { 

p->x.inst = O; 
return prune(p->kids[l], prune(p->kids[O], 

} 

... 
386 387 386 ... 

pp)); 
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Recall that reduce just computed x. usecount. 
If none of the conditions above are met, p is a necessary instruction. 

prune deposits it in *pp and returns the address of the next element 
to set. It also prunes the node's subtrees and deposits any instructions 
there into p's x. kids, because any instructions below this one must be 
children of p and not the higher node into which pp points. 

... 
(prune 386)+= 386 386 

else { 

} 

prune(p->kids[l], prune(p->kids[O], &p->x.kids[O])); 
*pp = p; 
return pp + 1; 

prune bumps pp and can later store another p into the addressed cell. 
This process can't overshoot, because x. kids has been made long enough 
to handle the maximum number of registers read by any target instruc
tion, which is the same as the number of children that any instruction -
and thus any node - can have. Ideally, prune would confirm this asser
tion, but checking would require at least one more argument that would 
be read only by assertions. 

The dashed lines in Figure 14.5 show the x. kids that prune adds to 
the tree in Figure 14.3 if ASGNI, ADDI, and ever are instructions and the 
remaining nodes are subinstructions, which would be the case on many 
current machines: ever loads a byte and extends its sign, ADDI adds 4, 
and ASGNI stores the result. The solid lines are kids. 

The display below tracks the calls on prune that are made as the 
dashed links are created, but it cuts clutter by omitting calls for which p 
is zero, and by naming the nodes with their opcodes: 

ASGNr - - - - - - _ 

ADD/. _\Dor>-' ' 

(---/ ~ 
.._ever eNSTI 

i 4 

INDrRe 

i 
ADDRLP 

c 

kids 
x.kids 

FIGURE 14.5 Figure 14.3 pruned. 
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prune(ASGNI, &dummy) called 
prune(ADDRLP, &ASGNI->x.kids[O]) called 
prune(ADDI, &ASGNI->x.kids[O]) called 
prune(ever, &ADDI->x.kids[O]) called 
prune(INDIRe, &ADDI->x.kids[O]) called 

prune(ADDRLP, &ADDI->x.kids[O]) called 
prune(eVeI, &ADDI->x. kids [OJ) points the ADDI at the ever 
prune(eNSTI, &ADDI->x.kids[l]) called 

prune(ADDI, &ASGNI->x.kids[O]) points the ASGNI at the ADDI 
prune(ASGNI, &dummy) points dummy at the ASGNI 

gen calls prune and supplies a dummy cell to receive the pointer to the 
top-level instruction. A dummy cell suffices because the root is executed 
for side effect, so it must be an instruction, and gen knows where the 
roots are without examining dummy. 

14.4 Cost Functions 

Most of the costs in l burg specifications are constant, but a few depend 
on properties of the node being matched. For example, some instructions 
that add a constant to another operand are confined to constants that fit 
in a few bits. For nodes p that hold a constant - ADDRL and ADDRF nodes 
hold constant stack off sets, and eNST nodes hold numeric constants -
range(p, lo, hi) determines whether the constant lies between integers 
lo and hi inclusive. If it does, range returns a zero cost; otherwise it 
returns a high cost, which forces the tree parser to use another match. 
In an l burg cost expression, a denotes the node being matched, namely 
the argument to _label when the cost expression is evaluated. A typical 
use is: 

con8: eNSTI "%a" range(a, -128, 127) 

The rule above matches all eNSTI nodes, but the cost is prohibitive if the 
constant doesn't fit in a signed 8-bit field. The implementation is: 

(gen.c functions)+= 
... 

386 389 ..... 
#define ck(i) return (i) ? 0 : LBURG_MAX 

int range(p, lo, hi) Node p; int lo, hi; { 
Symbols= p->syms[O]; 

switch (p->op) { 
case ADDRF,P: ck(s->x.offset 
case ADDRLP: ck(s->x.offset 
case eNSTe: ck(s->u.c.v.sc 
case eNSTI: ck(s->u.c.v.i 

>=lo && s->x.offset <=hi); 
>=lo && s->x.offset <=hi); 
>=lo && s->u.c.v.sc <=hi); 
>=lo && s->u.c.v.i <=hi); 
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case CNSTS: 
case CNSTU: 
case CNSTP: 
} 

ck(s->u.c.v.ss >= lo && s->u.c.v.ss <= hi); 
ck(s->u.c.v.u >=lo && s->u.c.v.u <=hi); 
ck(s->u.c.v.p == 0 && lo<= 0 && hi >= O); 

return LBURG_MAX; 
} 

For unsigned character constants, range should zero-extend with the 
value of u. c. v. uc, and not sign-extend with u. c. v. sc, but range's short
cut can't hurt because CNSTC nodes appear only as the right-hand side of 
an ASGNC, which ignores the extended bits anyway. Without this short
cut, we'd need signed and unsigned variants of CNSTC to distinguish the 
two cases. Unsigned short constants behave likewise. 

14.S Debugging 

1 burg augments the tree parser with an encoding of much of its in
put specification. This material is not strictly necessary, but it can help 
produce displays for debugging. For example, the vectors _opname and 
_ari ty hold the name and number of children, respectively, for each 
terminal: 

{BURM signature 378)+= 
static char *_opname[]; 
static char _arity[]; 

... 
381 390 ... 

They are indexed by the terminal's integral opcode. 1 cc uses them in 
dumptree, which prints the operator and any subtrees in parentheses 
and separated by commas: 

{gen.c functions)+= 
static void dumptree(p) Node p; { 

fprint(2, "%s(", IR->x._opname[p->op]); 

} 

if (IR->x._arity[p->op] == 0 && p->syms[O]) 
fprint(2, "%s", p->syms[O]->name); 

else if (IR->x._arity[p->op] == 1) 
dumptree(p->kids[O]); 

else if (IR->x._arity[p->op] == 2) { 
dumptree(p->kids[O]); 

} 

fprint(2, ", "); 
dumptree(p->kids[l]); 

fpri nt(2, ") "); 

... 
388 390 ... 

For leaves, dumptree adds p->syms [O] if it's present. It prints the tree 
in Figure 14.3 as: 

97 fprint 
306 IR 
388 range 

389 
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ASGNI(ADDRLP(i), ADDI(CVCI(INDIRC(ADDRLP(c))), CNSTI(4))) 

l cc uses dumptree, but this book omits the calls. They aren't interesting, 
but dumptree itself is worth presenting to demonstrate l burg's debug
ging support. 

The vector _string holds the text for each rule. 

(BURM signature 378)+= 
... 

389 391 ... 
static char *_string[]; 

It is indexed by a rule number. The reducer dumpcover extends the min
imal reducer and uses _string to print a tree cover using indentation: ... 
(gen.c functions)+= 389 391 ... 

static void dumpcover(p, nt, in) Node p; int nt, in; { 

} 

int rulenum, i; 
short *nts; 
Node kids[lOJ; 

p = reuse(p, nt); 
rulenum = getrule(p, nt); 
nts = IR->x._nts[rulenum]; 
fprint(2, 11 dumpcover(%x) 11 p); 
for Ci = 0; i < in; i ++) 

fpri nt(2, 11 11
); 

dumprule(rulenum); 
(*IR->x._kids)(p, rulenum, kids); 
for (i = O; nts[i]; i++) 

dumpcover(kids[i], nts[i], in+l); 

static void dumprule(rulenum) int rulenum; { 
fprint(2, 11%s I %s", IR->x._string[rulenum], 

IR->x._templates[rulenum]); 

} 

if (!IR->x._isinstruction[rulenum]) 
fprint(2, 11 \n 11

); 

When compiling MIPS code for Figure 14.3, dumptree prints: 

dumpcover(1001e9b8) stmt: ASGNI(addr, reg) I sw $%2,%1 
dumpcover(1001e790) addr: ADDRLP I %a($sp) 
dumpcover(1001e95c) reg: addr / la $%c,%1 
dumpcover(1001e95c) addr: ADDI(reg, con) I %2($%1) 
dumpcover(1001e8a4) reg: CVCI(INDIRC(addr)) / lb $%c,%1 
dumpcover(1001e7ec) addr: ADDRLP / %a($sp) 
dumpcover(1001e900) con: CNSTI I %a 

The next section explains x._templates and the assembler templates 
after each rule. 
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14.6 The Emitter 

1 cc's emitter is what actually outputs assembler code for the target ma
chine. The emitter is target-independent and driven by two arrays that 
capture the necessary machine-specific data. 1 burg emits into each BURM 
some C code that declares and initializes these arrays. Both arrays are 
indexed by a rule number. One yields the template for the rule: 

(BURM signature 378) += 
static char *_template[]; 

.... 
390 391 .... 

The other flags the templates that correspond to instructions, and thus 
distinguishes them from subinstructions like addressing modes: 

(BURM signature 378) += 
static char _isinstruction[]; 

.... 
391 406 .... 

lburg numbers the rules starting from one, and it reports matches by 
returning rule numbers, from which the templates may be found when 
necessary. If a template ends with a newline character, then lburg as
sumes that it is an instruction. If it ends with no newline character, then 
it's necessarily a piece of an instruction, such as an operand. 

emi tasm interprets the ru 1 e structure and its assembler code template: 

(gen.c functions)+= 
static unsigned emitasm(p, nt) Node p; int nt; { 

int rulenum; 

} 

short *nts; 
char *fmt; 
Node kids[lO]; 

p = reuse(p, nt); 
rulenum = getrule(p, nt); 
nts = IR->x._nts[rulenum]; 
fmt = IR->x._templates[rulenum]; 
( emi tasm 392) 

return O; 

.... 
390 393 .... 

emi tasm is another reducer, but it processes a partially linearized tree. 
Llst elements are the roots of subtrees for instructions. emi tasm calls 
itself recursively only to process subinstructions like address calcula
tions. Its traversal starts with an instruction and ends when the recur
sion reaches the instructions that supply values to this instruction. That 
is, emi tasm's reduction traces the intra-instruction tree parse, which cor
responds to addressing modes and other computations inside a single 
instruction. emi tasm's driver, emit, ensures that emi tasm sees these in
structions in the right order, which handles interinstruction ordering. 

92 emit 
393 emit 
382 getrule 
306 IR 
384 reuse 

391 
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emit sets x. emitted to flag nodes as it emits them. When emi tasm 
encounters an instruction that it has already emitted, it emits only the 
name of the register in which that instruction left its result. For all nodes 
that develop a value, the register allocator has recorded the target regis
ter in p->syms [RX]: 

(emitasm 392)= 
if (IR->x._isinstruction[rulenum] && p->x.emitted) 

outs(p->syms[RX]->x.name); 

392 391 .... 

If the template begins with #, the emitter calls emi t2, a machine-specific 
procedure: 

.... 
392 392 391 .... (emi tasm 392) += 

else if (*fmt == '#') 
(*IR->x.emit2)(p); 

1 cc needs this escape hatch to generate arbitrary code for tricky features 
like structure arguments. Otherwise, emi tasm emits the template with a 
little interpretation: 

.... 
(emi tasm 392) += 392 391 

else { 

} 

(omit leading register copy? 393) 

for ((*IR->x._kids)(p, rulenum, kids); *fmt; fmt++) 
if (*fmt != '%') 

*bp++ = *fmt; 
else if (*++fmt == 'F') 

print("%d", framesize); 
else if (*fmt >= 'O' && *fmt <= '9') 

emitasm(kids[*fmt - 'O'], nts[*fmt - 'O']); 
else if (*fmt >= 'a' && *fmt < 'a' + NELEMS(p->syms)) 

outs(p->syms[*fmt - 'a']->x.name); 
else 

*bp++ = *fmt; 

bp is the pointer into the output buffer in the module output. c. %F 
tells emi tasm to emit framesi ze, which helps emit local offsets that 
are relative to the size of the frame. Substrings of the form %digit 
tell it to emit recursively the subtree corresponding to the digit-th 
nonterminal from the pattern, counting from zero, left to right, and 
ignoring nesting. Substrings like %x tell emi tasm to emit the node's 
p->syms [' x' - 'a'] ->x. name; for example, %c emits p->syms [2] ->x. name. 
Table 14.1 summarizes these conventions. 

So the emitter interprets the string "lw r%c, %1 \n" by emitting "lw r", 
then the name (usually a digit string) of the target register, then a comma. 
Then it recursively emits p->ki ds [1] as an addr, if nts [1] holds the 
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Template 

%% 
%F 
%digit 

%letter 
any other character 
#(in position 1) 
? (in position 1) 

Emitted 

One percent sign 
framesize 
The subtree corresponding to the rule's digit-th 
nonterminal 
p->syms [letter - 'a' ]->x. name 
The character itself 
Call emi t2 to emit code 
Skip the first instruction if the source and 
destination registers are the same 

TABLE 14.1 Emitter template syntax. 

integer that represents the nonterminal addr. Finally, emitasm emits a 
newline character. 

Some targets have general three-operand instructions, which take two 
independent sources and yield an independent destination. Other targets 
save instruction bits by substituting two-operand instructions, which 
constrain the destination to be the first source. The first source might 
not be dead, so 1 cc uses two-instruction templates for opcodes like ADDI. 
The first instruction copies the first source to the destination, and second 
adds the second source to the destination. If the first source is dead, the 
register allocator usually arranges for the destination to share the same 
register, so the first instruction copies a register to itself and is redun
dant. These redundant instructions are most easily omitted at the last 
minute, in the emitter. Each specification flags such instructions with a 
leading question mark, and emit skips them if the source and destination 
registers are the same. 

(omit leading register copy? 393} = 
if (*fmt == '?') { 

} 

fmt++; 
if (p->syms[RX] == p->kids[O]->syms[RX]) 

while (*fmt++ != '\n') 

392 

The interface procedure emit traverses a list of instructions and emits 
them one at a time: 

(gen.c functions}+= 
.... 

391 394 ..... 
void emit(p) Node p; { 

for (; p; p = p->x.next) { 
if (p->x.equatable && requate(p) I I moveself(p)) 

else 

393 

356 emit2 
444 " (MIPS) 
478 " (SPARC) 
511 " (X86) 
391 emitasm 
394 moveself 
394 requate 
362 RX 
360 x.equatable 
359 x.next 
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} 
} 

(*emitter)(p, p->x.inst); 
p->x.emitted = 1; 

Most interface routines have one implementation per target, but there's 
only one implementation of emit because the target-specific parts have 
been factored out into the assembler code templates. 

The indirect call above permits l cc to call another emitter. For exam
ple, this feature has been used to replace this book's emitter with one 
that emits binary object code directly. emitter is initialized to emi tasm: 

... 
371 398 .... (gen.c data)+= 

unsigned (*emitter) ARGS((Node, int)) = emitasm; 

emit implements two last-minute optimizations. moveself declines to 
emit instructions that copy a register on top of itself: 

(gen.c functions)+= 
... 

393 394 .... 
static int moveself(p) Node p; { 

return p->x.copy 
&& p->syms[RX]->x.name == p->x.kids[O]->syms[RX]->x.name; 

} 

The equality test exploits the fact that the string module stores only one 
copy of each distinct string. x. copy is set by the cost function move, 
which is called by rules that select register-to-register moves: 

(gen.c functions)+= 
int move(p) Node p; { 

p->x.copy = 1; 
return 1; 

} 

... 
394 394 .... 

emi t's other optimization eliminates some register-to-register copies 
by changing the instructions that use the destination register to use 
the source register instead. The register allocator sets x. equatable if 
p copies a register s re to a temporary register tmp for use as a common 
subexpression. If x. equatable is set, then the emitter calls requate, 
which scans forward from p: 

(gen.c functions)+= 
static int requate(q) Node q; { 

Symbol src = q->x.kids[O]->syms[RX]; 
Symbol tmp = q->syms[RX]; 
Node p; 
int n = O; 

... 
394 398 .... 
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} 

for (p = q->x.next; p; p = p->x.next) 
(requate 395) 

for (p = q->x.next; p; p = p->x.next) 
if (p->syms[RX] == tmp && readsreg(p)) { 

p->syms[RX] = sre; 
if (--n <= 0) 

break; 
} 

return 1; 

The first for loop holds several statements that return zero; they cause 
the emitter to go ahead and emit the instruction, unless moveself in
tervenes. The emitter omits the register-to-register copy only if requate 
exits the first loop, falls into the second, and returns one. The second 
loop replaces all reads of tmp with reads from s re; the first loop counts 
these reads in n. 

If an instruction copies tmp back to s re, it is changed so that movese 1 f 
will delete it, and the loop continues to see if more changes are possible: 

(requate 395)= 
if (p->x.eopy && p->syms[RX] == sre 
&& p->x.kids[O]->syms[RX] == tmp) 

p->syms[RX] = tmp; 

395 395 .... 

Without this test, return f() would copy the value of f from the re
turn register to a temporary and then back to the return register for the 
current function. 

If the scan hits an instruction that targets s re, if the instruction 
doesn't assign s re to itself, and if the instruction doesn't merely read 
sre, then requate fails because tmp and sre do not, in general, hold the 
same value henceforth: 

(gen.c macros)= 
#define readsreg(p) \ 

(generie((p)->op)==INDIR && (p)->kids[O]->OP==VREG+P) 
#define setsre(d) ((d) && (d)->x.regnode && \ 

(d)->x.regnode->set == sre->x.regnode->set && \ 
(d)->x.regnode->mask&sre->x.regnode->mask) 

413 .... 

.... 
(requate 395)+= 395 396 395 .... 

else if (setsre(p->syms[RX]) && !moveself(p) && !readsreg(p)) 
return O; 

For example, e=*p++ generates the pseudo-instructions below when p is 
in register rl. Destinations are the rightmost operands. 

395 

361 mask 
394 moveself 
394 requate 
362 RX 
361 set 
361 VREG 
360 x.copy 
359 x.kids 
359 x.next 
362 x.regnode 



396 

clobber 357 
(MIPS) " 435 

(SPARC) " 468 
(X86) " 502 

genspill 424 
readsreg 395 
requate 394 

RX 362 
temporary 50 

x.name 362 
x.next 359 
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move rl,r2 
add r2,l,rl 
loadb (r2),r3 
storeb r3,c 

save value of p 
increment p 
fetch character 
store character 

requate could change the add to use rl instead of r2, but it can't change 
any subsequent instructions likewise, because rl and r2 aren't equivalent 
after the add. 

requate also quits if it encounters an instruction that spills tmp: 
... 

(requate 395}+= 395 396 395 .... 
else if (generic(p->op) == ASGN && p->kids[O]->op == ADDRLP 
&& p->kids[O]->syms[O]->temporary 
&& p->kids[l]->syms[RX]->x.name == tmp->x.name) 

return O; 

No explicit flag identifies the nodes that gens pi 11 inserts, but the con
dition above catches them. 

requate also gives up if it hits a call, unless it ends the forest, because 
src might be a caller-saved register, which calls clobber . 

... 
396 396 395 .... (requate 395}+= 

else if (generic(p->op) == CALL && p->x.next) 
return O; 

Usually, src is a callee-saved register variable, so requate might confirm 
that the register is caller-saved before giving up, but this check netted 
no gains in several thousand lines of source code, so it was abandoned 
as a gratuitous complication. 

requate also gives up at each label, unless it ends the forest, because 
src might have a different value afterward: 

( requate 395} += 
else if (p->op == LABEL+V && p->x.next) 

return O; 

... 
396 396 395 .... 

If none of the tests above succeed, tmp and src hold the same value, 
so if this node reads tmp, it is counted and the loop continues to see if 
the rest of the uses of tmp can be replaced with s re: 

(requate 395}+= 
else if (p->syms[RX] == tmp && readsreg(p)) 

n++; 

... 
396 396 395 .... 

If a node writes tmp, or if requate runs out of instructions, then the 
forest is done with tmp, and requate's first loop exits: 

(requate 395}+= 
else if (p->syms[RX] == tmp) 

break; 

... 
396 395 
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Now requate's second loop replaces all reads of tmp with reads of src; 
then requate returns one, and the emitter omits the initial assignment 
to tmp. 

At this point, the most common source of gratuitous register-to
register copies is postincrement in a context that uses the original value, 
such as c=*p++. l cc's code for these patterns starts with a copy, when 
some contexts could avoid it by reordering instructions. For example, 
a more ambitious optimizer could reduce the four pseudo-instructions 
above to 

loadb (rl),r3 
add rl,l,rl 
storeb r3,c 

fetch character 
increment p 
store character 

Register-to-register moves now account for roughly 5 percent of the 
MIPS and SPARC instructions in the standard lee testbed. In the MIPS 
code, about half copy a register variable or zero - which is a register-to
register copy using a source register hard-wired to zero - to a register 
variable or an argument or return register. Such moves are not easily 
deleted. Some but not all of the rest might be removed, but we're nearing 
the limit of what simple register-copy optimizations can do. 

14.7 Register Targeting 

Some nodes can be evaluated in any one of a large set of registers, but 
others are fussier. For example, most computers can compute integer 
sums into any of the general registers, but most calling conventions leave 
return values in only one register. 

If a node needs a child in a fixed register, register targeting tries to 
compute the child into that register. If the child can't compute its value 
there, then the code generator must splice a register-to-register copy into 
the tree between the parent and child. For example, in 

f(a, b) { return a + b; } 

the return is fussy but the sum isn't, so the code can compute the sum 
directly into the return register. In contrast, 

f() { register inti = g(); } 

g generally returns a value in one register, and the register variable i 
will be assigned to another register, so a register-to-register copy can't 
be avoided. 

The next chapter covers the actual allocation of registers to vari
ables and temporaries, but the register-to-register copies are instruc
tions. They can be handled just like all other instructions only if they 
are represented by nodes. To that end, prel abel makes a pass over the 
tree before labelling: 

315 node 
398 pre label 
394 requate 

397 



398 

LOAD 361 
opindex 98 
optype 98 
setreg 399 
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(gen.c functions)+= 
static void prelabel(p) Node p; { 

(prelabel 398) 
} 

.... 
394 399 ... 

It marks each fussy node with the register on which it insists, and it 
marks the remaining nodes - at least those that yield a result instead 
of a side effect - with the wi ldcard symbol that represents the set 
of valid registers. It also inserts LOAD nodes where register-to-register 
copies might be needed. 

preload starts by traversing the subtrees left to right: 

(prelabel 398)= 
if (p == NULL) 

return; 
prelabel(p->kids[O]); 
prelabel(p->kids[l]); 

398 398 ... 

Then it identifies the register class for nodes that leave a result in a 
register: 

.... 
(prelabel 398)+= 398 399 398 

if (NeedsReg[opindex(p->op)]) 
... 

setreg(p, rmap[optype(p->op)]); 

The NeedsReg test distinguishes nodes executed for side effect from 
those that need a register to hold their result. NeedsReg is indexed by a 
generic opcode and flags the opcodes that yield a value: 

(gen.c data)+= 
.... 

394 402 ... 
static char NeedsReg[] = { 

0, /* unused */ 
1, /* CNST */ 
0, 0, /* ARG ASGN */ 
1, /* INDIR */ 
1, 1, 1, 1, /* eve CVD CVF CVI */ 
1, 1, 1, 1, /* CVP CVS CVU NEG */ 
1, /* CALL */ 
1, /* LOAD */ 
0, /* RET */ 
1, 1, 1, /* ADDRG ADDRF ADDRL */ 
1, 1, 1, 1, 1, /* ADD SUB LSH MOD RSH */ 
1, 1, 1, 1, /* BAND BCOM BOR BXOR */ 
1, 1, /* DIV MUL */ 
0, 0, 0, 0, 0, 0, /* EQ GE GT LE LT NE */ 
0, 0, /* JUMP LABEL */ 

} ; 
Symbol rmap[16]; 
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rmap is indexed by a type suffix, and holds the wi 1 dcard that repre
sents the set of registers that hold values of each such type. For ex
ample, rmap [I] typically holds a wildcard that represents the general 
registers, and rmap [DJ holds the wildcard that represents the double
precision floating-point registers. Each register set is target-specific, so 
the target's progbeg initializes rmap. set reg records the value from rmap 
in the node to support targeting and register allocation: 

(gen.c functions)+= 
void setreg(p, r) Node p; Symbol r; { 

p->syms [RX] = r; 
} 

... 
398 400 .... 

It would be too trivial to merit a function if it hadn't been a useful spot 
for assertions and breakpoints in the past. 

pre 1 abe l's call on set reg assigns the same wildcard to all opcodes 
with the same type suffix; prelabel corrects fussy nodes below. 

Register variables can influence targeting, so pre 1abe1 next identifies 
nodes that read and write register variables. Front-end symbols distin
guish between register and nonregister variables - the symbol's scl ass 
field is REGISTER - but front-end nodes don't. The back end must gen
erate different code to access these two storage classes, so pre label 
changes some opcodes that access register variables. It replaces ADDRL 
and ADDRF with VREG if the symbol referenced is a register variable, and 
it replaces the wildcard in the INDIR above a VREG with the single register 
assigned to the variable: 

(pre l abe 1 398) += 
switch (generic(p->op)) { 
case ADDRF: case ADDRL: 

if (p->syms[O]->sclass REGISTER) 
p->op = VREG+P; 

break; 
case INDIR: 

if (p->kids[O]->op == VREG+P) 
setreg(p, p->kids[O]->syms[O]); 

break; 
case ASGN: 

} 

(pre 1abe1 case for ASGN 399) 

break; 

... 
398 400 398 .... 

pre 1 abe l targets the right child of each assignment to a register variable 
to develop its value directly into the register variable whenever possible: 

(pre 1 abe l case for ASGN 399) = 399 

if (p->kids[O]->op == VREG+P) { 

399 

398 prelabel 
89 progbeg 

433 " (MIPS) 
466 " (SPARC) 
498 " (X86) 

80 REGISTER 
398 rmap 
362 RX 

38 sclass 
361 VREG 
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cse 346 
IR 306 

LOAD 361 
newnode 315 
optype 98 

prelabel 398 
reg 403 

RX 362 
setreg 399 
x.kids 359 

x.target 357 
x.wildcard 363 
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rtarget(p, 1, p->kids[O]->syms[O]); 
} 

Finally, prel abel calls a target-specific procedure that adjusts the regis
ter class for fussy opcodes: 

(prelabel 398)+= 
(IR->x.target)(p); 

... 
399 398 

rtarget(p, n, r) guarantees that p->ki ds [n] computes its result di
rectly into register r: 

(gen.c functions)+= 
void rtarget(p, n, r) Node p; int n; Symbol r; { 

Node q = p->kids[n]; 

} 

if (!q->syms[RX]->x.wildcard) { 

} 

q = newnode(LOAD + optype(q->op), 
q, NULL, q->syms[O]); 

if (r->u.t.cse == p->kids[n]) 
r->u.t.cse = q; 

p->kids[n] = p->x.kids[n] = q; 
q->x.kids[O] = q->kids[O]; 

setreg(q, r); 

... 
399 402 ... 

If the child has already been targeted - to another a register variable 
or to something special like the return register - then rtarget splices a 
LOAD into the tree between parent and child, and targets the LOAD instead 
of the child. The code generator emits a register-to-register copy for 
LOADs. If the child has not been targeted already, then q->syms [RX] holds 
a wildcard; the final set reg is copacetic because r must be a member of 
the wildcard's set. If it weren't, then we'd be asking 1 cc to emit code to 
copy a register in one register set to a member of another register set, 
which doesn't happen without an explicit conversion node. 

Figure 14.6 shows three sample trees before and after rtarget. They 
assume that rO is the return register and r2 is a register variable. The 
first tree has an unconstrained child, so rtarget inserts no LOAD!. The 
second tree has an INDIRI that yields r2 below a RETI that expects rO, so 
rtarget inserts a LOAD!. The third tree has a CALLI that yields rO below 
an ASGNI that expects r2, so again rtarget inserts a LOAD!. 

prelabel and rtarget use register targeting to fetch and assign reg
ister variables, so 1 cc's templates for these operations emit no code for 
either operation on any machine. All machines share the rules: 

(shared rules 400) = 403 431 463 496 ... 
reg: INDIRC(VREGP) "# read register\n" 
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RETI RETI 

i i 
ADDI syms[RX]=? 

/~ 
ADDI syms[RX]=rO 

/~ 

RETI => RETI 

i i 
IND I RI syms[RX]=r2 LOAD! syms[RX]=rO 

i i 
VREGP INDIRI syms[RX]=r2 

r2 i 
VREGP 

r2 

ASGNI ASGNI 

/~ /~ 
VREGP CALLI syms[RX]=rO VREGP LOAD! syms[RX]=r2 

r2 i r2 i 
CALLI syms[RX]=rO 

i 
FIGURE 14.6 rtarget samples. 

reg: INDIRD(VREGP) "# read register\n" 
reg: INDIRF(VREGP) "# read register\n" 
reg: INDIRI(VREGP) "# read register\n" 
reg: INDIRP(VREGP) "# read register\n" 
reg: INDIRS(VREGP) "# read register\n" 
stmt: ASGNC(VREGP,reg) "# write register\n" 
stmt: ASGND(VREGP,reg) "# write register\n" 
stmt: ASGNF(VREGP,reg) "#write register\n" 
stmt: ASGNI(VREGP,reg) "#write register\n" 
stmt: ASGNP(VREGP,reg) "# write register\n" 
stmt: ASGNS(VREGP,reg) "# write register\n" 

The comment template emits no code, but it appears in debugging out
put, so the descriptive comments can help. 

403 reg 
400 rtarget 
403 stmt 

401 
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docall 367 
forest 311 

IR 306 
node 315 

prelabel 398 
prune 386 

reduce 382 

14.8 Coordinating Instruction Selection 

Section 13.l explained that rewrite and gen coordinate some of the pro
cesses described in this chapter. Now for the details. rewrite performs 
register targeting and instruction selection for a single tree: 

(gen.c functions)+= 
static void rewrite(p) Node p; { 

prelabel(p); 
(*IR->x._label)(p); 
reduce(p, 1); 

} 

... 
400 402 ... 

The interface function gen receives a forest from the front end and makes 
several passes over the trees. 

(gen.c data)+= 
Node head; 

(gen.c functions)+= 
Node gen(forest) Node forest; { 

int i; 

} 

struct node sentinel; 
Node dummy, p; 

head = forest; 
for (p = forest; p; p = p->link) { 

(select instructions for p 402) 

} 
for (p =forest; p; p = p->link) 

prune(p, &dummy); 
(linearize forest 414) 

(allocate registers 415) 
return forest; 

... 
398 410 ... 
... 

402 404 ... 

The first pass calls rewrite to select instructions, and the second prunes 
the subinstructions out of the tree. The first pass performs any target
specific processing for arguments and procedure calls; for example, it 
arranges to pass arguments in registers when that's what the calling con
vention specifies: 

(select instructions for p 402) = 
if (generic(p->op) == CALL) 

docall(p); 
else if ( generic(p->op) == ASGN 
&& generic(p->kids[l]->op) == CALL) 

402 
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docall(p->kids[l]); 
else if (generic(p->op) == ARG) 

(*IR->x.doarg)(p); 
rewrite(p); 
p->x.listed = 1; 

Only doarg is target-specific. Within any one tree, the code generator 
is free to evaluate the nodes in whatever order seems best, so long as 
it evaluates children before parents. Calls can have side effects, so the 
front end puts all calls on the forest to fix the order in which the side 
effects happen. If the call returns no value, or if the returned value is 
ignored, then the call itself appears on the forest; the first if statement 
recognizes this pattern. Otherwise, the call appears below an assignment 
to a temporary, which is later used where the returned value is needed; 
the second if statement recognizes this pattern. 

The first pass also marks listed nodes. Chapter 15 elaborates on this 
and on the rest of gen's passes. 

14.9 Shared Rules 

A few rules are common to all targets in this book. They are factored out 
in a target-independent fragment to save space and to keep them consis
tent as 1 cc changes. Some common rules match the integer constants: 

(shared rules 400) += 
.... 

400 403 431 463 496 ... 
con: CNS TC "%a" 
con: CNSTI "%a" 
con: CNSTP "%a" 
con: CNSTS "%a" 
con: CNSTU "%a" 

A convention shared by all 1 burg specifications in this book has the 
nonterminal reg match all computations that yield a result in a register 
and the nonterminal stmt match all roots, which are executed for some 
side effect, typically on memory or the program counter. The rule 

(shared rules 400) += 
.... 

403 403 431 463 496 ... 
stmt: reg lltl 

is necessary when a node that yields a register appears as a root. A CALLI 
is such a node when the caller ignores its value. 

The following rules note that no current 1 cc target requires any com
putation to convert an integral or pointer type to another such type of 
the same size: 

(shared rules 400) += 
.... 

403 431 463 496 
reg: CVIU(reg) "%0" notarget(a) 

356 doarg 
445 " (MIPS) 
477 " (SPARC) 
512 " (X86) 
367 docall 

92 gen 
402 gen 
306 IR 
404 notarget 
402 rewrite 
356 x.doarg 
359 x. listed 
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reg 403 
RX 362 

x.wildcard 363 
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reg: CVPU(reg) 
reg: CVUI(reg) 
reg: CVUP(reg) 

"%0" notarget(a) 
"%0" notarget(a) 
"%0" notarget(a) 

The cost function notarget makes a zero-cost match in most cases, but 
if register targeting has constrained the node to yield a fixed register -
that is, the destination register is no longer a wildcard that represents 
a set of registers - then a register-to-register copy may be required, so 
notarget returns a cost that aborts this rule: 

(gen.c functions}+= 
... 

402 410 ..... 
int notarget(p) Node p; { 

return p->syms[RX]->x.wildcard ? 0 : LBURG_MAX; 
} 

Each specification includes parallel rules that generate a unit-cost register 
copy, which is used when the node has a fixed target register. 

14.10 Writing Specifications 

Chapters 16-18 show some complete lburg inputs. Perhaps the easiest 
way to write an 1 burg specification is to start by adapting one explained 
in this book, but a few general principles can help. Page 436 illustrates 
several of these guidelines. 

Write roughly one rule for each instruction and one for each address
ing mode that you want to use. The templates give the assembler syntax, 
and the patterns describe the effect of the instruction using a tree of 
intermediate-language operators. 

Replicate rules for equivalent operators. For example, a rule for ADDI 
usually requires a similar rule for ADDU and ADDP. 

Write extra rules for each tree operator that can be implemented as 
a special case of some more general operation. For example, ADDRLP 
can often be implemented by adding a constant to the frame pointer, 
so whenever you write a rule that matches the sum of a constant and a 
register, write a variant of the rule that matches ADDRLP. 

Write an extra rule for each degenerate case of a more general opera
tion. For example, if some addressing mode matches the sum of a con
stant and a register, then it can also perform simple indirect addressing, 
when the constant is zero. 

Write an extra rule that emits multiple instructions for each operator 
in the intermediate language that no single instruction implements. For 
example, many machines have no instruction that implements CVCI di
rectly, so their specifications implement a rule whose template has two 
shift instructions. These instructions propagate the sign bit by shifting 
the byte left logically or arithmetically, then right arithmetically. 



FURTHER READING 

Use one nonterminal to derive all trees that yield a value. Use this non
terminal wherever the instruction corresponding to a rule pattern reads a 
register. This book uses the nonterminal reg this way. A variant that can 
catch a few more errors uses one nonterminal for general-purpose reg
isters and another for floating-point registers (e.g. freg). For example, 
rules that use only one register nonterminal can silently accept corrupt 
trees like NEGF(INDIRI(. .. )). This particular error is rare. 

Similarly, use one nonterminal to derive all trees executed only for 
side effect. Examples include ASGN and ARG. This book uses stmt for 
side-effect trees. It is possible to write l burg specifications that combine 
reg and stmt into one large class, but the register allocator assumes that 
the trees with side effects are roots, and trees with values are interior 
nodes or leaves; it can silently emit incorrect code - the worst nightmare 
for compiler writers - if its assumptions are violated. Separating reg 
from stmt makes the code generator object if these assumptions are 
ever violated. 

Ensure that there's at least one way to generate code for each opera
tion in the intermediate language. One easy way to do so is to write one 
register-to-register rule for each operator: 

reg: LEAF 
reg: UNARY(reg) 
reg: OPERATOR(reg,reg) 

Such rules ensure that l cc can match each node at least one way and 
emit assembler code with one instruction per node. 

Scan your target's architecture manual for instructions or addressing 
modes that perform multiple intermediate-code operations, and write 
rules with patterns that match what the instructions compute. Rules 3 
and 7 in Figure 14.2 are examples. If you have a full set of register-to
register rules, these bigger rules won't be necessary, but they typically 
emit code that is shorter and faster. Skip instructions and addressing 
modes so exotic that you can't imagine a C program - or a C compiler 
- that could use them. 

Use nonterminals to factor the specification. If you find you're repeat
ing a subpattern often, give it a rule and a nonterminal name of its own. 

Further Reading 

l cc's instruction selector is based on an algorithm originally described 
by Aho and Johnson (1976). The interface was adapted from burg (Fraser, 
Henry, and Proebsting 1992) and the implementation from the compat
ible program iburg (Fraser, Hanson, and Proebsting 1992). iburg per
forms dynamic programming at compile time. burg uses BURS theory 
(Pelegri-Llopart and Graham 1988; Proebsting 1992) to do its dynamic 

403 reg 
403 stmt 

405 
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dumpcover 390 
_kids 381 

moveself 394 
reuse 384 
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programming when processing the specification, so it is faster but some
what less flexible. 

The retargetable compiler gee (Stallman 1992) displays another way to 
select instructions. It uses a naive code generator and a thorough retar
getable peephole optimizer that is driven by a description of the target 
machine. Davidson and Fraser (1984) describe the underlying method. 

Exercises 

14.1 What would break if we changed the type of costs from short to 
int? 

14.2 _kids is not strictly necessary. Describe how you'd implement a 
reducer without it. 

14.3 1 burg represents each nonterminal with an integer in a compact 
range starting at one, which represents the start nonterminal. The 
zero-terminated vector _ntname is indexed by these numbers and 
holds the name of the corresponding nonterminal: 

(BURM signature 378) += 
static char *_ntname[]; 

... 
391 

Use it to help write a procedure void dumpmatches (Node p) to dis
play a node p and all rules that have matched it. Typical output 
might be 

dumpmatches(Ox1001e790)=ADDRLP(i): 
addr: ADDRLP I %a($sp) 
re: reg I $%1 
reg: addr I la $%c,%1 

dumpmatches is not a reducer. 

14.4 Tree parsers misbehave on dags. Does the labelling pass misbe
have? Why or why not? Does the reducer misbehave? Why or why 
not? 

14.5 Use the -d or -Wf-d option to compile 

f(i) { return (i-22)>>22; } 

for any machine. The lines from dumpcover identify themselves. 
Which correspond to reuse's bonus matches? Which correspond 
to subsequent matches enabled by bonus matches? 

14.6 How many instructions does the moveself optimization save when 
compiling 1 cc on your machine? 



EXERCISES 

14.7 One measure of an optimization is whether it pays off compiling the 
compiler. For example, the requate optimization takes time. Can 
you detect how much time it takes on your machine? When the 
optimization is used to compile l cc with itself, it can save time by 
generating a faster compiler. Can you measure this improvement 
on your machine? Did requate pay off? 

407 

394 requate 
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15 
Register Allocation 

Register allocation can be viewed as having two parts: allocation decides 
which values will occupy registers, and assignment assigns a particular 
register to each value. Instruction selection commits certain subexpres
sions to registers and thus implicitly allocates temporaries, or interme
diate values, but the allocation for register variables and the assignment 
of all registers has been left to this chapter. 

Like all register allocators, l cc's has several tasks. It must keep track 
of which registers are free and which are busy. It must allocate a register 
at the beginning of the lifetime of a variable or an intermediate value, and 
it must free the register for other use at the end of that lifetime. Finally, 
when the register allocator runs out of registers, it must generate code 
to spill a register to memory and to reload it when the spilled value is 
needed again later. 

l cc provides register variables, and it assigns some variables to regis
ters even without explicit declarations, but this is the extent of its global 
register allocation. It does no interprocedural register allocation, and 
allocates temporaries only locally, within a forest. 

More sophisticated register allocators are available, but this one yields 
code that is satisfactory and competitive with other compilers in wide 
use. l cc's spiller is particularly modest. Typical compilations spill so 
seldom that it seemed more effective to invest tuning effort elsewhere. 
A more ambitious register allocator would keep more values in registers 
over longer intervals, which would increase the demand for registers and 
thus would increase the number of spills. l cc's register allocator is sim
ple, so its companion spiller can be simple too. 

A top priority in the design of l cc's register allocator was that it have 
enough flexibility to match existing conventions for register usage, be· 
cause we wanted l cc's code to work with common existing ANSI C Ii· 
braries. That is, we didn't want to write, maintain, or compile with an 
l cc-specific library. 

The second priority was overall simplicity, particularly minimizing 
target-specific code. These goals can conflict. For example, l cc's spiller 
is target independent, and thus must construct indirectly the instruc
tions to spill and reload values. That is, it creates intermediate-code 
trees and passes them through the code generator; this is complicated 
by the fact that we're already in the middle of the code generator and out 
of registers to boot. A target-specific spiller would be simpler because it 
could simply emit target instructions to spill and reload the register, but 
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we'd have to write and debug a new spiller for each target. Even with a 
simple spiller like 1 cc's, spills are rare, which means that good test cases 
for spillers are complex and hard to find, and spillers are thus hard to 
debug. One target-specific spiller would be simpler than 1 cc's, but the 
savings would've been lost over the long run. 

15.1 Organization 

Table 15.1 illustrates the overall organization of the register allocator 
by showing highlights from the call graph. Indentation shows who calls 
whom. This material is at a high level and is meant to orient us before 
we descend to the low levels. 

After the back end has selected instructions and projected the subin
structions out of the tree - in the tree linked through the x. kids array 
- 1 i neari ze traverses the projected tree in postorder and links the in
structions in the order in which they will ultimately execute. gen walks 
down this list and passes each instruction to ra 11 oc, which normally 
calls just put reg to free the registers no longer used by its children, and 
getreg to allocate a register for itself. For temporaries, ralloc allocates 
a register at the first assignment, and frees the register at the last use. 

If getreg finds no free register that suits the instruction, it calls 
spi 11 ee to identify the most distantly used register. Then getreg calls 
spi 11 to generate code to spill this register to memory and reload the 
value again later. gens pi 11 generates the spill, and genre 1 oad replaces 
all not-yet-processed uses of the register with nodes that load the value 
from memory. genreload calls reprune to reestablish the relationship 
between kids and x. kids that prune established before spilling changed 
the forest. 

Name of Routine 

linearize 
ralloc 
put reg 
getreg 
ask reg 
askfixedreg 

spil lee 
spill 
spill r 
genspill 
gen reload 

rep rune 

Purpose 

orders for output one instruction tree 
frees and allocates registers for one instruction 
frees a busy register 
finds and allocates a register 
finds and allocates a free register 
tries to allocate a given register 
identifies a register to spill 
spills one or more registers 
spills one register 
generates code to spill a register 
generates code to reload a spilled value 
updates kids after gen re 1 oad updates x. kids 

TABLE 15.1 Back-end call tree (simplified). 

409 

411 askfi xedreg 
411 askreg 

92 gen 
402 gen 
426 genreload 
424 gens pi 11 
412 getreg 

81 kids 
413 li neari ze 
386 prune 
410 putreg 
417 ralloc 
426 reprune 
422 spillee 
427 spill 
423 spillr 
359 x.kids 



410 

askreg 411 
askregvar 412 

clobber 357 
(MIPS) " 435 

(SPARC) " 468 
(X86) " 502 

function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 

getreg 412 
local 90 

(MIPS) " 447 
(SPARC) " 483 

(X86) " 518 
mask 361 

progbeg 89 
(MIPS) " 433 

(SPARC) " 466 
(X86) " 498 

ralloc 417 
set 361 

spill 427 
x.regnode 362 
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ralloc is not the only entry point for these routines. clobber calls 
spi 11 directly to spill and reload such registers as those saved across 
calls by the caller. Also, each target's interface procedure local can 
reach askreg via askregvar, which tries to allocate a register for a reg
ister variable. 

15.2 Tracking the Register State 

Masks record which registers are free and which have been used during 
the routine being compiled. freemask tracks which registers are free; it 
tells the register allocator which registers it can allocate. usedmask tracks 
all registers that have been used by the current routine; it tells function 
which registers must be saved in the procedure prologue and restored in 
the epilogue. Both masks are vectors with one element for each register 
set. 

(gen.c data)+= 

unsigned freemask[2); 
unsigned usedmask[2]; 

... 
402 410 .... 

Each target's function interface procedure initializes the masks to record 
that no registers have been used and all are free: 

(clear register state410)= 

usedmask[O] = usedmask[l] = O; 
freemask[O] = freemask[l] = -(unsigned)O; 

448 485 519 

Each progbeg sets the parallel masks tmask and vmask. tmask identifies 
the registers to use for temporary values. vmask identifies the registers 
that may be allocated to register variables. 

(gen.c data)+= 
unsigned tmask[2]; 
unsigned vmask[2]; 

... 
410 

Unallocable registers - the stack pointer, for instance - belong in nei
ther tmask nor vmask. 

The values of freemask and usedmask are maintained by the low-level 
routines put reg, get reg, askreg, and askregvar, which allocate and free 
individual registers. putreg frees the register represented by symbol r. 
Only freemask distinguishes busy registers from free ones, so putreg 
need change nothing else. 

(gen.c functions)+= 
static void putreg(r) Symbol r; { 

freemask[r->x.regnode->set] I= r->x.regnode->mask; 
} 

... 
404 411 .... 
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askfixedregr allocates a fixed register r if possible. If the register is 
busy, askfixedreg returns null. Otherwise, it adjusts the record of the 
register state and returns r. 

(gen.c functions)+= 
static Symbol askfixedregCs) Symbol s; { 

Regnode r = s->x.regnode; 

} 

int n = r->set; 

if Cr->mask&-freemask[n]) 
return NULL; 

else { 

} 

freemask[n] &= -r->mask; 
usedmask[n] I= r->mask; 
return s; 

.... 
410 411 ... 

askreg accepts a symbol that represents one fixed register or a wild
card symbol that represents a set of registers. askreg's second argument 
is a mask that can limit the wildcard. If the register is fixed, ask reg sim
ply calls askfi xedreg. Otherwise, it looks for a free register acceptable 
to the mask and the set of registers represented by the wildcard: 

.... 
(gen.c functions)+= 411 412 

static Symbol askregCrs, rmask) 
Symbol rs; unsigned rmask[]; { 

int i; 

} 

if Crs->x.wildcard == NULL) 
return askfixedregCrs); 

for Ci = 31; i >= O; i--) { 
Symbol r = rs->x.wildcard[i]; 
if Cr != NULL 

} 

&& !Cr->x.regnode->mask&-rmask[r->x.regnode->set]) 
&& askfixedregCr)) 

return r; 

return NULL; 

... 

The use of register masks places an upper bound on the number of reg
isters in a register set; the upper bound is the number of bits in an 
unsigned integer mask on the machine that hosts the compiler. This 
number has been 32 for every target to date, so fixing askregvar's loop 
to 32 iterations seemed tolerable at first. But 1 cc's latest code generator 
- for the X86 - would compile faster if we could define smaller register 

411 

412 askregvar 
410 freemask 
361 mask 
361 Regnode 
361 set 
410 usedmask 
362 x.regnode 
363 x.wildcard 



412 

askreg 411 
AUTO 80 

isscalar 60 
mask 361 

REGISTER 80 
set 361 

spillee 422 
spill 427 

vbl 361 
x.regnode 362 
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sets, and machines exist that have bigger ones. There are now machines 
with thirty-two 64-bit unsigned integers, which undermines the motive 
behind the shortcut. If we were doing it over, we'd represent register 
sets with a structure that could accommodate sets of variable sizes. 

getreg demands a register. If askreg can't find one, then spillee 
selects one to spill, and spi 11 edits the forest to include instructions that 
store it to memory and reload it when it's needed. The second ask reg is 
thus guaranteed to find a register. 

(gen.c functions)+= 
static Symbol getreg(s, mask, p) 
Symbol s; unsigned mask[]; Node p; { 

Symbol r = askreg(s, mask); 
if Cr == NULL) { 

r = spillee(s, p); 

... 
411 412 ..... 

spill(r->x.regnode->mask, r->x.regnode->set, p); 
r = askreg(s, mask); 

} 

} 
r->x.regnode->vbl =NULL; 
return r; 

If a register is allocated to a variable, x. regnode->vb 1 points to the sym
bol that represents the variable; getreg's default assumes that the reg
ister is not allocated to a variable, so it clears the vbl field. 

askregvar tries to allocate a register to a local variable or formal pa
rameter. It returns one if it succeeds and zero otherwise: 

(gen.c functions)+= 
int askregvar(p, regs) Symbol p, regs; { 

Symbol r; 

(askregvar 412) 
} 

... 
412 413 ..... 

askregvar declines to allocate a register if the variable is an aggregate, 
or if it doesn't have the register storage class: 

(askregvar 412) = 
if (p->sclass != REGISTER) 

return O; 
else if (!isscalar(p->type)) { 

p->sclass = AUTO; 
return O; 

} 

413 412 ..... 

If u. t. cse is set, then the variable is a temporary allocated to hold a 
common subexpression, and askregvar postpones allocation until the 
register allocator processes the expression: 
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(askregvar 412)+= 
else if (p->temporary && p->u.t.cse) { 

} 

p->x.name 
return 1; 

"?"· . ' 

... 
412 413 412 .... 

Waiting helps l cc use one register for more than one temporary. To 
help distinguish such variables when debugging the compiler, askregvar 
temporarily sets the x. name field of such temporaries to a question mark. 

If none of the conditions above is met, askregvar asks askreg for a 
register. If one is found, the symbol is updated to point at the register: 

(askregvar 412) += 
else if ((r = askreg(regs, vmask)) != NULL) { 

p->x.regnode = r->x.regnode; 
p->x.regnode->vbl = p; 
p->x.name = r->x.name; 
return 1; 

} 

Otherwise, the variable is forced onto the stack: 

(askregvar 412)+= 
else { 

} 

p->sclass = AUTO; 
return O; 

15.3 Allocating Registers 

... 
413 413 412 .... 

... 
413 412 

Register allocation starts by picking the order in which to execute the 
instructions. linearize(p, next) linearizes the instruction tree rooted 
at p. The list is doubly linked through the x. next and x. prev fields. The 
parameter next points to a sentinel at the end of the list formed so far. 
linearize adds the dotted lines that turn Figure 14.5 into Figure 15.1. 

... 
(gen.c macros)+= 395 

#define relink(a, b) ((b)->x.prev = (a), (a)->x.next = (b)) 

... 
(gen.c functions)+= 412 417 

static void linearize(p, next) Node next, p; { 
int i; 

for (i = O; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) 
linearize(p->x.kids[i], next); 

relink(next->x.prev, p); 

.... 

413 

411 askreg 
412 askregvar 

80 AUTO 
346 cse 

19 NELEMS 
50 temporary 

361 vbl 
410 vmask 
359 x.kids 
362 x.name 
359 x.next 
359 x.prev 
362 x.regnode 
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forest 311 
gen 92 
gen 402 

1 i neari ze 413 
relink 413 
x.next 359 
x.prev 359 
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ASGNI - - - - - - -/ ~· .. ·~~> 
ADDRLP -----ADDI 

i ~ /)~ 
l'.J" CVCI <!-·...- CNSTI 
Start i 4 

IND I RC 

i -- kids 
- - - - - - x. kids 

ADDRLP ------------ x.next & x.prev 
c 

FIGURE 15.1 Ordering uses. 

relink(p, next); 
} 

1 i neari ze traverses the tree in preorder, so it starts by processing 
the subtrees recursively. Then it appends p to the growing list, which 
amounts to inserting it between next and its predecessor. The first 
relink points next's predecessor forward top and p back at next's pre
decessor. The second relink does the same operation for p and next 
themselves. 

gen calls re 1 ink to initialize the list to a circular list holding only the 
sentinel: 

(linearize forest 414} = 
relink(&sentinel, &sentinel); 

414 402 ... 
Then it runs down the forest, linearizing each listed tree, and linking the 
trees into the growing list before the sentinel: 

(linearize forest 414} += 
for (p =forest; p; p = p->link) 

linearize(p, &sentinel); 

... 
414 414 402 ... 

At the end of the loop, gen sets forest to the head of the list, which is 
the node after the sentinel in the circular list: 

(linearize forest 414} += 
forest= sentinel.x.next; 

... 
414 414 402 ... 

Finally, it clears the first x. prev and the last x. next to break the circle: 

(linearize forest 414} += 
sentinel.x.next->x.prev =NULL; 
sentinel.x.prev->x.next =NULL; 

... 
414 402 
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The register allocator makes three passes over the forest. The first 
builds a list of all the nodes that use each temporary. This list identifies 
the last use and thus when the temporary should be freed, and identi
fies the nodes that must be changed when a temporary must be spilled 
to memory. If p->syms [RX] points to a temporary, then the value of 
p->syms [RX]->x. 1 astuse points to the last node that uses p; that node's 
x. prevuse points to the previous user, and so on. The list includes nodes 
that read and write the temporary: 

(allocate registers 415) = 
for (p = forest; p; p = p->x.next) 

415 .... 402 

for (i = O; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) { 
if (p->x.kids[i]->syms[RX]->temporary) { 

p->x.kids[i]->x.prevuse = 
p->x.kids[i]->syms[RX]->x.lastuse; 

p->x.kids[i]->syms[RX]->x.lastuse = p->x.kids[i]; 
} 

} 

The fragment uses nested loops - first the instructions, then the chil
dren of each instruction - to visit the uses in the order in which they'll be 
executed. A single unnested loop over the forest is tempting but ~ong: 

for (p = forest; p; p = p->x.next) 
if (p->syms[RX]->temporary) { 

p->x.prevuse = p->syms[RX]->x.lastuse; 
p->syms[RX]->x.lastuse = p; 

} 

It would visit the same uses, but the order would be wrong for some 
inputs. For example, a[i]=a[i]-1 uses the address of a[i] twice and 
thus assigns it to a temporary. This incorrect code would visit the INDIR 
that fetches the temporary for the left-hand side first, so the INDIR that 
fetches the temporary for the right-hand side would appear to be the last 
use. The temporary would be freed after the load and reused to hold 
the difference, and the subsequent store would use a corrupt addres's. 
Figure 15.2 shows the effect of the loop nesting on the order of the 
x. prevuse chain for this example. 

The second pass over the forest eliminates some instructions that copy 
one register to another, by targeting the expression that computed the 
source register to use the destination register instead. If the source is 
a common subexpression, we use the destination to hold the common 
subexpression if the code between the two instructions is straight-line 
code and doesn't change the destination: 

(allocate registers 415)+= 
for (p = forest; p; p = p->x.next) 

.... 
415 417 402 .... 

311 forest 
19 NELEMS 

362 RX 

415 

50 temporary 
359 x.kids 
362 x. l astuse 
359 x.next 
359 x.prevuse 
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moveself 394 
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x.copy 360 
x.kids 359 
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--- kids 
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I 
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I 

I 

I 
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! 

~ 
VREGP 

2 
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-- kids & x.kids 
··········· x.next & x.prev 
------ x.lastuse or x.prevuse 

FIGURE 15.2 Ordering uses. Singly nested and incorrect is shown 
on the left; doubly nested and correct on the right. 

if (p->x.copy && p->x.kids[O]->syms[RX]->u.t.cse) { 
Symbol dst = p->syms[RX]; 

} 

Symbol temp= p->x.kids[O]->syms[RX]; 
Node q; 

for (q = temp->u.t.cse; q; q = q->x.next) 
if (p != q && dst == q->syms[RX] 
11 ((changes flow of control?4I7))) 

break; 
if c !q) 

for (q = temp->x.lastuse; q; q q->x.prevuse) 
q->syms[RX] = dst; 

The first inner loop scans the rest of the forest and exits early if the 
destination is set anywhere later in the block or if some node changes 
the flow of control. It could quit looking when the temporary dies, but 
the extra logic cut only five instructions out of 25,000 in one test, so 
we discarded it. If no other node sets the destination, then it's safe to 
use that register for the common subexpression. The second inner loop 
changes all instances of the common subexpression to use the destina
tion instead. Once the common subexpression is computed into dst, the 
original register-to-register copy copies dst to itself. The emitter and 
moveself collaborate to cut such instructions. 
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Calls are deemed a break in straight-line code only if the destination 
isn't a register variable, because calls don't change register variables: 

(changes flow of control? 417) = 416 
q->op == LABELV I I q->op == JUMPV I I generic(q->op)==RET I I 

generic(q->op)==EQ I I generic(q->op)==NE I I 

generic(q->op)==LE I I generic(q->op)==LT I I 

generic(q->op)==GE I I generic(q->op)==GT I I 

(generic(q->op) == CALL && dst->sclass != REGISTER) 

The last pass over the forest finally allocates a register for each node. 
rmap is a vector indexed by a type suffix; each element is the register 
wildcard that represents the set of registers that suit untargeted nodes 
of the corresponding type. 

(allocate registers 415) += 
for (p = forest; p; p = p->x.next) { 

ralloc(p); 

} 

if (p->x.listed && NeedsReg[opindex(p->op)] 
&& rmap[optype(p->op)]) { 

putreg(p->syms[RX]); 
} 

.... 
415 402 

Registers are freed when the parent reaches ra 11 oc, but a few nodes, like 
CALLI, can allocate a register and have no parent, if the value goes un
used. The if statement above frees the register allocated to such nodes. 
Existing targets use this code only for CALLs and LOADs. 

ralloc(p) frees the registers no longer needed by p's children, then 
allocates a register for p, if p needs one and wasn't processed earlier. 
Finally, it calls the target's cl ob be r to spill any registers that this node 
clobbers: 

(gen.c functions)+= 
static void ralloc(p) Node p; { 

inti; 

} 

unsigned mask[2]; 

mask[O] = tmask[O]; 
mask[l] = tmask[l]; 
(free input registers 418) 
if (!p->x.registered && NeedsReg[opindex(p->op)] 
&& rmap[optype(p->op)]) { 

(assign output register418) 
} 
p->x.registered = 1; 
(*IR->x.clobber)(p); 

.... 
413 422 .... 

417 

357 clobber 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
311 forest 
306 IR 
361 LOAD 
361 mask 
398 NeedsReg 

98 opindex 
98 optype 

410 putreg 
80 REGISTER 

398 rmap 
362 RX 
410 tmask 
357 x.clobber 
359 x. listed 
359 x.next 
360 x.registered 
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askregvar 412 
cse 346 

getreg 412 
mask 361 

NELEMS 19 
optype 98 

prelabel 398 
putreg 410 
ralloc 417 

REGISTER 80 
rmap 398 

RX 362 
set 361 

temporary 50 
x.kids 359 

x. l astuse 362 
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If a child yields a register variable, or if the register holds a common 
subexpression for which other uses remain, then its register must not be 
freed. The if statement below catches exactly these exceptions: 

(free input registers418}= 417 
for (i = O; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) { 

Node kid= p->x.kids[i]; 

} 

Symbol r = kid->syms[RX]; 
if (r->sclass !=REGISTER && r->x.lastuse == kid) 

putreg(r); 

r->x. 1 astuse points to r's last use. For most expression temporaries, 
there is only one use, but temporaries allocated to common subexpres
sions have multiple uses. 

Now ralloc allocates a register to this node. prelabel has stored 
in p->syms [RX] a register or wildcard that identifies the registers that 
p will accept. Again, common subexpressions complicate matters be
cause askregvar has pointed their p->syms [RX] at a register variable 
that hasn't yet been allocated. So we need to use two values: sym is 
p->syms [RX], and set is the set of registers that suit p: 

(assign output register418}= 
Symbol sym = p->syms[RX], set= sym; 
if (sym->temporary && sym->u.t.cse) 

set= rmap[optype(p->op)]; 

418 417 ... 

If p needs no register, then ralloc is done. Otherwise, it asks getreg for 
a register and stores it in the node or nodes that need it: 

(assign output register418}+= 
if (set->sclass != REGISTER) { 

Symbol r; 

} 

(mask out some input registers 419} 
r = getreg(set, mask, p); 
(assign r to nodes 419} 

... 
418 417 

ra 11 oc frees the input registers before allocating the output register, 
which allows it to reuse an input register as the output register. This 
economy is always safe when the node is implemented by a single in
struction, but it can be unsafe if a node is implemented by a sequence 
of instructions: If the output register is also one of the input registers, 
and if the sequence changes the output register before reading the cor
responding input register, then the read fetches a corrupt value. We take 
care that all rules that emit instruction sequences set their output regis
ter only after they finish reading all input registers. Most templates emit 
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just one instruction, so this assumption is a good default, but it does 
require considerable care with multi-instruction sequences. 

This rule is impractical for instructions that require the output register 
to be one of the input registers. For example, the X86 add instructions 
take only two operands; they add the second to the first and leave the 
result in the first. If the first operand isn't dead yet, the generated code 
must form the sum into a free register, and it must start by copying the 
first operand to this free register. The code template is thus generally 
two instructions: the first copies the first operand to the destination 
register, and the second computes the sum. For example, the X86 add 
template is: 

reg: ADDI(reg,mril) "mov %c,%0\nadd %c,%1\n" 2 

Such templates change the output register before reading all input reg
isters, so they violate the rule above. 

To handle two-operand instructions, we mark their code templates 
with a leading question mark. That is, the complete form of the rule 
above is: 

reg: ADDI(reg,mril) "?mov %c,%0\nadd %c,%1\n" 2 

When ralloc sees such a rule, it edits mask to prevent reallocation of all 
input registers but the first, which is why the loop below starts at one 
instead of zero: 

(mask out some input registers 419)= 418 

if (*IR->x._templates[getrule(p, p->x.inst)] == '?') 
for (i = 1; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) { 

Symbol r = p->x.kids[i]->syms[RX]; 
mask[r->x.regnode->set] &= -r->x.regnode->mask; 

} 

The code generators must take care that no node targets the same reg
ister as any of its children except the first. 

Once the register is allocated, ra 11 oc stores the allocated register into 
the nodes that use it: 

(assign r to nodes 419) = 418 

if (sym->temporary && sym->u.t.cse) { 
Node q; 
r->x.lastuse = sym->x.lastuse; 
for (q = sym->x.lastuse; q; q = q->x.prevuse) { 

q->syms[RX] = r; 
q->x.registered = 1; 
if (q->x.copy) 

q->x.equatable = 1; 
} 

346 cse 
382 getrule 
306 IR 
361 mask 

19 NELEMS 
417 ralloc 
362 RX 
361 set 

419 

50 temporary 
360 x.copy 
360 x.equatable 
358 x. inst 
359 x.kids 
362 x. l astuse 
359 x.prevuse 
360 x.registered 
362 x.regnode 
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genreload 426 
genspill 424 

LOAD 361 
prelabel 398 

RX 362 
spillee 422 
spillr 423 

VREG 361 
x.equatable 360 

x. l astuse 362 

} else { 

} 

p->syms[RX] = r; 
r->x.lastuse = p; 
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If the node is not a common subexpression, the else clause stores r into 
p->syms [RX] and notes the single use in r->x. 1 astuse. If sym is a com
mon subexpression, x. 1 astuse already identifies the users, so the frag
ment runs down the list, storing r and marking the node as processed 
by the register allocator. It also notes in x.equatable if the common 
subexpression is already available in some other register. 

15.4 Spilling 

When the register allocator runs out of registers, it generates code to 
spill a busy register to memory, and it replaces all not-yet-processed 
uses of that register with nodes that reload the value from memory. 
More ambitious alternatives are available - see Exercises 15.6 and 15.7 
- but 1 cc omits them. Spills are rare, so 1 cc's spiller has been made as 
simple as possible without sacrificing target independence. It would be 
wasteful to tune code that is seldom used, and test cases are hard to find 
and hard to isolate, so it would be hard to test a complex implementation 
thoroughly. 

When the register allocator runs out of registers, it spills to memory 
the most distantly used register, which is the optimal choice. The spiller 
replaces all not-yet-processed uses of that register with nodes that load 
the value from memory, and it frees the register to satisfy the current 
request. 

Several routines collaborate to handle spills: spi 11 ee identifies the 
best register to spill, and spi 11 r calls genspi 11 to insert the spill code 
and genre 1 oad to insert the reloads. Figure 15.3 illustrates their opera
tion on the program 

int i; 
main() { i = f() + f(); } 

which is the simplest program that spills on most targets. It spills the 
value of the first call from the return register so that it won't be destroyed 
by the second call. 

The figure's first column shows the forest before code generation; that 
is, the forest from the front end after pre 1abe1 substitutes VREGs for 
ADDRLs that reference (temporary) register variables and injects LOADs to 
write such registers. The second column shows the forest after lineariza
tion; it assumes that the nodes linked by arcs with open arrowheads are 
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instructions - although INDIR and ASGN nodes that read and write reg
isters are typically just comment instructions - and the rest are subin
structions like address calculations. The last column shows the injected 
spill and reload, which use ADDRLP(4). The dark arrows in the last two 
columns show kids and x. kids, which are the links that remain when 
subinstructions are projected out of the tree. 

When get reg runs out of registers, it calls spi 11 ee (set, he re) to 
identify the register in set that is used at the greatest distance from 
here: 

.... 
(gen.c functions)+= 417 422 

static Symbol spillee(set, 
Symbol bestreg = NULL; 
int bestdist = -1, i; 

here) Node here; Symbol set; { 

} 

if (!set->x.wildcard) 
return set; 

for (i = 31; i >= O; i--) { 

} 

Symbol ri = set->x.wildcard[i]; 
if (ri != NULL 
&& ri->x.regnode->mask&tmask[ri->x.regnode->set]) { 

Regnode rn = ri->x.regnode; 

} 

Node q = here; 
int dist = O; 
for (; q && !uses(q, rn->mask); q q->x.next) 

dist++; 
if (q && dist > bestdist) { 

bestdist = dist; 
bestreg = ri; 

} 

return bestreg; 

... 

If set is not a wildcard, then it denotes a single register; only that register 
will do, so spi 11 ee simply returns it. Otherwise, set denotes a proper 
set of registers, and spi 11 ee searches for an element of that set with the 
most distant use. spi 11 ee calls uses to see if node p reads one given 
register: 

(gen.c functions)+= 
static int uses(p, mask) Node p; unsigned mask; { 

int i; 
Node q; 

.... 
422 423 ... 
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} 

for Ci = O; i < NELEMSCp->x.kids) 
&& Cq = p->x.kids[i]) != NULL; i++) 
if Cq->x.registered 
&& mask&q->syms[RX]->x.regnode->mask) 

return 1; 
return O; 

spi 11 rCr, here) spills register rand changes each use of rafter here 
to use a reload instead: 

(gen.c functions)+= 
static void spillrCr, here) Symbol r; Node here; { 

int i; 

} 

Node p = r->x.lastuse; 
Symbol tmp = newtempCAUTO, optypeCp->op)); 
(spillr423) 

... 
422 424 

"" 

spi 11 r spills the register to memory. It is sometimes possible to spill 
to another register, but this complicates the logic because it risks an
other spill and thus infinite recursion. spi 11 r finds the first use - the 
x. prevuse chain ends with the first use - which is the assignment that 
establishes the value in r: 

(spillr423)= 423 423 
"" while Cp->x.prevuse) { 

p = p->x.prevuse; 
} 

r can hold a simple expression temporary with a single use or a common 
subexpression with multiple uses, but both are assigned by exactly one 
instruction. spi 11 r finds it and sends it to gens pi 11, which stitches a 
spill into the forest at the assignment: 

... 
423 423 423 

"" 
(spi 11r423) += 

genspillCr, p, tmp); 

The spill could be done anywhere between the assignment and here, but 
the site of the assignment is a good safe place for it, which explains why 
the spill in Figure 15.3 is in the last column's first tree. 

Next, spi 11 r changes all remaining nodes that read r to load the spill 
cell instead; it concludes by freeing r: 

... 
(spi 11r423) += 423 423 

for Cp = here->x.next; p; p = p->x.next) 
for Ci = O; i < NELEMSCp->x.kids) && p->x.kids[i]; i++) { 

Node k = p->x.kids[i]; 

80 AUTO 
424 genspill 
361 mask 

19 NELEMS 
50 newtemp 
98 optype 

362 RX 
359 x.kids 

423 

362 x. l astuse 
359 x.next 
359 x.prevuse 
360 x.registered 
362 x.regnode 
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} 

if (k->x.registered && k->syms[RX] -- r) 
genreload(p, tmp, i); 

putreg(r); 

The scan for nodes that read r starts with he re->x. next instead of he re 
for reasons that are subtle. here can spill one of its own kids. For ex
ample, the code (*f) () might load the value of the pointer into a caller
saved register and then use an indirect call instruction, which clobber 
must spill. Most instruction templates hold just one instruction, so they 
finish reading their input registers before clobbering anything; the in
direct call, for example, doesn't clobber the address register until after 
it's done with the value, unless the address register is used again by an 
instruction after the call, which is at or after here->x. next. 

Also, gen reload doesn't call ralloc to allocate registers for the nodes 
that it inserts. gen reload stitches each reload into the list of instructions 
just before the instruction that uses the reloaded value. Such instruc
tions had referenced the spilled value at or before here, but genreload 
edits them to use reloads that are after here. We simply postpone regis
ter allocation for the new instructions until ralloc encounters them on 
the list of remaining instructions. 

gens pi 11 ( r, last, tmp) spills to tmp the assignment of r at last: 

(gen.c functions)+= 
static void genspill(r, last, tmp) 
Symbol r, tmp; Node last; { 

Node p, q; 
Symbol s; 
unsigned ty; 

(genspi 11 424) 
} 

.... 
423 426 .... 

gens pi 11 synthesizes a register variable of the appropriate type to use 
in the spill: 

(genspill 424)= 

ty = optype(last->op); 
if (ty == U) 

ty = I; 
NEWO(s, FUNC); 
s->sclass = REGISTER; 
s->x.name = r->x.name; 
s->x.regnode = r->x.regnode; 
s->x.regnode->vbl = s; 

425 424 .... 

The register being spilled is not a register variable, but pretending it is 
ensures that no instructions will be generated to compute the value to be 
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spilled, because INDIR.x (VREGP) emits nothing. The value has been com
puted already, and we want no additional instructions. Next, genspi 11 
creates nodes to spill the register to memory: 

(genspi 11 424) += 
.... 

424 425 ... 424 
q newnode(ADDRLP, NULL, NULL, s); 
q newnode(INDIR + ty, q, NULL, NULL); 
p newnode(ADDRLP, NllLL, NULL, tmp); 
p newnode(ASGN + ty, p, q, NULL); 

Now genspi 11 selects instructions, projects out the subinstructions, and 
linearizes the resulting instruction tree: 

.... 
(genspill 424)+= 425 425 

rewrite(p); 
prune(p, &q); 
q = last->x.next; 
linearize(p, q); 

Finally, it passes the new nodes through the register allocator: 

(genspill 424)+= 
for (p = last->x.next; p != q; p = p->x.next) { 

ralloc(p); 
} 

... 

.... 
425 

424 

424 

If the call on genspi 11 originated because ra 11 oc ran out of registers, 
these calls risk infinite recursion if they actually try to allocate a register. 
We must take care that the code generator can spill a register without 
allocating another register. Spills are stores, which usually take just one 
instruction and thus need no additional register, but some machines have 
limits on the size of the constant part of address calculations and thus 
require two instructions and a temporary register to complete a store to 
an arbitrary address. Therefore we must ensure that these stores use a 
register that is not otherwise allocated by ra 11 oc. The MIPS R3000 ar
chitecture has such restrictions, but the assembler handles the problem 
using a temporary register reserved for the assembler. The SPARC target 
is the only one so far that requires attention from the code generator; 
Section 17.2 elaborates. 

genspi 11 's ra 11 oc calls above must allocate no register, but it calls 
ra 11 oc anyway, since ra 11 oc is responsible for more than just allocating 
a register. It also calls, for example, the target's clobber. It is unlikely 
that a simple store would cause clobber to do anything, but some future 
target could do so, so genspi 11 would hide a latent bug if it didn't call 
ralloc. The back end sends all other nodes through rewrite, prune, 
1 i neari ze, and ra 11 oc, so it seems unwise to omit any of these steps 
for spill nodes. 

genreload(p, tmp, i) changes p->x.kids[i] to load tmp instead of 
reading a register that has now been spilled: 

425 
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(gen.c functions)+= 
static void genreload(p, tmp, i) 
Node p; Symbol tmp; inti; { 

Node q; 
int ty; 

(genreload 426) 
} 

... 
424 426 ... 

It changes the target node to a tree that loads tmp, selects instructions 
for it, and projects out the subinstructions: 

(gen reload 426) = 
ty = optype(p->x.kids[i]->op); 
if (ty == U) 

ty = I; 
q = newnode(ADDRLP, NULL, NULL, tmp); 
p->x.kids[i] = newnode(INDIR + ty, q, NULL, NULL); 
rewrite(p->x.kids[i]); 
prune(p->x.kids[i], &q); 

426 426 ... 

Next, gen re 1 oad linearizes the reloading instructions, as is usual after 
pruning, but we need two extra steps first: ... 
(genreload 426)+= 426 426 

reprune(&p->kids[l], reprune(&p->kids[O], 0, i, p), i, p); 
prune(p, &q); 
linearize(p->x.kids[i], p); 

In most cases, each entry in x. kids was copied from some entry in some 
kids by prune, but genreload has changed x.kids[i] without updat
ing the corresponding entry in any kids. The emitter uses kids, so 
genreload must find and update the corresponding entry. The call on 
reprune above does this, and the second call on prune makes any similar 
changes to the node at which p points. 

reprune(pp, k, n, p) is called to reestablish the connection between 
kids and x. kids when p->x. kids [n] has changed. That is, rep rune must 
do whatever is necessary to make it look like the reloads were in the for
est from the beginning. rep rune is thus an incremental version of prune: 
prune establishes a correspondence between kids and x. kids for a com
plete tree, and reprune reestablishes this correspondence after a change 
to just one of them, namely the one corresponding to the reload. Fig
ure 15.4 shows how reprune repairs the final tree shown in Figure 15.3. 

The initial, root-level call on reprune has a pointer, pp, that points to 
the first kids entry that might need change. ... 
(gen.c functions)+= 426 427 ... 

static int reprune(pp, k, n, p) Node p, *pp; int k, n; { 
Node q = *pp; 
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FIGURE 15.4 Figure 15.3's reload before and after reprune. 

if (q == NULL I I k > n) 
return k; 

else if (q->x.inst == 0) 
return reprune(&q->kids[l], 

reprune(&q->kids[O], k, n, p), n, p); 
else if Ck == n) { 

*pp= p->x.kids[n]; 
return k + 1; 

} else 
return k + 1; 

INDIRI 

l 
VREGP 

3 

kids link the original tree, and x. kids link the instruction tree. The 
second is a projection of the first, but an arbitrary number of nodes 
have been projected out, so finding the kids entry that corresponds to 
p->x. kids [i J requires a recursive tree search. rep rune's recursive calls 
track prune's recursive calls. They bump k, which starts out at zero, and 
advance p in exactly those cases where prune finds an instruction and 
sets the next entry in x. kids. So when k reaches n, rep rune has found 
the kids entry to update. 

getreg and each target's clobber call spill(mask, n, here) to spill 
all busy registers in register set n that overlap the registers indicated by 
mask. A typical use is for CALL nodes, because calls generally corrupt 
some registers, which must be spilled before the call and reloaded after
ward. spi 11 marks the registers as used and runs down the rest of the 
forest looking for live registers that need spilling. It economizes by first 
confirming that there are registers that need spilling: 

.... 
(gen.c functions)+= 426 

void spill(mask, n, here) unsigned mask; int n; Node here; { 

427 
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Node p; 

usedmask[n] I= mask; 
if (mask&-freemask[n]) 
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for (p = here; p; p p->x.next) 
(spi 11 428) 

The inner loop below identifies the live registers that need spilling and 
calls spi 11 r to spill them: 

(spill 428)= 428 
for (i = O; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) { 

Symbol r = p->x.kids[i]->syms[RX]; 

} 

if (p->x.kids[i]->x.registered && r->x.regnode->set == n 
&& r->x.regnode->mask&mask) 

spillr(r, here); 

Spill gives l cc caller-saved registers for free, as a special case of a mech
anism that is needed for oddball instructions that clobber some fixed set 
of registers. 

Further Reading 

Execution ordering determines the order of the instruction in the output. 
Most languages are only partially constrained. For example, ANSI speci
fies that we must evaluate assignment statements in order, but it doesn't 
care which operand of an assignment is computed first. linearize 
uses one fixed order, but better alternatives exist. For example, Sethi
Ullman numbering (Aho, Sethi, and Ullman 1986) can save registers by 
evaluating first the children that need the most registers. 

Instruction scheduling interacts with register allocation. It helps to 
start slow instructions long before their result is needed, but this ties up 
the result register longer and thus uses more registers. Proebsting and 
Fischer (1991) solve one class of trade-offs compactly. Krishnamurthy 
(1990) surveys some of the literature in instruction scheduling. 

Many ambitious register allocators use graph coloring. The compiler 
builds a graph in which the values computed are the nodes, and it links 
two nodes if and only if the two values are ever live at the same time, 
which means that they can't share a register or, equivalently, a graph 
color. Chaitin et al. (1981) describe the process. 

Selecting a register to spill is related to page replacement in oper
ating systems. Virtual memory systems can't know the most distantly 
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used page, but spillers can determine the most distantly used regis
ter (Freiburghouse 1974). 

Exercises 

15.l Section 15.3 describes an optimization abandoned because it saved 
only 5 instructions out of 2 5,000 in one test. Implement the op
timization and see if you can find useful programs that the opti
mization improves more. 

15.2 Adapt 1 cc to use Sethi-Ullman numbering. How much faster does 
it make 1 cc's code for your programs? 

15.3 Construct some input programs that exercise the spiller. 

15.4 Change spi 11 ee to spill the least recently used register. Using tim
ings, can you detect any difference in compilation rate or quality of 
the generated code for some useful programs? 

15.5 The simplest compilers omit spillers and die uttering a diagnostic 
instead. Remove lee's spiller. You'll have to change clobber. How 
much simpler is the new compiler? How many of your favorite C 
programs do you need to compile before one is rejected? How does 
this number change if you change CALLs to copy the result register 
to an arbitrary register, thus avoiding the spill in f()+f()? 

15.6 Some spills occur when registers are still available. For example, 
the expression f()+f() must spill the first return value from the 
return register because the second call needs the same register, 
but other registers might be free. Change 1 cc's spiller to spill to 
another register when it can. How much does this change improve 
the code for your favorite C programs? Was it worth the effort? 

15.7 1 cc generates one reload for each reference processed after the 
spill, but fewer reloads can suffice. Change 1 cc's spiller to avoid 
gratuitous reloads. How much does this change improve the code 
for your favorite C programs? Was it worth the effort? 

429 
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16 
Generating MIPS R3000 Code 

The MIPS R3000 architecture and the companion R3010 floating-point 
unit comprise a RISC. They have 32 32-bit registers each, a compact set 
of 32-bit instructions, and one addressing mode. They access memory 
only through explicit load and store instructions. The calling convention 
passes some arguments in registers. 

We might begin this chapter with a complete description of the MIPS 
assembler language, but describing the add instruction in isolation and 
then giving it again in the rule for ADDI later would be repetitious, so we 
begin not with a reference manual but rather with a few sample instruc
tions, as shown in Table 16.1. Our aim here is to appreciate the general 
syntax of the assembler language - the appearance and position of regis
ters, addresses, opcodes, and assembler directives. This understanding, 
plus the templates and the text that describes the rules, plus the parallel 
construction of repetitive rules, tell us what we need to know about the 
target machine. 

The file mi ps. c collects all target-specific code and data for the MIPS 

Assembler 

move $10,$11 
subu $10,$11,$12 
subu $10,$11,12 

lb $10,11($12) 

sub.d $f12,$fl4,$f16 

sub.s $f12,$f14,$f16 

b ll 
j $31 
blt $10, $11, ll 

.byte Ox20 

Meaning 

Set register 10 to the value in register 11. 
Set register 10 to register 11 minus register 12. 
Set register 10 to register 11 minus the con
stant 12. 
Set register 10 to the byte at the address 11 
bytes past the address in register 12. 
Set register 12 to register 14 minus register 
16. Use double-precision floating-point regis
ters and arithmetic. 
Set register 12 to register 14 minus register 
16. Use single-precision floating-point regis
ters and arithmetic. 
Jump to the instruction labelled Ll. 
Jump to the address in register 31. 
Branch to Ll if register 10 is less than 
register 11. 
Initialize the next byte in memory to hexadec
imal 20. 

TABLE 16.1 Sample MIPS assembler input lines. 
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code generator. It's an 1 burg specification with the interface routines 
after the grammar: 

(mips.md431}= 
%{ 
(mips.c macros} 
(lburg prefix375} 
(interface prototypes} 
(MIPS prototypes} 
(MIPS data433} 
%} 
(terminal declarations 376} 
%% 
(shared rules 400} 
(MIPS rules 436} 
%% 
(MIPS functions 433} 
(MIPS interface definition 431} 

The last fragment configures the front end and points to the MIPS code 
and to data in the back end. Most targets have just one interface record, 
but MIPS machines can be configured as either big or little endian, so 1 cc 
needs two interface records for them: 

(MIPS interface definition 431}= 
Interface mipsebIR = { 

(MIPS type metrics43l} 
0, /* little_endian */ 
(shared interface definition 432} 

}, mi pselIR = { 

} ; 

(MIPS type metrics 431} 
1, /* little_endian */ 
(shared interface definition432} 

431 

Systems from Digital Equipment run the Ultrix operating system, are little 
endians, and use mipselIR. Systems from Silicon Graphics run the IRIX 
operating systems, are big endians, and use mi psebIR. The systems share 
the same type metric: 

(MIPS type metrics43l}= 431 
1, 1, 0, /* char */ 
2, 2, 0, /* short */ 
4, 4, 0, /* int */ 
4, 4, 1, /* float */ 
8, 8, 1, /* double */ 
4, 4, 0, /* T * */ 
0, 1, 0, /* struct */ 

431 

79 Interface 
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stabinit 80 
stabline 80 
stabsym 80 
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They also share the rest of interface record: 

(shared interface definition432)= 
0, /* mulops_calls */ 
0, /* wants_callb */ 
1, /* wants_argb */ 
1, /* left_to_right */ 
0, /* wants_dag */ 
(interface routine names) 
0, 0, 0, stabinit, stabline, stabsym, 0, 
{ 

} 

4, /* max_unaligned_load */ 
(Xi nterface initializenss) 

431 

Some of the symbol-table handlers are missing. 1 cc, like many compilers, 
assumes that all data for the debugger can be encoded using assembler 
directives. MIPS compilers encode file names and line numbers this way, 
but information about the type and location of identifiers is encoded in 
another file, which l cc does not emit. MIPS debuggers can thus report 
the location of an error in an executable file from 1 cc, but they can't 
report or change the values of identifiers; see Exercise 16.5. 

16.1 Registers 

The MIPS R3000 processor has thirty-two 32-bit registers, which are 
known to the assembler as Si. The MIPS R3010 floating-point coproces
sor adds thirty-two more 32-bit registers, which are usually treated as 
sixteen even-numbered 64-bit registers and are known to the assembler 
as Sfi. 

The hardware imposes only a few constraints - register $0 is always 
zero, and the jump-and-link instruction puts the return address in $31 -
but 1 cc observes many more conventions used by other compilers, in or
der to interoperate with the standard libraries and debuggers. Table 16.2 
enumerates the conventions. 

The assembler reserves $1 to implement pseudo-instructions. For ex
ample, the hardware permits only 16-bit off sets in address calculations, 
but the assembler permits 32-bit offsets by injecting extra instructions 
that form a large offset using $1. 1 cc uses some pseudo-instructions, but 
it forgoes others to simplify adaptations of 1 cc that emit binary object 
code directly. 

The convention reserves $2-$3 and $f0-$f2 for return values, but lee 
uses only the first half of each. The second half is for Fortran's complex 
arithmetic type. C doesn't have this type, but C compilers respect the 
convention to interoperate with Fortran code. 
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Registers 
$0 
$1 
$2-$3 
$4-$7 
$8-$15 
$16-$23 
$24-$25 
$26-$27 
$28 
$29 
$30 
$31 

$f0-$f2 
$f4-$f10 
$f12-$f14 
$f16-$f18 
$f20-$f30 

Use 
zero; unchangeable 
reserved for the assembler 
function return value 
first few procedure arguments 
scratch registers 
register variables 
scratch registers 
reserved for the operating system 
global pointer; also called $gp 
stack pointer; also called $sp 
register variable 
procedure return address 

function return value 
scratch registers 
first two procedure arguments 
scratch registers 
register variables 

TABLE 16.2 MIPS register conventions. 

progend does nothing for this target. progbeg encodes Table 16.2 in 
the register allocator's data structures. 

(MIPS functions433)= 435 431 
static void progbeg(argc, argv) int argc; char *argv[f; { 

int i; 

} 

(shared progbeg 371) 
print(".set reorder\n"); 
(parse -G flag 458) 
(initialize MIPS register structures 434) 

First, it emits a harmless directive - the MIPS assembler objects to empty 
inputs - and parses a target-specific flag. Then it initializes the vectors 
of register symbols: 

(MIPS data433)= 434 431 ... 
static Symbol ireg[32], freg2[32], d6; 

Each element of i reg represents one integer register, and freg2 repre
sents pairs of adjacent floating-point registers. d6 represents the pair 
$6-$7. 

Actually, the machine has only 31 register pairs of each type, but the 
declaration supplies 32 to keep askreg's inelegant loop bounds valid. 

411 askreg 
458 gp 

433 

89 progend 
466 " (SPARC) 
502 " (X86) 



434 

blkcopy 367 
(MIPS) freg2 433 

(SPARC) " 467 
FREG 361 
!REG 361 

(MIPS) i reg 433 
(SPARC) " 467 

mkreg 363 
mkwildcard 363 

rmap 398 
tmask 410 
vmask 410 

x.name 362 
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(initialize MIPS register structures 434) = 

for Ci = O; i < 31; i += 2) 
freg2[i] = mkregC"%d", i, 3, FREG); 

for Ci = O; i < 32; i++) 
i reg [i] = mkregC"%d", i, 1, IREG); 

ireg[29]->x.name = "sp"; 
d6=mkregC"6", 6, 3, IREG); 

434 433 .... 

mkreg assigns numeric register names. It renames the stack pointer -
$29 - to use the assembler mnemonic $sp. We don't need the mnemonic 
$gp, or we'd rename $28 too. 

rmap stores the wildcard that identifies the default register class to 
use for each type: 

... 
434 434 433 .... (initialize MIPS register structures 434) += 

rmap[C] = rmap[S] = rmap[P] = rmap[B] 
mkwildcardCireg); 

rmap[U] = rmap[I] = 

rmap[F] = rmap[D] = mkwildcardCfreg2); 

tmask identifies the scratch registers, and vmask the register variables: 

(mips.c macros)= 
#define INTTMP Ox0300ff00 
#define INTVAR Ox40ff0000 
#define FLTTMP OxOOOfOffO 
#define FLTVAR OxfffOOOOO 

(initialize MIPS register structures 434) += 

tmask[IREG] = INTTMP; tmask[FREG] = FLTTMP; 
vmask[IREG] = INTVAR; vmask[FREG] = FLTVAR; 

443 .... 

... 
434 434 433 .... 

ARGB and ASGNB need not just source and destination addresses but also 
three temporary registers to copy a block. $3 is always available for tem
porary use, but we need two more, and all five registers must be distinct. 
An easy way to enforce this rule is to target the source register to a reg
ister triple: $8 for the source and $9 and $10 for the two temporaries. 
tmpregs lists the three temporaries - $3, $9, and $10 - for blkcopy: 

(MIPS data433)+= 

static int tmpregs[] = {3, 9, 10}; 

bl kreg is the source register triple: 

(MIPS data433)+= 
static Symbol blkreg; 

(initialize MIPS register structures 434) += 

blkreg = mkregC"8", 8, 7, IREG); 

... 
433 434 431 .... 

... 
434 458 431 .... 

... 
434 433 
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Name What It Matches 

aeon address constants 
add r address calculations for instructions that read and write memory 
ar labels and addresses in registers 
con constants 
re registers and constants 
res registers and constants that fit in five bits 
reg computations that yield a result in a register 
stmt computations done for side effect 

TABLE 16.3 MIPS nonterminals. 

The third argument to mkreg is a mask of three ones, which identifies $8, 
$9, and $10. The emitted code takes care to use $8 as the source register 
and the other two as temporaries. 

target calls set reg to mark nodes that need a special register, and it 
calls rtarget to mark nodes that need a child in a special register: 

(MIPS functions 433) += 
static void target(p) Node p; { 

switch (p->op) { 
(MIPS target 437) 
} 

} 

... 
433 435 431 .... 

If an instruction clobbers some registers, clobber calls spill to save 
them first and restore them later. 

(MIPS functions 433) += 
static void clobber(p) Node p; { 

switch (p->op) { 
(MIPS c 1 ob be r 443) 
} 

} 

... 
435 444 431 .... 

The cases missing from target and clobber above appear with the ger
piane instructions in the next section. 

16.2 Selecting Instructions 

Table 16.3 summarizes the nonterminals in lee's lburg specification for 
the MIPS code generator. It provides a high-level overview of the organi
zation of the tree grammar. 

Some assembler instructions have a suffix that identifies the data type 
on which the instruction operates. The suffixes s and d identify single
and double-precision floating-point instructions, and b, h, and w identify 

363 mkreg 
400 rtarget 
399 setreg 
427 spill 

435 



436 

%F 392 
reg 403 
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8-, 16-, and 32-bit integral instructions, respectively. The optional suffix 
u flags some instructions as unsigned. If it's omitted, the operation is 
signed. 

Constants and identifiers represent themselves in assembler: 

(MIPS rules 436) = 
aeon: con "%0" 
aeon: ADDRGP "%a" 

436 431 ... 

The instructions that access memory use address-calculation hardware 
that adds an instruction field and the contents of an integer register. The 
assembler syntax is the constant followed by the register in parentheses: 

(MIPS rules 436) += 
addr: ADDI(reg,acon) 
addr: ADDU(reg,acon) 
addr: ADDP(reg,acon) 

"%1($%0)" 
"%1($%0)" 
"%1($%0)" 

... 
436 436 431 ... 

Degenerate sums - with a zero constant or $0 - supply absolute and 
indirect addressing. The zero field may be omitted: 

CMIPS rules 436) + = 
addr: aeon "%0" 
addr: reg "($%0)" 

... 
436 436 431 ... 

The hardware permits only 16-bit offsets in address calculations, but the 
assembler uses $1 and extra instructions to synthesize larger values, so 
l cc can ignore the hardware restriction, at least on this machine. 

ADDRFP and ADDRLP add a constant offset to the stack pointer: 

(MIPS rules 436) += 
addr: ADDRFP "%a+%F($sp)" 
addr: ADDRLP "%a+%F($sp)" 

... 
436 437 431 ... 

%a emits p->syms [OJ ->x. name, and %F emits the size of the frame. $sp is 
decremented by the frame size when the routine starts, so the %F($sp) 
part recreates $sp's initial value. Locals have negative offsets, so they're 
below the initial $sp. Formals have positive offset, so they're just above, 
in the caller's frame. Section 16.3 elaborates. 

addr illustrates several guidelines from Section 14.10. It includes rules 
for each of the addressing modes, plus rules for degenerate cases, rules 
replicated for equivalent operators, and rules that implement operators 
that are special cases of a more general computation. It also factors the 
specification to avoid replicating the material above for each rule that 
uses addr. 

The pseudo-instruction la performs an address calculation and leaves 
the address in a register. For example, la $2, x($4) adds $4 to the ad
dress x and leaves the result in $2: 
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(MIPS rules 436) += 
.... 

436 437 431 ..... 
reg: addr "la $%c,%0\n" 1 

%c emits p->syms [RX]->x. name. A con is an addr, so lee uses 1 a when
ever it needs to load a constant into a register. Zero is always available 
in $0, so we need no instruction to compute zero: 

(MIPS rules 436) += 
.... 

437 437 431 ..... 
reg: eNSTe "# reg\n" range(a, 0, 0) 
reg: eNSTS "# reg\n" range(a, 0, 0) 
reg: eNSTI "# reg\n" range(a, 0, 0) 
reg: eNSTU "# reg\n" range(a, 0, 0) 
reg: eNSTP "# reg\n" range(a, 0, 0) 

Recall that cost expressions are evaluated in a context in which a denotes 
the node being labelled, which here is the constant value being tested for 
zero. target arranges for these nodes to return $0: 

(MIPS target 437) = 
case eNSTe: case eNSTI: case eNSTS: 

if (range(p, 0, 0) == 0) { 
setreg(p, ireg[O]); 
p->x.registered = 1; 

} 
break; 

443 435 ..... 
case eNSTU: case eNSTP: 

Allocating $0 makes no sense, so target marks the node to preclude 
register allocation. 

The instructions 1 and s load from and store into memory. They take 
a type suffix, an integer register, and an addr. For example, sw $4,x 
stores the 32-bit integer in $4 into the memory cell labelled x. sb and sh 
do likewise for the low-order 8 and 16 bits of the register. 1 b, 1 h, and 
lw reverse the process and load an 8-, 16-, or 32-bit value: 

(MIPS rules 436) += 
.... 

437 438 431 ..... 
stmt: ASGNe(addr,reg) "sb $%1,%0\n" 1 
stmt: ASGNS(addr,reg) "sh $%1,%0\n" 1 
stmt: ASGNI(addr,reg) "sw $%1,%0\n" 1 
stmt:·ASGNP(addr,reg) "sw $%1,%0\n" 1 
reg: INDIRe(addr) "lb $%c,%0\n" 1 
reg: INDIRS(addr) "lh $%c,%0\n" 1 
reg: INDIRI(addr) "lw $%c,%0\n" 1 
reg: INDIRP(addr) "lw $%c,%0\n" 1 

1 b and 1 h propagate the sign bit to fill the top part of the register, so they 
implement a free ever and CVS!. 1 bu and 1 hu fill with zeroes instead, so 
they implement a free eveu and CVSU: 

437 

433 i reg (MIPS) 
467 " (SPARC) 
388 range 
403 reg 
399 setreg 
403 stmt 
357 target 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
360 x.registered 
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reg 403 
stmt 403 
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.... 
(MIPS rules436)+= 437 438 431 ... 

reg: CVCI(INDIRC(addr)) "lb $%c,%0\n" 1 
reg: CVSI(INDIRS(addr)) "lh $%c,%0\n" 1 
reg: CVCU(INDIRC(addr)) "lbu $%c,%0\n" 1 
reg: CVSU(INDIRS(addr)) "lhu $%c,%0\n" 1 

These rules illustrate another guideline from Section 14.10: when in
structions evaluate more than one intermediate-language opcode, write 
a rule that matches multiple nodes. 

1 . and s. load and store floating-point values. All floating-point in
structions separate the opcode and type suffix with a period: 

.... 
(MIPS rules 436) += 438 438 431 ... 

reg: INDIRD(addr) "l .d $f%c,%0\n" 1 
reg: INDIRF(addr) "l.s $f%c,%0\n" 1 
stmt: ASGND(addr,reg) "s.d $f%1,%0\n" 1 
stmt: ASGNF(addr,reg) "s.s $f%1,%0\n" 1 

All integer-multiplicative instructions accept two source registers and 
leave a result in a destination register. The left and right operands follow 
the source register. For example, div $4, $ 5 , $6 divides $ 5 by $6 and 
leaves the result in $4. 

(MIPS rules436)+= 
.... 

438 438 431 ... 
reg: DIVI(reg,reg) "div $%c,$%0,$%1\n" 1 
reg: DIVU(reg,reg) "divu $%c,$%0,$%1\n" 1 
reg: MODI(reg,reg) "rem $%c,$%0,$%1\n" 1 
reg: MODU(reg,reg) "remu $%c,$%0,$%1\n" 1 
reg: MULI(reg,reg) "mul $%c,$%0,$%1\n" 1 
reg: MULU(reg,reg) "mul $%c,$%0,$%1\n" 1 

The remaining binary integer instructions also have an immediate form, 
in which the right operand may be a constant instruction field: 

(MIPS rules 436) += 
.... 

438 439 431 ... 
re: con "%0" 
re: reg "$%0" 

reg: ADDI(reg,rc) "addu $%c,$%0,%1\n" 1 
reg: ADDP(reg,rc) "addu $%c,$%0,%1\n" 1 
reg: ADDU(reg,rc) "addu $%c,$%0,%1\n" 1 
reg: BANDU(reg,rc) "and $%c,$%0,%1\n" 1 
reg: BORU(reg,rc) "or $%c,$%0,%1\n" 1 
reg: BXORU(reg,rc) "xor $%c,$%0,%1\n" 1 
reg: SUBI(reg,rc) "subu $%c,$%0,%1\n" 1 
reg: SUBP(reg, re) "subu $%c,$%0,%1\n" 1 
reg: SUBU(reg,rc) "subu $%c,$%0,%1\n" 1 

Immediate shift instructions, however, require constants between zero 
and 31: 
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... 
(MIPS rules436)+= 

res: CNSTI 
rc5: reg 

438 439 431 
"%a" 
"$%0" 

range(a,0,31) 

reg: LSHI(reg,rc5) 
reg: LSHU(reg,rc5) 
reg: RSHI(reg,rc5) 
reg: RSHU(reg,rc5) 

"sll $%c,$%0,%1\n" 1 
"sll $%c,$%0,%1\n" 1 
"sra $%c,$%0,%1\n" 1 
"srl $%c,$%0,%1\n" 1 

Only register forms are available for the unary instructions: 
... 

... 

(MIPS rules 436) += 439 439 
reg: BCOMU(reg) "not $%c,$%0\n" 

... 
1 

reg: NEGI(reg) "negu $%c,$%0\n" 1 
reg: LOADC(reg) "move $%c,$%0\n" move(a) 
reg: LOADS(reg) "move $%c,$%0\n" move(a) 
reg: LOADI(reg) "move $%c,$%0\n" move(a) 
reg: LOADP(reg) "move $%c,$%0\n" move(a) 
reg: LOADU(reg) "move $%c,$%0\n" move(a) 

431 

Recall that move returns one but also marks the node as a register-to-
register move and thus a candidate for some optimizations. 

The floating-point instructions also have only register forms: 
... 

(MIPS rules436)+= 439 439 431 ... 
reg: ADDD(reg,reg) "add.d $f%c,$f%0,$f%1\n" 1 
reg: ADDF(reg,reg) "add.s $f%c,$f%0,$f%1\n" 1 
reg: DIVD(reg,reg) "div.d $f%c,$f%0,$f%1\n" 1 
reg: DIVF (reg , reg) "div.s $f%c,$f%0,$f%1\n" 1 
reg: MULD(reg, reg) "mul .d $f%c,$f%0,$f%1\n" 1 
reg: MULF(reg,reg) "mul .s $f%c,$f%0,$f%1\n" 1 
reg: SUBD(reg,reg) "sub.d $f%c,$f%0,$f%1\n" 1 
reg: SUB F (reg, reg) "sub.s $f%c,$f%0,$f%1\n" 1 
reg: LOADD(reg) "mov.d $f%c,$f%0\n" move(a) 
reg: LOADF(reg) "mov.s $f%c,$f%0\n" move(a) 
reg: NEGD(reg) "neg.d $f%c,$f%0\n" 1 
reg: NEGF(reg) "neg.s $f%c,$f%0\n" 1 

Few instructions are specialized to convert between types. ever and CVSI 
sign-extend by shifting first left and then right. CVCU and CVSU zero
extend by "anding out" the top part of the register: 

(MIPS rules436)+= 
... 

439 440 431 ... 
reg: CVCI(reg) "sl 1 $%c,$%0,24; sra $%c,$%c,24\n" 2 
reg: CVSI(reg) "sl 1 $%c,$%0,16; sra $%c,$%c,16\n" 2 
reg: CVCU(reg) "and $%c,$%0,0xff\n" 1 
reg: CVSU(reg) "and $%c,$%0,0xffff\n" 1 

439 

394 move 
388 range 
403 reg 
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notarget 404 
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These rules illustrate another guideline from Section 14.10: When no 
instruction directly implements an operation, write a rule that pieces the 
operation together using other instructions. 

The rest of the conversions, which involve only integer and pointer 
types, do nothing. Conversions to narrower types like CVIC need not 
clear the top of the register because the front end never builds trees 
that use the upper bits of a narrow value. The shared rules and the rules 
below generate nothing if the existing register will do: 

(MIPS rules 436) += 
... 

439 440 431 ... 
reg: CVIC(reg) "%0" notarget(a) 
reg: CVIS(reg) "%0" notarget(a) 
reg: CVUC(reg) "%0" notarget(a) 
reg: CVUS(reg) "%0" notarget(a) 

More expensive rules generate a register-to-register copy if a specific reg-
ister has been targeted: 

(MIPS rules 436) + = ... 
440 440 431 ... 

reg: CVIC(reg) "move $%c,$%0\n" move(a) 
reg: CVIS(reg) "move $%c,$%0\n" move(a) 
reg: CVIU(reg) "move $%c,$%0\n" move(a) 
reg: CVPU(reg) "move $%c,$%0\n" move(a) 
reg: CVUC(reg) "move $%c,$%0\n" move(a) 
reg: CVUI(reg) "move $%c,$%0\n" move(a) 
reg: CVUP(reg) "move $%c,$%0\n" move(a) 
reg: CVUS(reg) "move $%c,$%0\n" move(a) 

cvt. d. s converts a float to a double, and cvt. s. d reverses the process: 

(MIPS rules 436) += 
reg: CVDF( reg) 
reg: CVFD(reg) 

"cvt.s.d $f%c,$f%0\n" 1 
"cvt.d.s $f%c,$f%0\n" 1 

... 
440 440 431 ... 

cvt. d . w converts an integer to a double. The integer must be in a 
floating-point register, so CVID starts with a mtcl, which copies a value 
from the integer unit to the floating-point unit: 

(MIPS rules 436) += 
reg: CVID(reg) 

... 
440 441 ... 

"mtcl $%0,$f%c; cvt.d.w $f%c,$f%c\n" 2 
431 

It sets the target register twice: first to the unconverted integer and then 
to the equivalent double. See Exercise 16.6. 

The t rune. w. d instruction truncates a double and leaves the integral 
result in a floating-point register, so 1 cc follows up with a mfcl, which 
copies a value from the floating point unit to the integer unit, where the 
client of the CVDI expects it: 
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.... 
440 441 431 ... (MIPS rules 436) += 

reg: CVDI(reg) "trunc.w.d $f2,$f%0,$%c; mfcl $%c,$f2\n" 2 

It needs a floating-point scratch register to hold the converted value, so 
it uses $f2, which the calling convention reserves as a secondary return 
register, but which 1 cc does not otherwise use. 

A label is defined by following it with a colon: 

(MIPS rules436)+= 
.... 

441 441 ... 431 
stmt: LABELV "%a:\n" 

The b instruction jumps unconditionally to a fixed address, and the j 
instruction jumps unconditionally to an address from a register: 

.... 
(MIPS rules 436) += 441 441 431 ... 

stmt: JUMPV(acon) "b %0\n" 1 
stmt: JUMPV(reg) "j $%0\n" 1 

Switch statements implemented using branch tables need j. All other 
unconditional branches use b. 

The integer conditional branches compare two registers and branch if 
the named condition holds: 

(MIPS rules436)+= 
.... 

441 442 431 ... 
stmt: EQI(reg,reg) "beq $%0,$%1,%a\n" 1 
stmt: GEI (reg, reg) "bge $%0,$%1,%a\n" 1 
stmt: GEU(reg,reg) "bgeu $%0,$%1,%a\n" 1 
stmt: GTI (reg, reg) "bgt $%0,$%1,%a\n" 1 
stmt: GTU(reg,reg) "bgtu $%0,$%1,%a\n" 1 
stmt: LEI( reg, reg) "ble $%0,$%1,%a\n" 1 
stmt: LEU(reg,reg) "bleu $%0,$%1,%a\n" 1 
stmt: LTI(reg,reg) "blt $%0,$%1,%a\n" 1 
stmt: LTU(reg,reg) "bltu $%0,$%1,%a\n" 1 
stmt: NEI(reg,reg) "bne $%0,$%1,%a\n" 1 

The hardware does not implement all these instructions directly, but the 
assembler compensates. For example, hardware instructions for GE, GT, 
LE, and LT assume that the second comparand is zero, but the assem
bler synthesizes the pseudo-instructions above by computing a differ
ence into $1 if necessary. Also, only the j instruction accepts a full 32-bit 
address, but the pseudo-instructions above assemble arbitrary addresses 
from the hardware's more restricted addresses. When 1 cc uses pseudo
instructions, it can't know exactly what real instructions the assembler 
emits, so the costs above are necessarily approximate, but there's only 
one way to generate code for these intermediate-language operators any
way, so the inaccuracies can't hurt the quality of the emitted code. 

The floating-point conditional branches test a condition flag set by a 
separate comparison instruction. For example, c. 1 t. d SfO, $f2 sets the 
flag if the double in $f0 is less than the double in $f2. belt branches if 
the flag is set, and bcl f branches if the flag is clear. 

441 

403 reg 
403 stmt 
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(MIPS rules 436) += 
.... 

441 442 431 ..... 
stmt: EQD(reg,reg) "c.eq.d $f%0,$f%1; belt %a\n" 2 
stmt: EQF(reg,reg) "c.eq.s $f%0, $f%1; belt %a\n" 2 
stmt: LED(reg, reg) "c. le.d $f%0,$f%1; belt %a\n" 2 
stmt: LEF(reg,reg) "c. le.s $f%0,$f%1; belt %a\n" 2 
stmt: LTD(reg,reg) "c. lt.d $f%0,$f%1; belt %a\n" 2 
stmt: L TF(reg, reg) "c. lt.s $f%0,$f%1; belt %a\n" 2 

Floating-point comparisons implement only less-than, less-than-or-equal, 
and equal, so 1 cc implements the rest by inverting the sense of the re
lation and following it with a bcl f: 

(MIPS rules436)+= 
.... 

442 442 431 ..... 
stmt: GED(reg,reg) "c. lt.d $f!Yo0' $f%1; bclf %a\n" 2 
stmt: GEF(reg, reg) "c. lt.s $f%0,$f%1; bclf %a\n" 2 
stmt: GTD(reg,reg) "c. le.d $f%0,$f%1; bclf %a\n" 2 
stmt: GTF(reg,reg) "c. le. s $f%0,$f%1; bclf %a\n" 2 
stmt: NED(reg,reg) "c.eq.d $f%0,$f%1; bclf %a\n" 2 
stmt: NEF(reg, reg) "c.eq.s $f%0,$f%1; bclf %a\n" 2 

For example, it can't use 

c.gt.d $f0,$f2 
belt L 

so instead it uses 

c. le.d $f0, $f2 
bclf L 

The jal instruction saves the program counter in $31 and jumps to 
an address stored in a constant instruction field or in a register . 

(MIPS rules 436) += 
.... 

442 442 431 ..... 
ar: ADDRGP "%a" 

reg: CALLD(ar) "jal %0\n" 1 
reg: CALLF(ar) "jal %0\n" 1 
reg: CALLI(ar) "jal %0\n" 1 
stmt: CALLV(ar) "jal %0\n" 1 

CALLV yields no result and thus matches stmt instead of reg. Most calls 
jump to a label, but indirect calls like (*p) O need a register form: 

(MIPS rules436)+= 
ar: reg "$%0" 

.... 
442 443 431 ..... 

Some device drivers jump to addresses at fixed numeric addresses. jal 
insists that they fit in 28 bits: 
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(MIPS rules 436} += 
ar: CNSTP "%a" range(a, 0, OxOfffffff) 

... 
442 443 431 ... 

If the constant won't fit in 28 bits, then 1 cc falls back on more costly 
rules that load an arbitrary 32-bit constant into a register and that jump 
indirectly using that register. The MIPS assembler makes most of the 
decisions that require checking ranges, but at least some versions of the 
assembler leave this particular check to the compiler. 

The front end and the routines function and target collaborate to 
get return values into the return register, and return addresses into the 
program counter, so RET nodes produce no code: 

(MIPS rules 436}+= 
... 

443 444 431 ... 
stmt: RETD(reg) "# ret\n" 1 
stmt: RETF(reg) "# ret\n" 1 
stmt: RETI(reg) "# ret\n" 1 

CALLOs and CALLFs yield $f0, and CALLIS yield $2. Each RET has its child 
compute its value into the corresponding register. 

(MIPS target 437}+= 
case CALLO: case CALLF: 
case CALLI: 
case RETO: case RETF: 
case RETI: 

setreg(p, freg2[0]); 
setreg(p, ireg[2]); 
rtarget(p, 0, freg2[0]); 
rtarget(p, 0, ireg[2]); 

... 
437 445 ... 
break; 
break; 
break; 
break; 

435 

Recall that set reg sets the result register for the node in hand, and that 
rtarget sets the result register for a child of the node. rtarget exists 
because simply calling setreg on the child could clobber something of 
value. The material on rtarget elaborates. 

The scratch and return registers are not preserved across calls, so any 
live ones must be spilled and reloaded, except for the return register 
used by the call itself: 

(mips.c macros}+= 

#define INTRET Ox00000004 
#define FLTRET Ox00000003 

(MIPS clobber 443)= 
case CALLO: case CALLF: 

spill(INTTMP I INTRET, !REG, p); 
spill(FLTTMP, FREG, p); 
break; 

case CALLI: 
spill(INTTMP, !REG, p); 
spill(FLTTMP I FLTRET, FREG, p); 
break; 

case CALLV: 

... 
434 

435 

443 

434 FLTTMP 
433 freg2 (MIPS) 
467 " (SPARC) 
361 FREG 

92 function 
448 " (MIPS) 
484 " (SP ARC) 
518 " (X86) 
434 INTTMP 
361 !REG 
433 i reg (MIPS) 
467 " (SPARC) 
388 range 
403 reg 
400 rtarget 
399 setreg 
427 spill 
403 stmt 
357 target 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
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clobber 357 
(MIPS) " 435 

(SPARC) " 468 
(X86) " 502 

FLTRET 443 
FLTTMP 434 

(MIPS) freg2 433 
(SPARC) " 467 

FREG 361 
INTRET 443 
INTTMP 434 

IREG 361 
offset 364 

reg 403 
spill 427 

stmt 403 
target 357 

(MIPS) " 435 
(SPARC) " 468 

(X86) " 502 
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spill(INTTMP 
spill(FLTTMP 
break; 

INTRET, !REG, p); 
FLTRET, FREG, p); 

Floating-point values return in the double register $f0, and all other 
values return in $2. target and clobber collaborate. Consider CALLI; 
target arranges for it to yield register $2, and clobber asks spi 11 to 
save all other caller-saved registers before the call and to restore them 
afterward. 

The rules to transmit arguments require collaboration between target 
and emit2: 

(MIPS rules 436) + = 
stmt: ARGD(reg) "# arg\n" 1 
stmt: ARGF(reg) "# arg\n" 1 
stmt: ARGI(reg) "# arg\n" 1 
stmt: ARGP(reg) "# arg\n" 1 

(MIPS functions 433) += 
static void emit2(p) Node p; { 

int dst, n, src, ty; 

} 

static int tyO; 
Symbol q; 

switch (p->op) { 
(MIPS emit2 446) 
} 

... 
443 446 431 .... 

... 
435 444 431 .... 

The MIPS calling convention passes the first four words of arguments 
(including gaps to satisfy alignments) in registers $4-$7, except that if 
the first argument is a float or a double, it is passed in $fl2, and if the 
first argument is passed in $f12 and the second argument is a float or 
a double, the second argument is passed in $f14. argreg implements 
these rules: 

(MIPS functions 433) += 
static Symbol argreg(argno, offset, ty, tyO) 
int argno, offset, ty, tyO; { 

if (offset > 12) 
return NULL; 

else if (argno == 0 && (ty == F I I ty == D)) 
return freg2[12]; 

else if (argno == 1 && (ty == F I I ty == D) 
&& (tyO == F I I tyO == D)) 

return freg2[14]; 
else if (argno == 1 && ty == D) 

... 
444 445 431 .... 
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} 

return d6; /* Pair! */ 
else 

return ireg[(offset/4) + 4]; 

argno is the argument number. offset and ty are the offset and type 
of an argument. tyO is the type of the first argument, which can influ
ence the placement the second argument. If the argument is passed in a 
register, argreg returns the register. Otherwise, it returns null. 

gen calls doarg to compute argno and offset for argreg: ... 
{MIPS functions433)+= 444 447 431 ... 

static void doarg(p) Node p; { 
static int argno; 
int size; 

if (argoffset == 0) 
argno = O; 

p->x.argno = argno++; 
size= p->syms[l]->u.c.v.i < 4? 4 : p->syms[l]->u.c.v.i; 
p->syms[2] = intconst(mkactual(size, 

p->syms[O]->u.c.v.i)); 
} 

doca 11 clears argoffset at each CALL, so a zero there alerts doarg to 
reset its static argument counter. mkactual uses the argument size and 
alignment - rounded up to 4 if necessary, because smaller arguments 
are widened - and returns the argument off set. 

target uses argreg and rtarget to compute the children of ARG nodes 
into the argument register, if there is one: 

{MIPS target 437) += 
case ARGO: case ARGF: case ARGI: case ARGP: { 

static int tyO; 
int ty = optype(p->op); 
Symbol q; 

... 
443 447 ... 

q = argreg(p->x.argno, p->syms[2]->u.c.v.i, ty, tyO); 
if (p->x.argno == 0) 

tyO = ty; 
if (q && 
!((ty == F I I ty == D) && q->x.regnode->set !REG)) 

rtarget(p, 0, q); 
break; 
} 

435 

The fragment also remembers the type of the first argument to help de
termine the register for later arguments. The long conditional omits tar
geting if the argument is floating point but passed in an integer register. 

445 

366 argoffset 
444 argreg 
367 docall 

92 gen 
402 gen 
49 intconst 

361 IREG 
433 i reg (MIPS) 
467 " (SPARC) 
366 mkactual 
364 offset 
98 optype 

400 rtarget 
361 set 
357 target 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
359 x.argno 
362 x.regnode 
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argreg 444 
blkcopy 367 
dalign 368 
doarg 356 

(MIPS) " 445 
(SPARC) " 477 

(X86) " 512 
emit2 356 

(MIPS) " 444 
(SPARC) " 478 

(X86) " 511 
IREG 361 

number 361 
optype 98 

reg 403 
salign 368 

set 361 
stmt 403 

target 357 
(MIPS) " 435 

(SPARC) " 468 
(X86) " 502 
tmpregs 434 
x.argno 359 
x.kids 359 

x.regnode 362 
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1 cc assumes that floating-point opcodes yield floating-point registers, so 
no tree can develop an unconverted floating-point value into an integer 
register. emi t2 must handle these oddballs and the arguments tl;:tat travel 

\ 

in memory: 

(MIPS emi t2 446) = 
case ARGO: case ARGF: case ARGI: case ARGP: 

ty = optype(p->op); 
if (p->x.argno == 0) 

tyO = ty; 

446 ... 

q = argreg(p->x.argno, p->syms[2]->u.c.v.i, ty, tyO); 
src = getregnum(p->x.kids[OJ); 
if (q == NULL && ty == F) 

444 

print("s.s $f%d,%d($sp)\n", src, p->syms[2]->u.c.v.i); 
else if (q == NULL && ty == D) 

print("s.d $f%d,%d($sp)\n", src, p->syms[2]->u.c.v.i); 
else if (q == NULL) 

print("sw $%d,%d($sp)\n", src, p->syms[2]->u.c.v.i); 
else if (ty == F && q->x.regnode->set == IREG) 

print("mfcl $%d,$f%d\n", q->x.regnode->number, src); 
else if (ty == D && q->x.regnode->set == IREG) 

print("mfcl.d $%d,$f%d\n", q->x.regnode->number, src); 
break; 

If argreg returns null, then the caller passes the argument in memory, 
so emi t2 stores it, using the offset that doarg computed. The last two 
conditionals above emit code for floating-point arguments transmitted in 
integer registers. mfcl x, y copies a single-precision value from floating
point register y to integer register x. mfcl. d does likewise for doubles; 
the target is a register pair. 

emi t2 and target also collaborate to emit block copies: 

(MIPS rules 436) += 
stmt: ARGB(INDIRB(reg)) "# argb %0\n" 1 
stmt: ASGNB(reg,INDIRB(reg)) "# asgnb %0 %1\n" 1 

.... 
444 431 

emi t2's case for ASGNB sets the globals that record the alignment of the 
source and destination blocks, then lets bl kcopy do the rest: 

.... 
(MIPS emit2 446)+= 446 447 444 ... 

case ASGNB: 
dalign = salign = p->syms[l]->u.c.v.i; 
blkcopy(getregnum(p->x.kids[O]), 0, 

getregnum(p->x.kids[l]), 0, 
p->syms[O]->u.c.v.i, tmpregs); 

break; 

The call trace shown in Figure 13.4 starts in this case. tmpregs holds the 
numbers of the three temporary registers, which form the triple register 
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that progbeg assigned to bl kreg. ARGB and ASGNB target their source
address register to reserve b 1 kreg: 

(MIPS target 437) += 
case ASGNB: rtarget(p->kids[l], 0, blkreg); break; 
case ARGB: rtarget(p->kids[O], 0, blkreg); break; 

.... 
445 435 

This source comes from a grandchild because the intervening child is a 
proforma INDIRB. emit2's case for ARGB is similar to the case for ASGNB: 

(MIPS emi t2 446)+= 

case ARGB: 
dalign = 4; 
salign = p->syms[l]->u.c.v.i; 
blkcopy(29, p->syms[2]->u.c.v.i, 

getregnum(p->x.kids[O]), 0, 
p->syms[O]->u.c.v.i, tmpregs); 

n = p->syms[2]->u.c.v.i + p->syms[O]->u.c.v.i; 
dst = p->syms[2]->u.c.v.i; 
for ( ; dst <= 12 && dst < n; dst += 4) 

print("lw $%d,%d($sp)\n", (dst/4)+4, dst); 
break; 

.... 
446 444 

da 1 i gn differs because the stack space for the outgoing argument is al
ways aligned to at least a multiple of four, which is the most that bl kcopy 
and its helpers can use. The first argument is 29 because the destina
tion base register is $sp, and the second argument is the stack offset 
for the destination block, which doarg computed. If the ARGB overlaps 
the first four words of arguments, then the for loop copies the overlap 
into the corresponding argument registers to conform with the calling 
convention. 

16.3 Implementing Fundions 

The front end calls local to announce each new local variable: 

(MIPS functions 433) += 
static void local(p) Symbol p; { 

} 

if (askregvar(p, rmap[ttob(p->type)]) == 0) 
mkauto(p); 

.... 
445 448 431 ... 

Machine-independent routines do most of the work. askregvar allocates 
a register if it's appropriate and one is available. Otherwise, mkauto as
signs a stack offset; Figure 16.1 shows the layout of the MIPS stack frame. 

The front end calls function to announce each new routine. function 
drives most of the back end. It calls gencode, which calls gen, which 

447 

412 askregvar 
367 blkcopy 
434 blkreg 
368 dalign 
356 doarg 
445 " (MIPS) 
477 " (SPARC) 
512 " (X86) 
356 emit2 
444 " (MIPS) 
478 " (SPARC) 
511 " (X86) 

92 function 
448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
337 gencode 

92 gen 
402 gen 
365 mkauto 

89 progbeg 
433 " (MIPS) 
466 " (SPARC) 
498 " (X86) 
398 rmap 
400 rtarget 
368 salign 
434 tmpregs 

73 ttob 
359 x.kids 
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callee 93 
caller 93 

emitcode 341 
maxargoffset 366 

maxoffset 365 
off set 364 
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high addresses 

low addresses 

locals and 
temporaries 

outgoing 
arguments 

FIGURE 16.1 MIPS stack frame. 

framesize 

calls the labeller, reducer, linearizer, and register allocator. function 
also calls the front end's emi tcode, which calls the back end's emitter. 

(MIPS functions 433) += 
static void function(f, caller, callee, ncalls) 
Symbol f, callee[], caller[]; int ncalls; { 

inti, saved, sizefsave, sizeisave, varargs; 
Symbol r, argregs[4]; 

(MIPS function 448) 
} 

... 
447 455 431 .... 

The front end passes to function a symbol that represents a routine, 
vectors of symbols representing the caller's and callee's view of the ar
guments, and a count of the number of calls made by the routine. It 
starts by freeing all registers and clearing the variables that track the 
frame and that track the area into which the outgoing arguments are 
copied: 

(MIPS function 448)= 
(clear register state 410) 
offset = maxoffset = maxargoffset = O; 

448 448 .... 

Then it determines whether the routine is variadic, because this attribute 
influences some of the code that we're about to generate: 

(MIPS function 448) += 
for (i = O; callee[i]; i++) 

... 
448 449 448 .... 
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varargs = variadicCf->type) 
11 i > 0 && strcmpCcallee[i-1]->name, "va_alist") == O; 

By convention on this machine, there must be a prototype, or the last 
argument must be named va_alist. function needs it to determine the 
location of some incoming arguments: 

(MIPS function 448) += 
for Ci= O; callee[i]; i++) { 

(assign location for argument i 449) 
} 

... 
448 451 448 ... 

Recall that the first four words of arguments (including gaps to satisfy 
alignments) are passed in registers $4-$7, except the first argument is 
passed in $fl2 if it is a float or a double, and the second argument is 
passed in $f14 if it is a float or a double and the first argument is passed 
in $f12. This calling convention complicates function, particularly the 
body of the loop above. It starts by assigning a stack offset to the argu
ment: 

(assign location for argument i 449) = 
Symbol p = callee[i]; 
Symbol q = caller[i]; 
offset= roundupCoffset, q->type->align); 
p->x.offset = q->x.offset = offset; 
p->x.name = q->x.name = stringdCoffset); 

449 449 ... 

r = argregCi, offset, ttobCq->type), ttobCcaller[O]->type)); 
if Ci < 4) 

argregs [i J = r; 
offset= roundupCoffset + q->type->size, 4); 

Even arguments that arrive in a register and remain in one have a re
served stack slot. Indeed, the offset helps arg reg determine which reg
ister holds the argument. argregs [i J records for use below argreg's 
result for argument i. All arguments to variadic routines are stored in 
the stack because the code addresses them indirectly: ... 
(assign location for argument i 449)+= 449 450 449 ... 

if Cvarargs) 
p->sclass = AUTO; 

If the argument arrived in a register and the routine makes no calls that 
could overwrite it, then the argument can remain in place if it is neither a 
structure, nor accessed indirectly, nor a floating-point argument passed 
in an integer register. 

(leave argument in place? 449) = 450 
r && ncalls == 0 && 
!isstructCq->type) && !p->addressed && 
!CisfloatCq->type) && r->x.regnode->set !REG) 

449 

179 addressed 
78 align 

444 argreg 
80 AUTO 
93 callee 
93 caller 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
361 IREG 
60 isfloat 
60 isstruct 

364 offset 
19 roundup 

361 set 
29 stringd 
73 ttob 
65 variadic 

362 x.name 
362 x.offset 
362 x.regnode 
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askregvar 412 
REGISTER 80 

rmap 398 
sclass 38 

ttob 73 
type 56 
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(assign location for argument i 449) += 
else if ((leave argument inplace?449)) { 

p->sclass = q->sclass = REGISTER; 
askregvar(p, r); 
q->X = p->X; 
q->type = p->type; 

} 

... 
449 450 449 ... 

askregvar is guaranteed to succeed because r can't have been allocated 
for any other purpose yet; a hidden assertion confirms this claim. Con
forming the type and scl ass fields prevents the front end from generat
ing code to copy or convert the argument. Finally, we allocate a register 
for the argument that doesn't have one or can't stay in the one that it 
has: 

(assign location for argument i 449) += 
else if ((copyargumenttoanotherregister?450)) { 

p->sclass = q->sclass = REGISTER; 
q->type = p->type; 

} 

... 
450 449 

The conditional succeeds if and only if the argument arrives in one reg
ister and must be moved to another one. For example, if an argument 
arrives in $4 but the routine makes calls, then $4 is needed for outgoing 
arguments. If the incoming argument is used enough to belong in a reg
ister, the code above arranges the copy. A floating-point argument could 
have arrived in an integer register, which is an operation that the front 
end can't express, so the code above conforms the type and scl ass to 
tell the front end to generate nothing, and the fragment (save argument 
in a register) on page 453 generates the copy. 

The conditional in the last else-if statement above tests up to three 
clauses. First, askregvar must allocate a register to the argument: 

(copy argument to another register? 450) = 451 450 ... 
askregvar(p, rmap[ttob(p->type)]) 

If askregvar fails, then the argument will have to go in memory. If it's 
not already there, the fragment (save argument in stack) on page 454 will 
put it there. In this case, the two sclass fields are already conformed, 
but we don't want to conform the two type fields because a conversion 
might be needed. For example, a new-style character argument needs a 
conversion on big endians; it is passed as an integer, so its value is in the 
least significant bits of the argument word, but it's going to be accessed 
as a character, so its value must be moved to the most significant end of 
the word on big endians. 

The second condition confirms that the argument is already in a reg
ister: 
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(copy argument to another register? 450) + = 

&& r != NULL 

.... 
450 451 450 ... 

If this condition fails, then the argument arrived in memory and needs to 
be loaded into the register that askregvar found. For example, such an 
argument might be the last of five integer arguments, which means that 
it's passed in memory and thus should be loaded into a register now, if 
it's used heavily. askregvar sets p->scl ass to REGISTER; q->scl ass is 
never REGISTER, so falling through with the differing values causes the 
front end to generate the load. 

The third and last condition confirms that no conversion is needed: 
.... 

451 450 (copy argument to another register?450)+= 
&& (isint(p->type) I I p->type == q->type) 

For example, if q (the caller) is a double and p is a float, then a CVDF is 
needed. In this case, the scl ass and type fields differ, so falling through 
causes the front end to generate a conversion. 

After assigning locations to all arguments, function calls gen code to 
select code and allocate registers for the body of the routine: 

(MIPS function 448) += 
offset = O; 
gencode(caller, callee); 

.... 
449 451 448 ... 

When gencode returns, usedmask identifies the registers that the rou
tine touches. function adds the register that holds the return address 
- unless the routine makes no calls - and removes the registers that 
the caller must have saved: 

(MIPS function 448) += 
if (ncalls) 

usedmask[IREI.] I= ((unsigned)1)<<31; 
usedmask[IREG] &= OxcOffOOOO; 
usedmask[FREG] &= OxfffOOOOO; 

.... 
451 451 448 ... 

function then completes the computation of the size of the argument
build area: 

(MIPS function 448) += 
maxargoffset = roundup(maxargoffset, 4); 
if (maxargoffset && maxargoffset < 16) 

maxargoffset = 16; 

.... 
451 452 448 ... 

The calling convention requires that the size of the outgoing argument 
block be divisible by four and at least 16 bytes unless it's empty. Then 
function computes the size of the frame and the blocks within it needed 
to save the floating-point and integer registers. 

451 

412 askregvar 
93 callee 
93 caller 

361 FREG 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
337 gencode 
361 !REG 

60 isint 
366 maxargoffset 
364 offset 

80 REGISTER 
19 roundup 
38 sclass 
56 type 

410 usedmask 
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CODE 91 
framesize 366 

FREG 361 
function 92 
(MIPS) " 448 

(SPARC) " 484 
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!REG 361 
maxargoffset 366 

maxoffset 365 
roundup 19 
segment 91 

(MIPS) " 459 
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(MIPS function 448)+= 
sizefsave = 4*bitcount(usedmask[FREG]); 
sizeisave = 4*bitcount(usedmask[IREG]); 
framesize = roundup(maxargoffset + sizefsave 

+ sizeisave + maxoffset, 8); 

... 
451 452 448 ..... 

bitcount counts the ones in an unsigned integer. Figure 16.l illustrates 
these values. The convention keeps the stack aligned to double words. 

Now function has the data it needs to start emitting the routine. The 
prologue switches to the code segment, ensures word alignment, and 
emits some boilerplate that starts MIPS routines: ... 
(MIPS function 448)+= 452 452 

segment(CODE); 
print(" .align 2\n"); 
print(".ent %s\n", f->x.name); 
print("%s:\n", f->x.name); 
i = maxargoffset + sizefsave - framesize; 
print(".frame $sp,%d,$31\n", framesize); 
if (framesize > 0) 

print("addu $sp,$sp,%d\n", -framesize); 
if (usedmask[FREG]) 

print(".fmask Ox%x,%d\n", usedmask[FREG], i - 8); 
if (usedmask[IREG]) 

print(".mask Ox%x,%d\n", usedmask[IREG], 
i + sizeisave - 4); 

..... 448 

1 cc's code uses only the label and addu, which allocates a frame for the 
routine. The rest of the directives describe the routine to other programs 
like debuggers and profilers. . ent announces a procedure entry point; 
. frame declares the stack pointer, frame size, and return-address regis
ter; and . fmask and .mask identify the registers saved and their locations 
in the stack, respectively. 

The prologue continues with code to store the callee-saved registers, 
as defined in Table 16.2: 

(MIPS function 448) += 
saved = maxargoffset; 
for Ci = 20; i <= 30; i += 2) 

if (usedmask[FREG]&(3<<i)) { 

} 

print("s.d $f%d,%d($sp)\n", i, saved); 
saved += 8; 

for (i = 16; i <= 31; i++) 
if (usedmask[IREG]&(l<<i)) { 

} 

print("sw $%d,%d($sp)\n", i, saved); 
saved += 4; 

... 
452 453 448 ..... 
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Then it saves arguments that arrive in registers: 
.... 

(MIPS function 448) += 452 453 448 .... 
for (i = O; i < 4 && callee[i]; i++) { 

} 

r = argregs[i]; 
if (r && r->x.regnode != callee[i]->x.regnode) { 

(save argument i 453) 
} 

For variadic routines, 1 cc saves the rest of the integer argument registers 
too, because the number used varies from call to call: 

.... 
453 454 .... (MIPS function 448) += 

if (varargs && callee[i-1]) { 
i = callee[i-1]->x.offset + callee[i-1]->type->size; 
for (i = roundup(i, 4)/4; i <= 3; i++) 

print("sw $%cl,%d($sp)\n", i + 4, framesize + 4*i); 
} 

448 

This loop picks up where its predecessor left off and continues until it 
has stored the last integer argument register, $7. 

For nonvariadic routines, the prologue saves only those argument reg
isters that are used and that can't stay where they are: 

(save argument i 453)= 
Symbol out= callee[i]; 
Symbol in = caller[i]; 
int rn = r->x.regnode->number; 
int rs= r->x.regnode->set; 
int tyin = ttob(in->type); 

if (out->sclass == REGISTER 
&& (isint(out->type) I I out->type 

(save argument in a register454) 
} else { 

(save argument in stack 454) 
} 

453 

in->type)) { 

It distinguishes arguments assigned to some other register from those 
assigned to memory. The clause after the && matches the one in (leave 
argument in place?) on page 449, which determined what we should 
generate here. 

If a register was allocated for an argument that arrives in a register, 
and if the argument can't remain where it is, then function emits code 
to copy an incoming argument register to another register: 

453 
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92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
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80 REGISTER 
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362 x.offset 
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{save argument in a register454)= 
int outn = out->x.regnode->number; 
if (rs == FREG && tyin == D) 

print("mov.d $f%d,$f%d\n", outn, rn); 
else if (rs == FREG && tyin == F) 

pri nt("mov. s $-F~d, $f%d\n", outn, rn); 
else if (rs == !REG && tyin == D) 

print("mtcl.d $%d,$f%d\n", rn, outn); 
else if (rs == !REG && tyin == F) 

pri nt("mtcl $%d, $f%d\n", rn, outn); 
else 

print("move $%d,$%d\n", outn, rn); 

453 

If the argument has been assigned to memory, then the prologue stores 
it into the procedure activation record: 

{save argument in stack 454) = 
int off = in->x.offset + framesize; 
if (rs == FREG && tyin == D) 

print("s.d $f%d,%d($sp)\n", rn, off); 
else if (rs == FREG && tyin == F) 

print("s.s $f%d,%d($sp)\n", rn, off); 
else { 

int i, n = (in->type->size + 3)/4; 
for Ci = rn; i < rn+n && i <= 7; i++) 

453 

print("sw $%d,%d($sp)\n", i, off+ (i-rn)*4); 
} 

The loop in the last arm usually executes only one iteration and stores 
a single integer argument, but it also handles floats that arrived in an 
integer register, and the loop generalizes to handle double and structure 
arguments, which can occupy multiple integer registers. It terminates 
when it runs out of arguments or argument registers, whichever comes 
first. 

After emitting the last of the procedure prologue, function emits the 
procedure body: 

{MIPS function 448) += 
emitcode(); 

.... 
453 454 448 ... 

The epilogue reloads the callee-saved registers, first the floating-point 
registers: 

{MIPS function 448)+= 
saved = maxargoffset; 
for (i = 20; i <= 30; i += 2) 

if (usedmask[FREG]&(3<<i)) { 
print("l .d $f%d,%d($sp)\n", i, saved); 

.... 
454 455 448 ... 
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saved += 8; 
} 

and then the general registers: 

(MIPS function 448) += 

for Ci = 16; i <= 31; i++) 
if (usedmask[IREG]&(l<<i)) { 

} 

print("lw $%d,%d($sp)\n", i, saved); 
saved += 4; 

Now it can pop the frame off the stack: 

(MIPS function 448)+= 
if (framesize > 0) 

print("addu $sp,$sp,%d\n", framesize); 

and return: 

(MIPS function 448) += 
print("j $31\n"); 
print(".end %s\n", f->x.name); 

16.4 Defining Data 

... 
454 455 448 ..... 

... 
455 455 448 ..... 

... 
455 448 

defconst emits assembler directives to allocate a scalar and initialize it 
to a constant: 

(MIPS functions433)+= 
static void defconst(ty, v) int ty; Value v; { 

switch (ty) { 
(MIPS defconst 455) 
} 

} 

... 
448 456 431 ..... 

The cases for the integer types emit a size-specific directive and the ap
propriate constant field: 

(MIPS defconst 455)= 456 455 ..... 
case C: print(".byte %d\n", v.uc); return; 
case S: print(".half %d\n", v.ss); return; 
case I: print(".word Ox%x\n", v. i); return; 
case U: print(".word Ox%x\n", v.u); return; 

The case for numeric address constants treats them like unsigned inte
gers: 

455 

366 framesize 
361 !REG 
410 usedmask 
47 Value 

362 x.name 
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defconst 91 
(MIPS) " 455 
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import 90 
(MIPS) " 457 

(SPARC) " 491 
(X86) " 523 

swap 371 
x.name 362 
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... 
(MIPS defconst 455)+= 455 456 455 

case P: print(".word Ox%x\n", v.p); return; 
... 

... defaddress handles symbolic address constants: 

(MIPS functions 433) + = 455 456 431 
static void defaddress(p) Symbol p; { 

print(".word %s\n", p->x.name); 
} 

... 

The assembler's . float and .double directives can't express floating
point constants that result from arbitrary expressions (e.g., with casts), 
so defconst emits floating-point constants in hexadecimal: ... 
(MIPS defconst 455)+= 456 456 455 ... 

case F: print(".word Ox%x\n", *(unsigned *)&v.f); return; 

The two halves of each double must be exchanged if 1 cc is running on 
a little endian and compiling for a big endian, or vice versa: 

(MIPS defconst 455)+= 
... 

456 455 
case D: { 

unsigned *p = (unsigned *)&v.d; 
print(".word Ox%x\n.word Ox%x\n", p[swap], p[!swap]); 
return; 
} 

Barring this possible exchange, this code assumes that the host and tar
get encode floating-point numbers identically. This assumption is not 
particularly constraining because most targets use IEEE floating point 
now. 

def string emits directives for a series of bytes: 

(MIPS functions433)+= 
static void defstring(n, str) int n; char *str; 

} 

char *s; 

for (s = str; s < str + n; s++) 
print(".byte %d\n", (*s)&0377); 

... 
456 456 431 

{ ... 

It finds the end of the string by counting because ANSI C escape codes 
permit strings with embedded null bytes. 

export uses an assembler directive to make a symbol visible in other 
modules: 

(MIPS functions 433) += 
static void export(p) Symbol p; { 

print(".globl %s\n", p->x.name); 
} 

... 
456 457 431 ... 

import uses a companion directive to make a symbol from another mod
ule visible in this one: 
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(MIPS functions 433) += 
static void import(p) Symbol p; { 

if (!isfunc(p->type)) 

.... 
456 457 431 ... 

print(".extern %s %d\n", p->name, p->type->size); 
} 

MIPS compiler conventions omit such directives for functions. 
The front end calls defsymbol to announce a new symbol and cue the 

back end to initialize the x. name field: 

(MIPS functions 433) += 
static void defsymbol(p) Symbol p; { 

(MIPS defsymbol 457) 
} 

.... 
457 457 431 ... 

defsymbo 1 generates a unique name for local statics to keep from collid
ing with other local statics with the same name: 

(MIPS defsymbol 457)= 457 457 ... 
if (p->scope >= LOCAL && p->sclass == STATIC) 

p->x.name = stringf("L.%d", genlabel(l)); 

By convention, such symbols start with an L and a period. If the symbol is 
generated but not covered by the rule above, then the name field already 
holds a digit string: 

(MIPS defsymbol 457)+= 
else if (p->generated) 

p->x.name = stringf("L.%s", p->name); 

Otherwise, the front- and back-end names are the same: 

(MIPS defsymbol 457)+= 
else 

p->x.name = p->name; 

.... 
457 457 457 ... 

.... 
457 457 

Many UNIX assemblers normally omit from the symbol table symbols 
that start with L, so compilers can save space in object files by starting 
temporary labels with L. 

address is like defsymbol for symbols that represent some other sym
bol plus a constant off set. 

.... 
(MIPS functions 433) += 457 458 431 

static void address(q, p, n) Symbol q, p; int n; { ... 
q->x.offset = p->x.offset + n; 
if (p->scope == GLOBAL 
I I p->sclass == STATIC I I p->sclass == EXTERN) 

q->x. name stri ngf("%s%s%d", p->x. name, 
n >= 0 ? "+" : "", n); 

457 

80 EXTERN 
50 generated 
45 genlabel 
38 GLOBAL 
60 isfunc 
38 LOCAL 
37 scope 
80 STATIC 
99 stringf 

362 x.name 
362 x.offset 
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address 90 
(MIPS) " 457 

(SPARC) " 490 
(X86) " 521 

align 78 
BSS 91 

DATA 91 
parsefl ags 370 

seg 265 
stringd 29 
x.name 362 

x.offset 362 
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else 
q->x.name = stringd(q->x.offset); 

} 

For variables on the stack, address simply computes the adjusted offset. 
For variables accessed using a label, it sets x. name to a string of the form 
name ± n. If the offset is positive, the literal "+" emits the operator; if 
the offset is negative, the %d emits it. 

MIPS conventions divide the globals to access small ones faster. MIPS 
machines form addresses by adding a register to a signed 16-bit instruc
tion field, so developing and accessing an arbitrary 32-bit address takes 
multiple instructions. To reduce the need for such sequences, translators 
put small globals into a special 64K bytes sdata segment. The dedicated 
register $gp holds the base address of sdata, so up to 64K bytes of glob
als can be accessed in one instruction. The -Gn option sets the threshold 
gnum: 

(MIPS data433)+= 

static int gnum = 8; 

(parse -G flag 458) = 

parseflags(argc, argv); 
for (i = O; i < argc; i++) 

if (strncmp(argv[i], "-G", 2) == 0) 
gnum = atoi(argv[i] + 2); 

.... 
434 459 431 .... 

433 

The front end calls the interface procedure global to announce a new 
global symbol: 

.... 
(MIPS functions 433) += 457 459 431 

static void global(p) Symbol p; { 
if (p->u.seg == BSS) { 

} 

(define an uninitialized global 459) 

} else { 
(define an initialized global 458) 

} 

.... 

global puts small initialized globals into sdata and the rest into data: 

(define an initialized global 458) = 458 

if (p->u.seg == DATA 
&& (p->type->size == 0 I I p->type->size > gnum)) 

print(" .data\n"); 
else if (p->u.seg == DATA) 

print(".sdata\n"); 
print(".align %c\n", ".01.2 ... 3"[p->type->align]); 
print("%s:\n", p->x.name); 
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p->type->size is zero when the size is unknown, which happens when 
certain array declarations omit bounds. This path through gl oba 1 winds 
up by emitting an alignment directive and the label. " . 01. 2 ... 3" [x] is 
a compact expression for the logarithm to the base 2 of an alignment x, 
which is what this . a 1 i gn directive expects. 

The directives for uninitialized globals implicitly define the label, re
serve space, and choose the segment based on size: 

(define an uninitialized global 459) = 458 

if (p->sclass == STATIC I I Aflag >= 2) 
print(".lcomm %s,%d\n", p->x.name, p->type->size); 

else 
print( ".comm %s,%d\n", p->x.name, p->type->size); 

. comm also exports the symbol and marks it so that the loader generates 
only one common global even if other modules emit . comm directives for 
the same identifier. . 1 comm takes neither step. 1 cc uses it for statics to 
avoid the export, and the scrupulous double -A option uses it to have the 
loader object when multiple modules define the same global. Pre-ANSI 
C permitted multiple definitions, but ANSI C technically expects exactly 
one definition; other modules should use extern declarations instead. 

cseg tracks the current segment: 

(MIPS data433)+= 
static int cseg; 

... 
458 431 

Since symbols in the DATA and BSS segments do their own segment 
switching, segment emits directives for only the text and literal segments: ... 
(MIPS functions433)+= 458 459 431 ..... 

static void segment(n) int n; { 

} 

cseg = n; 
switch (n) { 
case CODE: print(".text\n"); 
case LIT: print(".rdata\n"); 
} 

break; 
break; 

space emits a directive that reserves a block of memory unless the sym
bol is in the BSS segment, because global allocates space for BSS sym
bols: 

(MIPS functions433)+= 
static void space(n) int n; { 

if (cseg != BSS) 
print(".space %d\n", n); 

} 

... 
459 460 431 ..... 

. space clears the block, which the standard requires of declarations that 
use it. 

62 Aflag 
91 BSS 
91 CODE 
91 DATA 
90 global 

459 

458 " (MIPS) 
492 " (SPARC) 
524 " (X86) 

91 LIT 
80 STATIC 

362 x.name 
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blkcopy 367 
blkstore 356 
(MIPS) " 461 

(SPARC) " 493 
(X86) " 513 

genlabel 45 
reg 403 

salign 368 

16.5 Copying Blocks 

b 1k1 oop emits a loop to copy size bytes from a source address - formed 
by adding register sreg and offset soff - to a destination address -
formed by adding register dreg and offset doff. Figure 13.4 shows 
blkloop, blkfetch, and blkstore in action. 

(MIPS functions433)+= 
.... 

459 460 . ..... 
static void blkloop(dreg, doff, sreg, soff, 
int dreg, doff, sreg, soff, size, tmps[]; { 

int lab= genlabel(l); 

size, tmps) 

} 

print("addu $%d,$%d,%d\n", sreg, sreg, size&-7); 
print("addu $%d,$%d,%d\n", tmps[2], dreg, size&-7); 
blkcopy(tmps[2], doff, sreg, soff, size&?, tmps); 
print("L.%d:\n", lab); 
print("addu $%d,$%d,%d\n", sreg, sreg, -8); 
print("addu $%d,$%d,%d\n", tmps[2], tmps[2], -8); 
blkcopy(tmps[2], doff, sreg, soff, 8, tmps); 
print("bltu $%d,$%d,L.%d\n", dreg, tmps[2], lab); 

431 

r 
I 

' 

tmps names three registers to use as temporaries. Each iteration copies 
eight bytes. Initial code points s reg and tmps [2] at the end of the block 
to copy. If the block's size is not a multiple of eight, then the first 
b 1 kcopy copies the stragglers. Then the loop decrements registers s reg 
and tmps[2], calls blkcopy to copy the eight bytes at which they now 
point, and iterates until the value in register tmps [2] reaches the one in 
register dreg. 

blkfetch emits code to load register tmp with one, two, or four bytes 
from the address formed by adding register reg and off set off: 

(MIPS functions 433)+= 
static void blkfetch(size, off, reg, tmp) 
int size, off, reg, tmp; { 

} 

if (size == 1) 
print("lbu $%d,%d($%d)\n", tmp, off, reg); 

else if (salign >= size && size == 2) 
print("lhu $%d,%d($%d)\n", tmp, off, reg); 

else if (salign >= size) 
print("lw $%d,%d($%d)\n", tmp, off, reg); 

else if (size == 2) 
print("ulhu $%d,%d($%d)\n", tmp, off, reg); 

else 
print("ulw $%d,%d($%d)\n", tmp, off, reg); 

.... 
460 461 431 ..... 



FURTHER READING 

If the source alignment, as given by sa 1 i gn, is at least as great as the 
size of the unit to load, then bl kfetch uses ordinary aligned loads. Oth
erwise, it uses assembler pseudo-instructions that load unaligned units. 
For byte loads, alignment is moot. bl kstore is the dual of bl kfetch: 

(MIPS functions 433) += 
... 

460 431 
static void blkstore(size, off, reg, tmp) 
int size, off, reg, tmp; { 

if (size == 1) 
print("sb $%d,%d($%d)\n", tmp, off, reg); 

else if (dalign >= size && size == 2) 
print("sh $%d,%d($%d)\n", tmp, off, reg); 

else if (dalign >= size) 
print("sw $%d,%d($%d)\n", tmp, off, reg); 

else if (size == 2) 
print("ush $%d,%d($%d)\n", tmp, off, reg); 

else 
print("usw $%d,%d($%d)\n", tmp, off, reg); 

} 

Further Reading 

Kane and Heinrich (1992) is a reference manual for the MIPS R3000 series. 
1 cc's MIPS code generator works on the newer MIPS R4000 series, but it 
doesn't exploit the R4000 64-bit instructions. 

Exercises 

16.1 Why can't small global arrays go into sdata? 

16.2 Why must all nonempty argument-build areas be at least 16 bytes 
long? 

16.3 Explain why the MIPS calling convention can't handle variadic rou
tines for which the first argument is a float or double. 

16.4 Explain why the MIPS calling convention makes it hard to pass struc
tures reliably in the undeclared suffix of variable length argument 
lists. How could this problem be fixed? 

16.5 Extend 1 cc to emit the information about the type and location 
of identifiers that your debugger needs to report and change the 
values of identifiers. The symbolic back end that appears on the 
companion diskette shows how the stab functions are used. 
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ralloc 417 
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16.6 Page 418 describes ral loc's assumption that all templates clobber 
no target register before finishing with all source registers. 1 cc's 
MIPS template for CVID on page 440 satisfies this requirement in 
two ways. Describe them. 

16.7 Using the MIPS code generator as a model, write a code generator 
for another RISC machine, like the DEC Alpha or Motorola PowerPC. 
Read Section 19.2 first. 



17 
Generating SPARC Code 

The SPARC architecture is another RISC. It has 32 32-bit general registers, 
32 32-bit floating-point registers, a compact set of 32-bit instructions, 
and two addressing modes. It accesses memory only through explicit 
load and store instructions. 

The main architectural differences between the MIPS and SP ARC in
volve the SPARC register windows, which automatically save and restore 
registers at calls and returns. The associated calling convention changes 
function a lot. For a truly simple function, see the X86 function. 

1 cc's target is, however, the assembler language, not the machine lan
guage, and the MIPS and SPARC assemblers differ in ways that exaggerate 
the differences between the code generators. Most RISC machines can, 
for example, increment a register by a small constant in one instruction, 
but larger constants take more instructions. They develop a full 32-bit 
constant into a temporary, which they then add to the register. The MIPS 
assembler insulates us from this feature; that is, it lets us use arbitrary 
constants almost everywhere, and it generates the multi-instruction im
plementation when necessary. The SPARC assembler is more literal and 
requires the code generator to emit different code for large and small 
constants. Similarly, the MIPS assembler schedules instructions, but the 
SP ARC code generator does not. 

SPARC assembler instructions list source operands before the destina
tion operand. A% precedes register names. Table 17.1 describes enough 
sample instructions to get us started. 

The file spare. c collects all code and data specific to the SPARC archi
tecture. It's an 1 burg specification with the interface routines after the 
grammar: 

(sparc.md 463)= 
%{ 
(Iburg prefix 3 7 s) 
(interface prototypes) 
(SPARC prototypes) 
(SPARC data 467) 
%} 
(terminal declarations 376) 
%% 
(shared rules 400) 
(SPARC rules 469) 
%% 

92 function 
448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 

463 
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Interface 79 
stabblock 80 
stabinit 80 
stabline 80 
stabsym 80 

stabtype 80 
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Assembler 

mov %i0,%o0 
sub %i0,%il,%o0 

sub %i0,1,%o0 
ldsb [%i0+4],%o0 

ldsb [%i0+%i4],%o0 

fsubd %f0,%f2,%f4 

fsubs %f0,%f2,%f4 

ba Ll 
jmp [%i OJ 
cmp %i0,%il 

bl Ll 

.byte Ox20 

Meaning 

Set register oO to the value in register i 0. 
Set register oO to register i 0 minus 
register i 1. 
Set register oO to register i O minus one. 
Set register oO to the byte at the address 
four bytes past the address in register i 0. 
Set register oO to the byte at the address 
equal to the sum of registers i 0 and i 4. 
Set register f4 to register fO minus 
register f2. Use double-precision 
floating-point arithmetic. 
Set register f4 to register fO minus 
register f2. Use single-precision 
floating-point arithmetic. 
Jump to the instruction labelled Ll. 
Jump to the address in register i 0. 
Compare registers i 0 and i 1 and record 
results in the condition flags. 
Branch to Ll if the last comparison 
recorded less-than. 
Initialize the next byte in memory to 
hexadecimal 20. 

TABLE 11.1 Sample SPARC assembler input lines. 

(SPARC functions 466) 

(SPARC interface definition 464) 

The last fragment configures the front end and points to the SPARC rou
tines and data in the back end: 

(SPARC interface definition 464) = 
Interface sparcIR = { 

(SP ARC type metrics 465) 

0, /* little_endian */ 
1, /* mulops_calls */ 
1, /* wants_callb */ 
0, /* wants_argb */ 
1, /* left_to_right */ 
0, /* wants_dag */ 
(interface routine names) 

464 

stabblock, 0, 0, stabinit, stabline, stabsym, stabtype, 
{ 

1, /* max_unaligned_load */ 
(Xi nterface initializenss) 



1 7. 1 • REGISTERS 

} 
} ; 

(SP ARC type metrics 465) = 464 

1, 1, 0, /* char */ 
2, 2' 0, /* short */ 
4, 4, 0, /* int */ 
4, 4, 1, /* float */ 
8, 8, 1, /* double */ 
4, 4, 0, /* T * */ 
0, 1, 0, /* struct */ 

mulops_calls is one because some SPARC processors implement the 
multiplication and division with code instead of hardware. 

The SPARC and MIPS conventions for structure arguments and return 
values are duals. The MIPS conventions use ARGB but no CALLB, and the 
SPARC conventions use CALLB but no ARGB. 

The symbol-table emitter is elided but complete. The two zeros in the 
stab routines correspond to routines that need emit nothing on this par
ticular target. The other stab names above are #defined to zero when 
building the SPARC code generator into a cross-compiler on another ma
chine because the elided code includes headers and refers to identifiers 
that are known only on SPARC systems. 

17 .1 Registers 

The SPARC assembler language programmer sees 32 32-bit general reg
isters. Most are organized as a stack of overlapping register windows. 
Most routines allocate a new window to store locals, temporaries, and 
outgoing arguments - the calling convention passes some arguments in 
registers - and free the window when they return. 

The general registers have at least two names each, as shown in Ta
ble 17.2. One is r0-r31, and the other encodes a bit more about how the 
register is used and where it goes in a register window. gO is hard-wired 
to zero. Instructions can write it, but the change won't take. When they 
read it, they read zero. 

Basic Name 

r0-r7 
r8-rl5 

r16-r23 
r24-r31 

Equivalent Name 

g0-g7 
o0-o7 
10-17 
i0-i7 

Explanation 

Fixed global registers. Not stacked. 
Outgoing arguments. Stacked. 
Locals. Stacked. 
Incoming arguments. Stacked. 

TABLE 17.2 SPARC general registers. 
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global gO 

global g7 

global registers 

main iO 

main i7 
main 10 

main 17 
'main·.,-,:oo 

'• . . " 
'.~'in-, ot·, 

mai n's regis terwindow 

f: iO f's register window 
. . . 

f. i7 
f 10 

f 17 
f oO 

f o7 

FIGURE 17.1 main calls f. 

The machine arranges the register windows so that the physical reg
isters called o0-o7 in each caller are the same registers referred to as 
i0-i7 in the callee. Figure 17.l shows the register windows for 

main() { f(); } 
f() { return; } 

just before f returns. There are 32 general registers, but each call con
sumes only 16, because g0-g7 aren't stacked, and the shading shows that 
the caller's o0-o7 are the same physical registers as the callee's i0-i7. 

The interface procedure progend does nothing for this target. progbeg 
parses the target-specific flags -p and -pg, which have 1 cc emit code for 
the SPARC profilers, but which this book omits. progbeg also initializes 
the structures that describe the register set: 

(SPARC functions466)= 468 464 .... 
static void progbeg(argc, argv) int argc; char *argv[]; { 

} 

int i; 

(shared progbeg 371) 
(parse SPARC flags) 
(initialize SPARC register structures 467) 

progbeg causes each element of greg to describe one general register: 
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(SPARC data 467) = 
static Symbol greg[32]; 
static Symbol *oreg = &greg[8], *ireg = &greg[24]; 

The initialization code parallels Table 17.2: 

(initialize SPARC register structures 467) = 
for Ci = O; i < 8; i++) { 

} 

greg[i + OJ = mkreg(stringfC"g%d", i), i + 0, 
greg[i + 8] = mkreg(stringfC"o%d", i), i + 8, 
greg[i + 16] = mkregCstringf("l%d", i), i + 16, 
greg[i + 24] = mkregCstringf("i%d", i), i + 24, 

467 463 ..... 

467 466 ..... 

1, !REG); 
1, !REG); 
1, IREG); 
1, IREG); 

The machine also has 32 32-bit floating-point registers, f0-f31 in as
sembler language. These are conventional registers and involve noth
ing like the general-register stack. Even-odd register pairs may be used 
as double-precision floating-point registers. progbeg causes each ele
ment of freg to describe one single-precision floating-point register, and 
each even numbered element of freg2 to describe one double-precision 
floating-point register: 

(SPARC data 467) += 
static Symbol freg[32], freg2[32]; 

(initialize SPARC register structures 467) += 
for Ci= O; i < 32; i++) 

freg[i] mkreg("%d", i, 1, FREG); 
for Ci = O; i < 31; i += 2) 

freg2 [i] mkreg("%d", i, 3, FREG); 

.... 
467 487 463 ..... 

.... 
467 467 466 ..... 

rmap stores the wildcard that identifies the default register class to 
use for each type: 

(initialize SPARC register structures 467) += 
rmap[C] = rmap[S] = rmap[P] = rmap[B] 

mkwildcard(greg); 
rmap[F] = mkwildcardCfreg); 
rmap[D] = mkwildcardCfreg2); 

.... 
467 468 466 ..... 

rmap[U] = rmap[I] = 

1 cc puts no variables or temporaries in g0-g7, i 6-i 7, oO, or 06-07. The 
calling convention does not preserve g0-g7 across calls. 06 is used as the 
stack pointer; it's sometimes termed sp. i 6 is used as the frame pointer; 
it's sometimes termed fp. Each caller puts its return address in its o7, 
which is known as i7 in the callee (see Figure 17.1). A function returns 
its value in its i 0, which its caller knows as oO. A routine that calls other 
routines expects its callees to destroy its o0-o7. Floating-point values 
return in fO or fO-fl. 

That leaves general registers iO-iS, 10-17, and ol-oS. lee will put 
temporaries in any of these registers: 

361 FREG 
361 !REG 
363 mkreg 

467 

363 mkwildcard 
89 progbeg 

433 " (MIPS) 
466 " (SPARC) 
498 " (X86) 
398 rmap 

99 stringf 
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FREG 361 
!REG 361 

rtarget 400 
setreg 399 
spill 427 
tmask 410 
vmask 410 
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(initialize SPARC register structures 467} += 
tmask[IREG] = Ox3fff3e00; 

... 
467 468 466 ..... 

1 cc will put register variables in about half of them, namely 14-17 and 
iO-i 5: 

(initialize SPARC register structures 467} += 
vmask[IREG] = Ox3ff00000; 

... 
468 468 466 ..... 

Recall that tmask identifies the registers that may serve as temporaries 
while evaluating expressions, and vmask identifies those that may hold 
register variables. The dividing line between temporaries and register 
variables is somewhat arbitrary. Ordinarily, the two sets are mutually 
exclusive: registers for variables are spilled in the routine's prologue to 
avoid spilling all live register variables at all call sites, but temporaries 
can be spilled at the call sites because it's easy for the register alloca
tor to identify the few that are typically live. The SPARC register stack, 
however, automatically saves many registers when it enters a routine, so 
we may as well permit temporaries in all of them. We restrict variables 
to about half of the registers because they get first crack at the register, 
and if we leave too few temporaries, then we can get a lot of spills or 
hamstring the register allocator altogether. 

The calling convention preserves no floating-point registers across 
calls. 1 cc uses them only for temporaries: 

(initialize SPARC regi.ster structures 467} += 
tmask[FREG] = -(unsigned)O; 
vmask[FREG] = O; 

... 
468 466 

target calls set reg to mark nodes that need a special register, and it 
calls rtarget to mark nodes that need a child in a special register: ... 
(SPARC functions466}+= 466 468 464 ..... 

static void target(p) Node p; { 
switch (p->op) { 
(SPARC target 473} 
} 

} 

If an instruction clobbers some registers, c 1 obbe r calls spi 11 to save 
them first and restore them later. 

(SPARC functions 466} += 
static void clobber(p) Node p; { 

switch (p->op) { 
(SPARC clobber 477} 
} 

} 

... 
468 469 464 ..... 

The cases missing from target and clobber above appear with the ger
mane instructions in the next section. 
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17 .2 Selecting Instructions 

Table 17.3 summarizes the nonterminals in lee's 1 burg specification for 
the SPARC code generator. It provides a high-level overview of the orga
nization of the tree grammar. 

The use of percent signs in the SP ARC assembler language interacts 
unattractively with 1 cc's use of percent sign as the template escape char
acter. For example, the set pseudo-instruction sets a register to a con
stant integer or address, so the rule for ADDRGP is: 

(SPARC ruJes469)= 470 463 ... 
reg: ADDRGP "set %a,%%%c\n" 1 

The template substring %% emits one %, and the template substring %c 
emits the name of the destination register, so the template substring 
%%%c directs the emitter to precede the register name with a percent sign 
in the generated code. It isn't pretty, but it's consistent with print and 
pri ntf, and if we'd picked a different escape character, it would probably 
have needed quoting on some other target. 

SPARC instructions with an immediate field store a signed 13-bit con
stant, so several instructions use the target-specific cost function i mm, 
which returns a zero cost if p's constant value fits and a huge cost if it 
doesn't: 

(SPARC functions 466) += 
.... 

468 477 464 ... 
static int imm(p) Node p; { 

return range(p, -4096, 4095); 
} 

For example, if 13 bits are enough for the signed off set of an ADDRFP 
or ADDRLP node, then one instruction can develop the address into a 
register: 

Name 

addr 
addrg 
base 
call 
con 
con13 
re 
reg 
stk 
stk13 
stmt 

What It Matches 

address calculations for instructions that read and write memory 
ADDRG nodes 
addr minus the register+register addressing mode 
operands to ca 11 instructions 
constants 
constants that fit in 13 signed bits 
registers and constants 
computations that yield a result in a register 
addresses of locals and formals 
addresses of locals and formals that fit in 13 signed bits 
computations done for side effect 

TABLE 17.3 SPARC nonterminals 

18 print 
388 range 
403 reg 

469 



470 

imm 469 
reduce 382 

reg 403 
x. inst 358 
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(SPARC rules469)+= 
stk13: ADDRFP "%a" 
stk13: ADDRLP "%a" 
reg: stk13 "add %0,%%fp,%?'o%c\n" 

imm(a) 
imm(a) 
1 

Otherwise, it takes more instructions: 

(SPARC rules 469) += 
stk: ADDRFP "set %a,%?'o%c\n" 
stk: ADDRLP "set %a,%%%c\n" 
reg: ADDRFP "set %a,%%%c\nadd %%%c,%%fp,%%%c\n" 
reg: ADDRLP "set %a,?'o%%c\nadd %%%c,%%fp,%%%c\n" 

.... 
469 470 463 ..... 

.... 
470 470 463 ..... 
2 
2 
3 
3 

set is a pseudo-instruction that generates two instructions if the con
stant can't be loaded in just one, and if one instruction would do, then 
stk13 will take care of it. We might have done something similar in 
the MIPS code generator, but the MIPS assembler can hide constant size
checking completely, so we might as well use this feature. The SPARC 
assembler leaves at least part of the problem to the programmer or com
piler, so we had no choice this time. 

The four rules above appear equivalent to 

stk: ADDRFP 
stk: ADDRLP 
reg: stk 

"set %a,%%%c\n" 
"set %a,%%%c\n" 
"add %0,%%fp,%?'o%c\n" 

2 
2 
1 

but the shorter rules fail because they ask reduce to store two different 
values into one x. inst. Recall that a node's x. inst records as an in
struction the nonterminal that identifies the rule that matches the node, 
if there is one. The problem with the short rules above is that the x. inst 
field for the ADDRLP or ADDRFP can't identify both stk and reg. 

The nonterminal con13 matches small integral constants: 

(SPARC rules 469) += 
.... 

470 470 463 ..... 
con13: CNS TC "%a" imm(a) 
con13: CNSTI "%a" imm(a) 
con13: CNSTP "%a" imm(a) 
con13: CNSTS "%a" imm(a) 
con13: CNS TU "%a" imm(a) 

The instructions that read and write memory cells use address calcula
tion that can add a register to a 13-bit signed constant: 

(SPARC rules 469) += 
base: ADDI(reg,con13) 
base: ADDP(reg,con13) 
base: ADDU(reg,con13) 

"%%%0+%1" 
"%%%0+%1" 
"%%%0+%1" 

.... 
470 471 463 ..... 

If the constant is zero or the register gO, the sum degenerates to a simple 
indirect or direct address: 
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{SPARC rules 469) += 
.... 

470 471 463 ... 
base: reg "%%%0" 
base: con13 "%0" 

If the register is the frame pointer, then the sum yields the address of a 
formal or local: 

{SPARC rules469)+= 
base: stk13 "%%fp+%0" 

.... 
471 471 463 ... 

The address calculation hardware can also add two registers: 

{SPARC rules 469) += 
addr: base 
addr: ADDI(reg,reg) 
addr: ADDP(reg,reg) 
addr: ADDU(reg,reg) 
addr: stk 

"%0" 
"%%%0+%%%1" 
"%%"..60+%%%1" 
"%%%0+%%%1" 
"%%fp+%"...6%0" 

.... 
471 471 463 ... 

Most loads and stores can use the full set of addressing modes above: 

{SPARC rules469)+= 
.... 

471 471 463 ... 
reg: INDIRC(addr) "ldsb [%0] ,%%"-'c\n" 1 
reg: INDIRS(addr) "ldsh [%0],%%%c\n" 1 
reg: INDIRI(addr) "ld [%0] ,%%%c\n" 1 
reg: INDIRP(addr) "ld [%0] ,%%%c\n" 1 
reg: INDIRF(addr) "ld [%0],%%f%c\n" 1 
stmt: ASGNC(addr,reg) "stb %%%1, [%0]\n" 1 
stmt: ASGNS(addr,reg) "sth %%%1,[%0]\n" 1 
stmt: ASGNI(addr,reg) "st %%%1,[%0]\n" 1 
stmt: ASGNP(addr,reg) "st %%%1, [%0]\n" 1 
stmt: ASGNF(addr,reg) "st %%f%1,[%0]\n" 1 

The 1 dd and std instructions load and store a double, but only at ad
dresses divisible by eight. The conventions for aligning arguments and 
globals guarantee only divisibility by four, so 1 dd and std suit only locals: 

{SPARC rules 469) += 
addrl: ADDRLP 

reg: INDIRD(addrl) 
stmt: ASGND(addrl,reg) 

.... 
471 472 463 ... 

"%%%fp+%a" imm(a) 

"ldd [%0],%%f%c\n" 1 
"std %%f%1,[%0]\n" 1 

The pseudo-instructions 1 d2 and st2 generate instruction pairs to load 
and store doubles aligned to a multiple of four, but some SPARC assem
blers silently emit incorrect code when the address is the sum of two 
registers, so the rules for these pseudo-instructions use the nonterminal 
base, which omits register-plus-register addressing: 

471 

469 imm 
403 reg 
403 stmt 



472 

imm 469 
move 394 

moveself 394 
reg 403 

requate 394 
spil 1 427 
stmt 403 
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(SPARC rules469}+= 
reg: INDIRD(base) 
stmt: ASGND(base,reg) 

"ld2 [%0],%%f%c\n" 2 
"st2 %%f%1,[%0]\n" 2 

.... 
471 472 463 ... 

But for this assembler bug, the rules defining base and addr could be 
combined and define a single nonterminal. 

The spiller needs to generate code that can store a register when all 
allocable registers are busy. When the offset doesn't fit in a SPARC imme
diate field, the ASGN rules above generate multiple instructions, and the 
instructions need a register to communicate, which violates the spiller's 
assumption. 1 cc corrects this problem with a second copy of the ASGN 
rules. They use the unallocable register gl to help store locals - 1 cc 
spills only to locals - that are not immediately addressable: 

(SPARC rules469}+= 
spill: ADDRLP 

stmt: ASGNC(spill,reg) 
stmt: ASGNS(spill,reg) 
stmt: ASGNI(spill,reg) 
stmt: ASGNP(spill,reg) 
stmt: ASGNF(spill,reg) 
stmt: ASGND(spill,reg) 

.... 
472 472 463 

"%a" ! imm(a) 
... 

"set %0,%%gl\nstb %%%1, [%%fp+%°~gl]\n" 
"set %0,%°~gl\nsth %%%1, [%%fp+%%gl]\n" 
"set %0,%%gl\nst %%%1,[%%fp+%%gl]\n" 
"set %0,%°~gl\nst %%%1, [%%fp+%%gl]\n" 
"set %0,%%gl\nst %°~f%1, [%%fp+%%gl]\n" 
"set %0,%%gl\nstd %%-F~l. [%%fp+%%gl]\n" 

The rules have an artificially low cost of zero so that they'll win when 
they match, which isn't often. These rules can apply to stores that aren't 
spills, but using a cost of zero in those cases is harmless. See Exer
cise 17.7. 

1 dsb and 1 dsh extend the sign bit of the cell that they load, so they 
implement a CVCI and CVSI for free. 1 dub and 1 duh clear the top bits, so 
they include a free cvcu and cvsu. 

(SPARC rules469}+= 
.... 

472 472 463 ... 
reg: CVCI(INDIRC(addr)) "ldsb [%0] ,%%%c\n" 1 
reg: CVSI(INDIRS(addr)) "ldsh [%0],%%%c\n" 1 
reg: CVCU(INDIRC(addr)) "ldub [%0],%%%c\n" 1 
reg: CVSU(INDIRS(addr)) "lduh [%0],%%%c\n" 1 

The integral conversions to types no wider than the source can also gen
erate a register-to-register move instruction. Recall that move returns one 
and marks the node for possible optimization by requate and movese 1 f . 

(SPARC rules469}+= 
.... 

472 473 463 ... 
reg: CVIC(reg) "mov %%%0,%%%c\n" move(a) 
reg: CVIS(reg) "mov %%°~0,%%%c\n" move(a) 
reg: CVIU(reg) "mov %°.i6%0,%%%c\n" move(a) 
reg: CVPU(reg) "mov %%%0,%%%c\n" move(a) 
reg: CVUC(reg) "mov ro%%0,%%%c\n" move(a) 
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reg: CVUI(reg) "mov %%%0,%%%c\n" move(a) 
reg: CVUP(reg) "mov %%"AIO,%%%c\n" move(a) 
reg: CVUS(reg) "mov %%%0,%%%c\n" move(a) 

If the node targets no special register, it can generate nothing at all: ... 
(SPARC rules 469) += 472 473 463 ..... 

reg: CVIC(reg) "%0" notarget(a) 
reg: CVIS(reg) "%0" notarget(a) 
reg: CVUC(reg) "%0" notarget(a) 
reg: CVUS(reg) "%0" notarget(a) 

This second list looks shorter than the one above it, but the target
independent fragment (shared rules) on page 400 makes up the differ-
ence. 

LOADs also generate register copies: 

(SPARC rules 469) += 
reg: LOADC(reg) "mov %%%0,%%%c\n" move(a) 
reg: LOADI(reg) "mov %%%0,%%%c\n" move(a) 
reg: LOADP(reg) "mov %%%0,%%%c\n" move(a) 
reg: LOADS(reg) "mov %%%0,%"Al%c\n" move(a) 
reg: LOADU(reg) "mov %%%0,%"Al%c\n" move(a) 

... 
473 473 463 ..... 

It would be nice to share these rules too, but the templates are machine
specific. 

Register gO is hard-wired to hold zero, so integral CNST nodes with the 
value zero generate no code: 

(SPARC rules469)+= 
reg: CNSTC "# reg\n" range(a, 0, O) 
reg: CNSTI "# reg\n" range(a, 0, 0) 
reg: CNSTP "# reg\n" range(a, 0, 0) 
reg: CNSTS "# reg\n" range(a, 0, 0) 
reg: CNSTU "# reg\n" range(a, 0, 0) 

... 
473 474 ..... 463 

Recall that cost expressions are evaluated in a context in which a denotes 
the node being labelled, which here is the constant value being tested for 
zero. target arranges for these nodes to return gO: 

(SPARC target 473)= 476 468 ..... 
case CNSTC: case CNSTI: case CNSTS: case CNSTU: case CNSTP: 

if (range(p, 0, 0) == 0) { 
setreg(p, greg[OJ); 
p->x.registered = 1; 

} 
break; 

Allocating gO makes no sense, so target marks the node to preclude 
register allocation. 

The set pseudo-instruction can load any constant into a register: 

467 greg 
361 LOAD 
394 move 

473 

404 notarget 
388 range 
403 reg 
399 setreg 
357 target 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
360 x.registered 



474 

range 388 
reg 403 

CHAPTER 1 7 • GENERA TING SPARC CODE 

.... 
473 474 463 ... (SPARC rules469)+= 

reg: con "set %0,%%%c\n" 1 

set generates one instruction if the constant fits in 13 bits and two oth
erwise. The assembler insulates us from the details. 

Most binary instructions that operate on integers can accept a register 
or a 13-bit constant as the second source operand: 

(SPARC rules469)+= 
re: con13 "%0" 
re: reg "%%%0" 

The first operand and the result must be registers: 

(SPARC rules469)+= 
reg: ADDI(reg,rc) "add %%%0,%1,%%%c\n" 
reg: ADDP(reg,rc) "add %%%0,%1,%%%c\n" 
reg: ADDU(reg,rc) "add %%%0,%1,%%%c\n" 
reg: BANDU(reg,rc) "and %%%0,%1,%%%c\n" 
reg: BORU(reg, re) "or %%%0,%1,%%%c\n" 
reg: BXORU(reg,rc) "xor %%%0,%1,%%%c\n" 
reg: SUB! (reg , re) "sub %%%0,%1,%%%c\n" 
reg: SUBP(reg,rc) "sub %%%0,%1,%%%c\n" 
reg: SUBU(reg,rc) "sub %%%0,%1,%%%c\n" 

.... 
474 474 463 ... 

.... 
474 474 463 ... 

1 
1 
1 
1 
1 
1 
1 
1 
1 

Shift instructions, however, can't accept constant shift operands less 
than zero or greater than 31: 

.... 
(SPARC rules469)+= 

res: CNSTI "%a" 
474 474 463 ... 

range(a, 0, 31) 
res: reg "%%%0" 

The first operand and the result must be registers: 

(SPARC rules469)+= 
.... 

474 474 463 ... 
reg: LSHI(reg,rcS) "sll %%%0,%1,%%%c\n" 1 
reg: LSHU(reg,rcS) "sll %%%0,%1,%%%c\n" 1 
reg: RSHI(reg,rcS) "sra %%%0,%1,%%%c\n" 1 
reg: RSHU(reg,rcS) "srl %%%0,%1,%%%c\n" 1 

The three Boolean operators have variants that complement the second 
operand: 

(SPARC rules 469) += 
reg: BANDU(reg,BCOMU(rc)) 
reg: BORU(reg,BCOMU(rc)) 
reg: BXORU(reg,BCOMU(rc)) 

.... 
474 475 463 

"andn %%%0,%1,%ro%c\n" 1 
"orn %%%0,%1,%%%c\n" 1 
"xnor %%%0,%1,%%%c\n" 1 

... 

The unary operators work on registers only: 
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(SPARC rules469)+= 
reg: NEGI(reg) 
reg: BCOMU(reg) 

"neg %%%0,%%%c\n" 
"not %%%0,%%%e\n" 

1 
1 

.... 
474 475 463 ... 

The conversions that widen a signed character or a signed short do so 
by shifting left and then right arithmetically to extend the sign bit: 

.... 
(SPARC rules469)+= 475 475 463 

reg: CVCI(reg) "sll %%%0,24,%%%e; sra %%%e,24,%%%e\nir 2 
reg: CVSI(reg) "sll %%%0,16,%%%e; sra %%%e,16,%%%e\n" 2 

The unsigned conversions use and instructions to clear the top bits: 
.... 

475 475 ... (SPARC rules469)+= 
reg: CVCU(reg) "and %%%0,0xff,%%%e\n" 
reg: CVSU(reg) "set Oxffff ,%%gl; and %%%0,%%gl,%%%e\n" 

463 
1 
2 

CVSU needs a 16-bit mask, which won't fit in the instruction as CVCU's 
does. 

All SPARC unconditional jumps and conditional branches have a one
instruction delay slot. The instruction a~er the jump or branch - which 
is said to be "in the delay slot" - is always executed, just as if it had been 
executed before the jump or branch. For the time being, we'll fill each 
delay slot with a harmless nop. The ba instruction targets constant ad
dresses, and the jmp instruction targets the rest, namely the ones needed 
for switch statements. 

(SPARC rules469)+= 
addrg: ADDRGP 
stmt: JUMPV(addrg) 
stmt: JUMPV(addr) 
stmt: LABELV 

"%a" 
"ba %0; nop\n" 2 
"jmp %0; nop\n" 2 
"%a:\n" 

.... 
475 475 463 ... 

The integral relationals compare one register to another register or to a 
constant: 

(SPARC rules469)+= 
.... 

475 476 463 ... 
stmt: EQI(reg,re) "emp %%%0,%1; be %a; nop\n" 3 
stmt: GEI(reg,re) "emp %%%0,%1; bge %a; nop\n" 3 
stmt: GEU(reg,re) "emp %%%0,%1; bgeu %a; nop\n" 3 
stmt: GTI (reg , re) "emp %%%0,%1; bg %a; nop\n" 3 
stmt: GTU (reg, re) "emp %%%0,%1; bgu %a; nop\n" 3 
stmt: LEI(reg,re) "emp %%%0,%1; ble %a; nop\n" 3 
stmt: LEU(reg,re) "cmp %%%0,%1; bleu %a; nop\n" 3 
stmt: LTI(reg, re) "emp %%%0,%1; bl %a; nop\n" 3 
stmt: L TU(reg, re) "emp %%%0,%1; blu %a; nop\n" 3 
stmt: NEI(reg,re) "emp %%%0,%1; bne %a; nop\n" 3 

The cal 1 instruction targets a constant address or a computed one: 

403 reg 
403 stmt 

475 



476 

call 186 
(MIPS) freg2 433 

(SPARC) " 467 
(SPARC) freg 467 

(MIPS) i reg 433 
(SPARC) " 467 

oreg 467 
reg 403 

rtarget 400 
setreg 399 

stmt 403 
target 357 

(MIPS) " 435 
(SPARC) " 468 

(X86) " 502 
x.registered 360 
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(SPARC ruJes469)+= 
.... 

475 476 463 ... 
call: ADDRGP "%a" 
call: addr "%0" 
reg: CALLD(call) "call %0; nop\n" 2 
reg: CALLF(call) "call %0; nop\n" 2 
reg: CALLI(call) "call %0; nop\n" 2 
stmt: CALLV(call) "call %0; nop\n" 2 
stmt: CALLB(call,reg) "call %0; st %%%1,[%%sp+64]\n" 2 

CALLB transmits the address of the return block by storing it into the 
stack. The store instruction occupies the delay slot. 

The front end follows each RET node with a jump to the procedure 
epilogue, so RET nodes generate no code and serve only to help the back 
end target the return register: 

(SPARC ruJes469)+= 
stmt: RETD(reg) "# ret\n" 1 
stmt: RETF(reg) "# ret\n" 1 
stmt: RETI(reg) "# ret\n" 1 

.... 
476 477 463 ... 

Functions return values in fO, fO-fl, or oO, which is known as i 0 in the 
callee. target arranges compliance with this convention: 

(SPARC target 473)+= 
case CALLO: setreg(p, freg2[0]); 
case CALLF: setreg(p, freg[O]); 
case CALLI: 

break; 
break; 

case CALLV: setreg(p, oreg[O]); break; 
case RETD: rtarget(p, 0, freg2[0]); break; 
case RETF: rtarget(p, 0, freg[O]); break; 

.... 
473 476 468 ... 

The case for RETI marks the node to prevent register allocation and avoid 
an apparent contradiction: 

(SPARC target 473)+= 
case RETI: 

rtarget(p, 0, ireg[O]); 
p->kids[O]->x.registered = 1; 
break; 

.... 
476 477 468 ... 

If a routine's first argument is integral, it resides in i o. If a function 
returns an integer, iO must hold the return value too. lee's register 
allocator can spill temporaries but not formals, so the register allocator 
will fail if we ask it to allocate i 0 to a RETI. Formals are, however, dead 
at returns, so we simply mark the node allocated, which awards i O to the 
RETI and prevents the register allocator from doing anything, including 
spilling the formal. 

The register stack automatically saves and restores the general regis
ters at calls, so only the floating-point registers, minus the return regis
ter, need to be explicitly saved and restored: 
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(SPARC clobber 477)= 
case CALLB: case CALLO: case CALLF: case CALLI: 

spill(-(unsigned)3, FREG, p); 
break; 

case CALLV: 
spill(oreg[O]->x.regnode->mask, !REG, p); 
spill(-(unsigned)3, FREG, p); 
break; 

479 468 ... 

Recall that ralloc calls the target's clobber after allocating a register to 
the node. 

doarg stores in each ARG node's syms [RX] an integer constant symbol 
equal to the argument offset divided by four, which names the outgoing 
o-register for most arguments: 

(SPARC functions466)+= 
static void doarg(p) Node p; { 

p->syms[RX] = intconst(mkactual(4, 
p->syms[O]->u.c.v.i)/4); 

} 

... 
469 478 464 ... 

ARG nodes are executed for side effect, so they don't normally use 
syms [RX], but the SPARC calling convention implements ARG nodes with 
register targeting or assignment, so using RX is natural. 

Targeting arranges to compute the first 24 bytes of arguments into 
the registers for outgoing arguments. target calls rtarget to develop 
the child into the desired a-register, and then it changes the ARG into a 
LOAD into the same register, which emit and moveself optimize away: 

(SPARC target 473)+= 
case ARGI: case ARGP: 

if (p->syms[RX]->u.c.v.i < 6) { 

} 

rtarget(p, 0, oreg[p->syms[RX]->u.c.v.i]); 
p->OP = LOAD+optype(p->op); 
setreg(p, oreg[p->syms[RX]->u.c.v.i]); 

break; 

... 
476 480 468 ... 

Calls with too many arguments for these registers pass the rest in mem
ory. To pass an argument in memory, the assembler template undoes 
the division and adds 68: 

(SPARC rules 469) += 
stmt: ARGI(reg) 
stmt: ARGP(reg) 

"st %%%0,[%%sp+4*%c+68]\n" 
"st %%%0,[%%sp+4*%c+68]\n" 

1 
1 

... 
476 478 463 ... 

sp points at 16 words - 64 bytes - in which the operating system can 
store the routine's i - and 1-registers when the register windows are ex
hausted and some must be spilled. The next word is reserved for the 

477 

357 clobber 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 

92 emit 
393 emit 
361 FREG 
49 intconst 

361 !REG 
361 LOAD 
361 mask 
366 mkactua 1 
394 moveself 

98 optype 
467 oreg 
417 ralloc 
403 reg 
400 rtarget 
362 RX 
399 setreg 
427 spill 
403 stmt 
357 target 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
362 x. regnode 



478 

reg 403 
stmt 403 
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high addresses !i.~~~·>." . " . ~ ~ :.v'~:'~i:~ ')~ 
current fp ~''~,':~'g~.::,. , 
caller's sp ----+ · "· · '''" ", , " > ;,. 

low addresses 

locals and 
temporaries 

outgoing arguments 
not in oO-oS 

space to save 
i0-i7 and 10-17 

if necessary 

FIGURE 17.2 SPARC frame layout. 

address of the structure return block, if there is one. The next words are 
for the outgoing arguments; space is reserved there for even those that 
arrive in i 0-i 5. So the argument at argument offset n is at %sp+n+68, 
which explains the template above. Figure 17.2 shows a SPARC frame. 

The code for variadic routines can look in only one spot for, say, the ar
gument at offset 20, so even floating-point arguments must travel in o0-
o5; note the parallel with the MIPS calling convention. 1 cc assumes that 
floating-point opcodes yield floating-point registers, so no tree can de
velop an unconverted floating-point value into an integer register. emi t2 
must handle these odd ARGs: 

(SPARC rules469)+= 
stmt: ARGD(reg) 
stmt: ARGF(reg) 

"# ARGD\n" 
"# ARGF\n" 

(SPARC functions466)+= 

1 
1 

static void emit2(p) Node p; { 
switch (p->op) { 
(SPARC emi t2 479) 
} 

} 

... 
477 480 463 ... 

... 
477 483 464 ... 

ARGF must get a value from a floating-point register into an a-register or 
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onto the stack. A stack slot is reserved for each outgoing argument, and 
the only path from a floating-point register to a general register is via 
memory, so emi t2 copies the floating-point register into the stack, and 
then loads the stack slot into the a-register, unless we're past o5: 

(SPARCemit2 479)= 

case ARGF: { 
479 478 

} 

int n = p->syms[RX]->u.c.v.i; 
print("st %%f%d,[%%sp+4*%d+68]\n", 

getregnum(p->x.kids[O]), n); 
if (n <= 5) 

print("ld [%%sp+4*%d+68],%%o%d\n", n, n); 
break; 

ARGO is similar, but it needs two stores and up to two loads: 

.... 

... 
(SPARC emit2 479)+= 479 482 478 

case ARGO: { 

} 

int n = p->syms[RX]->u.c.v.i; 
int src = getregnum(p->x.kids[O]); 
print("st %%f%d,[%%sp+4*%d+68]\n", src, n); 
print("st %%f%d,[%%sp+4*%d+68]\n", src+l, n+l); 
if (n <= 5) 

print("ld [ro%sp+4*%d+68] ,ro%o%d\n", n, n); 
if (n <= 4) 

print("ld [%%sp+4*%d+68],%%o%d\n", n+l, n+l); 
break; 

.... 

If a double argument is preceded by, say, five integers, then its first 
half travels in o5 and its second half on the stack. Splitting the double 
seems strange, but variadic routines leave no alternative, and procedure 
prologues reunite the two halves. 

It seems unwise to ask the register allocator to allocate a general reg
ister to a floating-point node, so clobber calls spill to ensure that any 
live value in the argument register is saved before the floating-point ARC 
and restored later: ... 
(SPARC clobber 477) += 

case ARGF: 
477 480 468 

if (p->syms[2]->u.c.v.i <= 6) 
spill((l<<(p->syms[2]->u.c.v.i + 8)), !REG, p); 

break; 
case ARGO: 

.... 

if (p->syms[2]->u.c.v.i <= 5) 
spill((3<<(p->syms[2]->u.c.v.i + 8))&0xff00, !REG, p); 

break; 

479 

357 clobber 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
356 emit2 
444 " (MIPS) 
478 " (SPARC) 
511 " (X86) 
361 !REG 
362 RX 
427 spill 
359 x.kids 
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The MIPS code generator avoided this step because it never allocated the 
argument registers for any other purpose, but the SP ARC convention uses 
ol-o5 for temporaries when they aren't holding outgoing arguments. 

The first SPARC systems offered no instructions to multiply, divide, 
or find remainders, so the standard library supplied equivalent func
tions. It is perhaps premature to abandon these systems, so 1 cc sets 
mu 1 ops_ ca 11 s and sticks with the functions even on newer machines 
that offer multiplicative instructions (see Exercise 17.1): 

(SPARC rules 469) += 
... 

478 480 463 ..... 
reg: DIVI(reg,reg) "call .div,2; nop\n" 2 
reg: DIVU(reg,reg) "call .udiv,2; nop\n" 2 
reg: MODI(reg,reg) "call .rem,2; nop\n" 2 
reg: MODU(reg,reg) "call .urem,2; nop\n" 2 
reg: MULI(reg, reg) "call .mul, 2; nop\n" 2 
reg: MULU(reg,reg) "call .umul,2; nop\n" 2 

target arranges to pass the operands in oO and ol, and to receive the 
result in oO: 

... 
477 468 (SPARC target 473)+= 

case DIV!: case MODI: case MULI: 
case DIVU: case MODU: case MULU: 

setreg(p, oreg[O]); 
rtarget(p, 0, oreg[O]); 
rtarget(p, 1, oreg[l]); 
break; 

The library functions allocate no new register window, and instead de
stroy ol-o5: 

(SPARC clobber 477) += 
case DIV!: case MODI: case MULI: 
case DIVU: case MODU: case MULU: 

spill(Ox00003e00, !REG, p); break; 

... 
479 468 

The binary floating-point instructions accept only registers: 

(SPARC rules 469) += 
... 

480 481 463 ..... 
reg: ADDD(reg,reg) "faddd %%f%0,%%f%1,%%f%c\n" 1 
reg: ADDF(reg,reg) "fadds %%f%0,%%f%1,%%f%c\n" 1 
reg: DIVD(reg,reg) "fdivd %"..bf%0,%%f%1,%%f%c\n" 1 
reg: DIVF(reg,reg) "fdivs %%f%0,%%f%1,%%f%c\n" 1 
reg: MULD(reg, reg) "fmuld %%f%0,%%f%1,%%f%c\n" 1 
reg: MULF(reg,reg) "fmuls %%f%0,%%f%1,%%f%c\n" 1 
reg: SUBD(reg, reg) "fsubd %%f%0,%%f%1,%%f%c\n" 1 
reg: SUBF(reg,reg) "fsubs %%f%0,%%f%1,%%f%c\n" 1 

Most floating-point unary operators are similar: 
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(SPARC rules 469) += 
.... 

480 481 463 .... 
reg: NEGF(reg) "fnegs %%f%0,%%f%c\n" 1 
reg: LOADF(reg) "fmovs %%f%0,%%f%c\n" 1 
reg: CVDF(reg) "fdtos %%f%0,%%f%c\n" 1 
reg: CVFD(reg) "fstod %%f%0,%%f%c\n" 1 

The conversions between doubles and integers need three instructions 
each because the necessary conversion instructions use only floating
point registers even for the integral operand. fdtoi converts a double 
into an integer, but leaves the result in a floating-point register. The 
parent of the CVDI expects a general register, so the template copies the 
result to a general register via a temporary cell in memory, which is the 
only available path: 

.... 
(SPARC rules469)+= 481 481 463 .... 

reg: CVDI (reg) "fdtoi %",.bf%0, %%f0; st %",.bfO, [%%sp+64] ; _ 
ld [%%sp+64] ,%",.b%c\n" 3 

CVID reverses the process: 
.... 

(SPARCrules469)+= 481481 463 .... 
reg: CVID(reg) "st %%%0,[%%sp+64]; ld [%%sp+64],%%f%c; _ 

fi tod %",.bf",.bc, %%f%c\n" 3 

CVDI and CVID use the spot reserved for the address of the structure re
turn block for any callees. The spot is unused except between the branch 
delay slot of a ca 11 instruction and the callee's prologue instruction that 
allocates a new stack frame. No CVDI or CVID can appear in any such 
interval. 

The floating-point comparisons have one delay slot after the branch, 
and another after the comparison: 

(SPARC rules469)+= 
.... 

481 482 463 .... 
rel: EQD(reg, reg) 11 fcmped %",.bf%0, %",.bf%l; nop; fbue 11 

rel: EQF(reg,reg) 11 fcmpes %%f%0,%%f%1; nop; fbue" 
rel: GED(reg,reg) "fcmped %%f%0,%%f%1; nop; fbuge 11 

rel: GEF(reg,reg) "fcmpes %%f%0,%%f%1; nop; fbuge 11 

rel: GTD(reg,reg) 11 fcmped %%f%0 , %",.bf",.bl; nop; fbug" 
rel: GTF(reg,reg) "fcmpes %%f%0,%",.bf%1; nop; fbug 11 

rel: LED(reg,reg) 11 fcmped %%f%0,%%f%1; nop; fbule" 
rel: LEF(reg,reg) 11 fcmpes %%f%0,%%f%1; nop; fbule" 
rel: Lm(reg,reg) 11 fcmped %%f%0,%%f%1; nop; fbul" 
rel: LTF(reg,reg) "fcmpes %",.bf%0, %%f%1; nop; fbul" 
rel: NED(reg,reg) "fcmped %%f%0, %%f",.bl; nop; fbne 11 

rel: NEF(reg,reg) "fcmpes %",.bf%0,%",.bf%l; nop; fbne 11 

stmt: rel 11%0 %a; nop\n 11 4 

403 reg 
403 stmt 

481 
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A few opcodes can't be implemented by any fixed assembler template, 
and must be saved for emi t2. No SPARC instruction copies one double
precision register to another, so 1 cc emits two single-precision instruc
tions for each LOADD: 

(SPARC ruJes469)+= 
reg: LOADD(reg) 11 # LOADD\n 11 2 

(SPARC emit2 479)+= 

case LOADD: { 

} 

int dst = getregnum(p); 
int src = getregnum(p->x.kids[O]); 
print("fmovs %%f",(;d,%%f%d; 11

, src, dst); 
print("fmovs %%f%d,%%f%d\n", src+l, dst+l); 
break; 

... 
481 482 463 .... 

... 
479 482 478 .... 

NEGD is similar. One instruction copies the first word and changes the 
sign bit in transit. The other instruction copies the second word: 

(SPARC ruJes469)+= 

reg: NEGD(reg) 11 # NEGD\n 11 2 

(SPARC emit2 479)+= 

case NEGD: { 

} 

int dst = getregn~m(p); 
int src = getregnum(p->x.kids[O]); 
print( 11 fnegs %%f%d,%%f",(;d; 11

, src, dst); 
print( 11 fmovs %%f%d,%%f%d\n", src+l, dst+l); 
break; 

... 
482 482 463 .... 

... 
482 482 478 .... 

Finally, emi t2 calls b 1 kcopy to generate code to copy a block of memory: ... 
(SPARC rules469)+= 482 463 

stmt: ASGNB(reg,INDIRB(reg)) 11 # ASGNB\n 11 

(SPARC emit2 479)+= 
case ASGNB: { 

} 

static int tmpregs[] = { 1, 2, 3 }; 
dalign = salign = p->syms[l]->u.c.v.i; 
blkcopy(getregnum(p->x.kids[O]), 0, 

break; 

getregnum(p->x.kids[l]), 0, 
p->syms[O]->u.c.v.i, tmpregs); 

... 
482 478 

Figure 13.4 traces the block-copy generator in action for the MIPS target, 
but the SPARC code differs only cosmetically. The SPARC instruction 



17.3 • IMPLEMENT/NG FUNCTIONS 

set has no unaligned loads or stores, but this is moot here because the 
example in the figure doesn't use the MIPS unaligned loads and stores 
anyway. Recall that sa 1 i gn, da 1 i gn, and x. max_una 1 i gned_ load collabo
rate to copy even unaligned blocks, so the target-specific code can ignore 
this complication. The g-registers aren't being used, so the emitted code 
can use gl-g3 as temporaries; the MIPS code was trickier because the 
conventions there made it harder to acquire so many registers at once. 

emi t2 omits the usual case for ARGB because wants_argb is zero on 
this target. 

17 .3 Implementing Functions 

The front end calls 1oca1 to announce new local variables. Like its coun
terpart for the other targets, the SPARC local calls askregvar to assign 
the local to a register if possible, and it calls mkauto if askregvar can't 
comply: 

(SP ARC functions 466) + = 
static void local(p) Symbol p; { 

(structure return block? 484) 

} 

(put even lightly used locals in registers 483) 
if (askregvar(p, rmap[ttob(p->type)]) == 0) 

mkauto(p); 

... 
478 484 464 ... 

The front end won't switch a local to use scl ass REGISTER unless it es
timates that the variable will be used three or more times. This cutoff 
leaves in memory locals used too little to justify spilling a register in 
the procedure prologue and reloading it in the epilogue. SPARC register 
windows, however, make some general registers available for locals au
tomatically, so our code might as well use them even if the local is used 
only once or twice: 

(put even lightly used locals in registers 483) = 483 
if (isscalar(p->type) && !p->addressed && !isfloat(p->type)) 

p->sclass = REGISTER; 

The SPARC code generator sets wants_cal 1 b so that it can match the 
SP ARC convention for returning structures. When wants_ca 11 b is set, 
the front end takes three actions: 

1. It generates CALLB nodes to reach functions that return structures. 

2. It sets the second child of each CALLB to a node that computes the 
address of the block into which the callee must store the structure 
that it's returning. 

483 

179 addressed 
412 askregvar 
368 dalign 
356 emit2 
444 " (MIPS) 
478 " (SPARC) 
511 " (X86) 
60 isfloat 
60 isscalar 

365 mkauto 
80 REGISTER 

398 rmap 
368 salign 

38 sclass 
73 ttob 
88 wants_argb 
88 wants_callb 
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3. It precedes each return with an ASGNB that copies the block ad
dressed by the child of the return into the block addressed by the 
first local. 

The front end announces this local like any other, and the back end ar
ranges for it to address the stack slot reserved for the location of struc
ture return blocks: 

(structure return block? 484}= 
if (retstruct) { 

} 

p->x.name = stringd(4*16); 
p->x.offset = 4*16; 
retstruct = O; 
return; 

483 

function sets retstruct to one if the current function returns a struc
ture or union. 

The front end calls the interface procedure function to announce each 
new routine. function drives most of the back end. It calls gencode, 
which calls gen, which calls the labeller, reducer, linearizer, and register 
allocator. function also calls the front end's emitcode, which calls the 
back end's emitter. The front end passes to function a symbol that 
represents a routine, vectors of symbols representing the caller's and 
callee's views of the arguments, and a count of the number of calls made 
by the routine: 

(SPARC functions 466} += 
static void function(f, caller, callee, ncalls) 
Symbol f, callee[], caller[]; int ncalls; { 

int autos= 0, i, leaf, reg, varargs; 

(SPARC function 484} 
} 

.... 
483 489 464 ..... 

1 eaf flags simple leaf routines, varargs flags variadic routines, and 
autos counts the parameters in memory, which helps compute 1 eaf. 
Only varargs can be computed immediately: 

(SPARC function 484}= 
for (i = O; callee[i]; i++) 

varargs = variadic(f->type) 
I I i > 0 && strcmp(callee[i-1]->name, 

"_builtin_va_alist") == O; 

485 484 ..... 

The SP ARC convention either declares the routine variadic or uses a 
macro that names the last argument _bui 1 ti n_va_a 1 i st. 

function clears the back end's record of busy registers: 
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(SPARC function 484) += 
(clear register state 410) 

for (i = O; i < 8; i++) 
ireg[i]->x.regnode->vbl =NULL; 

.... 
484 485 484 ... 

The for loop above has no counterpart in the MIPS code generator. 1 cc al
locates no variables to MIPS argument registers, but it does allocate vari
ables to SPARC argument registers, so x. regnode->vbl can hold trash 
from the last routine compiled by the SPARC code generator. 

offset initially holds the frame offset of the next formal parameter 
in this routine. function initializes it to record the fact that each frame 
includes at least one word to hold the address of the target block for 
functions that return a structure, plus 16 words in which to store i 0-i 7 
and 10-17 if the register window must be spilled: 

(SPARC function 484) += 
offset = 68; 

.... 
485 485 484 ... 

maxargoffset holds the size of the stack block for outgoing arguments. 
function reserves space for at least o0-o5: 

(SPARC function 484) += 
maxargoffset = 24; 

.... 
485 485 484 ... 

Procedure prologues store incoming floating-point arguments into this 
space because little can be done with them in the i -registers, and variadic 
callees like pri ntf store all incoming argument registers in this space, 
because they must use a procedure prologue that works for an unknown 
number of arguments, and they must access those arguments using ad
dresses calculated at runtime, not register numbers fixed at compile time. 

function determines the i -register or stack offset for each incom
ing argument. At the beginning of each iteration of the for loop below, 
offset holds the stack offset reserved for the next parameter, and reg 
holds the number of the register or register pair for the next parameter, 
if the parameter arrives in a register. The stack needs 4-byte alignment, 
so we round the parameter size up to a multiple of four before doing any
thing with it. This parameter chews up size bytes of stack space and 
thus size/4 registers, except for structure arguments, which are passed 
by reference and thus chew up only one i -register. 

(SPARC function 484) += 
reg = O; 
for (i = O; callee[i]; i++) { 

} 

Symbol p = callee[i], q = caller[i]; 
int size= roundup(q->type->size, 4); 
(classify SPARC parameter486) 
offset += size; 
reg += isstruct(p->type) ? 1 size/4; 

.... 
485 487 484 ... 

485 

93 callee 
93 caller 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
433 i reg (MIPS) 
467 " (SPARC) 

60 isstruct 
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403 reg 
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361 vbl 
362 x.regnode 
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function can confine its attention to scalar formals because wants_argb 
is zero. 

If the parameter is a floating-point value or past the end of the argu
ment registers, then it goes in memory, and this routine needs a frame 
in memory to store this parameter: 

(classify SPARC parameter486)= 
if (isfloat(p->type) I I reg >= 6) { 

p->x.offset = q->x.offset = offset; 
p->x.name = q->x.name = stringd(offset); 
p->sclass = q->sclass = AUTO; 
autos++; 

} 

486 485 ... 

In the first case, function must generate code itself to store the param
eter if it arrived in a register; the front end can't help because 1 cc's 
intermediate code gives it no way to store the floating-point value from 
an integer register. 

If the parameter is integral and arrived in an i -register, it still belongs 
in memory if its address is taken or if the routine is variadic: 

(classify SPARC parameter486)+= 
else if (p->addressed I I varargs) 

(arrives in an i -register, belongs in memory 486) 

(arrives in an i -register, belongs in memory 486) = 
{ 

} 

p->x.offset = offset; 
p->x.name = stringd(p->x.offset); 
p->sclass = AUTO; 
q->sclass = REGISTER; 
askregvar(q, ireg[reg]); 
autos++; 

.... 
486 486 485 ... 

486 

function sets the callee's and caller's scl ass to differing values so the 
front end will generate an assignment to store the register. 

The parameter can remain in a register if it arrived in one, if it's inte
gral, if its address isn't taken, and if the routine isn't variadic: 

(classify SPARC parameter486)+= 
else { 

} 

p->sclass = q->sclass = REGISTER; 
askregvar(p, ireg[reg]); 
q->x.name = p->x.name; 

.... 
486 485 
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Now to call gencode in the front end, which calls gen in the back end. 
First, function clears offset to record that no locals have been assigned 
to the stack yet, it clears maxoffset to track the largest value of offset, 
and it flags each function that returns an aggregate because 1oca1 must 
treat its first local specially: 

(SPARC data 467) += 
static int retstruct; 

(SPARC function 484) += 
offset = maxoffset = O; 
retstruct = isstruct(freturn(f->type)); 
gencode(caller, callee); 

... 
467 492 463 ... 
... 

485 487 484 ... 

When gencode completes the first code-generation pass and returns, 
function can compute the size of the frame and of the argument-build 
block, in which the outgoing arguments are marshaled. The size of the 
argument-build area must be a multiple of four, or some stack fragments 
will be unaligned. The frame size must be a multiple of eight, and in
cludes space for the locals, the argument-build area, 16 words in which 
to save i 0-i 7 and 10-17, and one word to store the address of any ag
gregate return block: 

(SPARC function 484) += 
... 

487 487 ... 484 
maxargoffset = roundup(maxargoffset, 4); 
framesize = roundup(maxoffset + maxargoffset + 4*(16+1), 8); 

function emits code that saves time by allocating no new frame or 
register window for routines that don't need them: 

... 
487 488 484 ... (SPARC function 484) += 

1 eaf = ((is this a simple leaf function? 487)) ; 

The constraints are many. The routine must make no calls: 

(is this a simple leaf function? 487) = 487 487 ... 
!ncalls 

It must have no locals or formals in memory: 

(is this a simple leaf function? 487) += 
... 

487 487 487 ... 
&& !maxoffset && !autos 

It must not return a structure, because such functions use a frame 
pointer in order to access the cell that holds the location of the return 
block: 

(is this a simple leaf function? 487) += 
&& !isstruct(freturn(f->type)) 

It must save no registers: 

... 
487 488 487 ... 

487 

294 autos 
93 callee 
93 caller 

366 framesize 
64 freturn 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
337 gencode 

92 gen 
402 gen 

60 isstruct 
90 local 

447 " (MIPS) 
483 " (SPARC) 
518 " (X86) 
366 maxargoff set 
365 maxoffset 
364 off set 

19 roundup 
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(is this a simple leaf function? 487) += 
&& !(usedmask[IREG]&OxOOffffOl) 
&& !(usedmask[FREG]&-(unsigned)3) 

.... 
487 487 

which means that it must confine itself to the incoming argument regis
ters o0-o7. The routine must also require neither debugging nor profil
ing, but those checks are omitted from this book. If all these conditions 
are met, then the routine can make do with no frame. 

All prologues start with a common boilerplate: 

(SPARC function 484) += 
.... 

487 488 484 ... 
print(".align 4\n.proc 4\n%s:\n", f->x.name); 

Most continue with a save instruction, which allocates a new register win
dow and adds a register or constant to a register. Most uses of save add 
a negative constant to sp, which allocates a new frame on the downward
growing stack: 

(SPARC function 484) += 
if (leaf) { 

(emit leaf prologue488) 
} else if (framesize <= 4095) 

print("save %%sp,%d,%%sp\n", -framesize); 
else 

.... 
488 489 484 ... 

print("set %d,%%gl; save %%sp,%%gl,%%sp\n", -framesize); 

If the constant won't fit in a SPARC immediate field, then the prologue 
first computes it into register gl. 

Routines eligible for the leaf optimization require no prologue, but the 
code generator has used the i-registers for arguments and, for that mat
ter, for the locals and temporaries. Now we've decided to generate no 
frame or register window, so we must use the corresponding o-registers 
instead. 1 cc's back end was not designed with wholesale register renam
ing in mind, so even the best solution is clunky: function temporarily 
changes the structures that store the name and number of each i -register 
to name an o-register instead. It starts with its caller argument vector. 
function's initial for loop copied the name of an i-register into the ar
gument's x. name field, so now function must correct that field: 

(emit leaf prologue 488) = 488 
for Ci= O; caller[i] && callee[i]; i++) { 

Symbol p = caller[i], q = callee[i]; 
if (p->sclass == REGISTER && q->sclass == REGISTER) 

p->x.name = greg[q->x.regnode->number - 16]->x.name; 
} 

rename(); 

The procedure rename makes the remaining changes: 
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(SPARC functions 466) += 
#define exch(x, y, t) (((t) 

static void rename() { 
int i; 

for Ci = O; i < 8; i++) { 
char *ptmp; 
int itmp; 

... 
484 490 464 ... 

x), ((x) (y)) I ((y) = (t))) 

if (ireg[i]->x.regnode->vbl) 
ireg[i]->x.regnode->vbl->x.name = oreg[i]->x.name; 

exch(ireg[i]->x.name, oreg[i]->x.name, ptmp); 
exch(ireg[i]->x.regnode->number, 

oreg[i]->x.regnode->number, itmp); 
} 

} 

rename exchanges the name and number from corresponding i - and o
registers, so that another exchange at the end of function will restore 
normality. If the register allocator has assigned the register to a variable, 
rename also corrects the name recorded in the symbol structure for that 
variable. Exchanges implement rename's changes because they must be 
undone at the end of the current routine, but simple assignments im
plement the changes to ca 11 er and register variables because they don't 
outlive the current routine. 

function next emits prologue code to save any arguments that arrived 
in registers but can't remain there. Variadic routines must save all of i 0-
i 5 because their prologue code can't know how many of them actually 
hold arguments: 

(SPARC function 484)+= 
if (varargs) 

for (; reg < 6; reg++) 
print("st %%i%d, [%"~fp+%d]\n", 

else 

... 
488 490 ... 

reg, 4*reg + 68); 

(spill floats and doubles from i 0-i 5 489) 

484 

Prologues also save floating-point values that arrive in general registers 
because instructions can't do much with them there. 

(spill floats and doubles from iO-i 5 489)= 
offset= 4*(16 + 1); 
reg = O; 
for Ci= O; caller[i]; i++) { 

Symbol p = caller[i]; 
if (isdouble(p->type) && reg <= 4) { 

print("st %%r%d,[%%fp+%d]\n", 

489 

489 
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433 i reg (MIPS) 
467 " (SPARC) 

60 isdouble 
361 number 
364 offset: 
467 oreg 
403 reg 
361 vbl 
362 x.name 
362 x.regnode 



490 

emitcode 341 
function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 

(MIPS) i reg 433 
(SPARC) " 467 

isfloat 60 
number 361 
offset 364 

reg 403 
rename 489 

roundup 19 
x.regnode 362 
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} 

ireg[reg++]->x.regnode->number, offset); 
print("st %%r%d,[%%fp+%d]\n", 

ireg[reg++]->x.regnode->number, offset+ 4); 
} else if (isfloat(p->type) && reg <= 5) 

print("st %%r%d, [%%fp+%d]\n", 
ireg[reg++]->x.regnode->number, offset); 

else 
reg++; 

offset+= roundup(p->type->size, 4); 

i sfl oat succeeds for floats and doubles, so the first else arm above saves 
not just floats but also the first half of any double that arrives in i 5; the 
second half will be in memory already, courtesy of the caller. 

Finally, function emits some profiling code (not shown), the body of 
the current routine, and the epilogue. The general epilogue is a ret 
instruction, which jumps back to the caller, and a restore instruction 
in the ret's delay slot, which undoes the prologue's save instruction. If 
the routine does without a register window and stack frame, there's no 
save to undo, but another rename is needed to restore normality to the 
names and numbers of the i-registers: 

(SPARC function 484)+= 
(emit profiling code) 
emitcode(); 
if (!leaf) 

print("ret; restore\n"); 
else { 

rename(); 
print("retl; nop\n"); 

} 

.... 
489 484 

ret and retl are both pseudo-instructions that emit an indirect branch 
using the register that holds the return address. They need different 
names because ret uses i 7, and retl uses o7 to name the same register 
because no register stack frame was pushed. 

17 .4 Defining Data 

The SPARC defconst, defaddress, defstring, and address are the same 
as their MIPS counterparts. See Chapter 16 for the code. 

The front end calls export to expose a symbol to other modules, which 
is the purpose of the SPARC assembler directive .global: 

(SPARC functions466)+= 
.... 

489 491 464 .... 
static void export(p) Symbol p; { 
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print(".global %s\n", p->x.name); 
} 

The front end calls import to make visible in the current module a sym
bol defined in another module. The SPARC assembler assumes that un
defined symbols are external, so the SPARC import has nothing to do: 

.... 
490 491 464 ... (SPARC functions 466) += 

static void import(p) Symbol p; {} 

The front end calls defsymbo l to announce a new symbol and cue the 
back end to initialize the x. name field. The SP ARC conventions generate a 
name for local statics and use the source name for the rest. The SPARC 
link editor leaves symbols starting with L out of the symbol table, so 
defsymbo l prefixes L to generated symbols. It prefixes an underscore to 
the rest, following another SPARC convention: 

(SPARC functions466)+= 
static void defsymbol(p) Symbol p; { 

} 

if (p->scope >= LOCAL && p->sclass == STATIC) 
p->x.name stringf("%d", genlabel(l)); 

else 
p->x.name p->name; 

if (p->scope >= LABELS) 
p->x.name = stringf(p->generated ? "L%s" 

p->x.name); 

.... 
491 491 464 ... 

"__%5"' 

Statics at file scope retain their names. Statics at deeper scope get num
bers to avoid colliding with other statics of the same name in other rou
tines. 

The interface routine segment emits the . seg "name", which switches 
to a new segment: 

(SPARC functions466)+= 
.... 

491 492 464 ... 
static void segment(n) int n; { 

cseg = n; 
switch (n) { 
case CODE: print(".seg \"text\"\n"); break; 
case BSS: print(". seg \"bss\"\n"); break; 
case DATA: print(" .seg \"data\"\n"); break; 
case LIT: print(".seg \"text\"\n"); break; 
} 

} 

segment tracks the current segment in cseg for the interface procedure 
space, which emits the SPARC . skip assembler directive to reserve n 
bytes of memory for an initialized global or static: 

91 BSS 
91 CODE 

491 

459 cseg (MIPS) 
492 " (SPARC) 
501 " (X86) 

91 DATA 
50 generated 
45 genlabel 
38 LABELS 
91 LIT 
38 LOCAL 
37 scope 
92 space 

459 " (MIPS) 
492 " (SPARC) 
524 " (X86) 
80 STATIC 
99 stringf 

362 x.name 
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Aflag 62 
align 78 

BSS 91 
reg 403 
seg 265 

STATIC 80 
x.name 362 
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(SPARC data 467) += 
static int cseg; 

(SPARC functions466)+= 
static void space(n) int n; { 

if (cseg ! = BSS) 
print(". skip %d\n", n); 

} 

.... 
487 463 

.... 
491 492 464 .... 

. skip arranges to clear the space that it allocates, which the standard 
requires. 

If we're in the BSS segment, then the interface procedure gl oba 1 can 
define the label and reserve space in one fell swoop, using . common for 
external symbols and . reserve for the rest: 

(SPARC functions466)+= 
static void global(p) Symbol p; { 

print(".align %d\n", p->type->align); 
if (p->u.seg == BSS 
&& (p->sclass == STATIC I I Aflag >= 2)) 

.... 
492 492 464 .... 

print(".reserve %s,%d\n", p->x.name, p->type->size); 
else if (p->u.seg == BSS) 

print(".common %s,%d\n", p->x.name, p->type->size); 
else 

print("%s:\n", p->x.name); 
} 

It also emits an alignment directive and, for initialized globals, the la
bel. . common also exports the symbol and marks it so that the loader 
generates only one common global even if other modules emit . common 
directives for the same identifier. . reserve takes neither step. Statics 
use it to avoid the export, and the scrupulous double -A option uses it to 
have the loader complain when multiple modules define the same global. 
Pre-ANSI C permitted multiple definitions, but ANSI C technically expects 
exactly one definition; other modules should use extern declarations in
stead. 

17 .5 Copying Blocks 

blkfetch emits code to load register tmp with k bytes from the address 
formed by adding register reg and offset off. k is 1, 2, or 4: 

(SPARC functions 466) += 
static void blkfetch(k, off, reg, tmp) 
int k, off, reg, tmp; { 

if (k == 1) 

.... 
492 493 464 .... 
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print("ldub [%%r%d+%d] ,%%r%d\n", reg, off, tmp); 
else if (k == 2) 

print("lduh [%%r%d+%d],%%r%d\n", reg, off, tmp); 
else 

print("ld [%%r%d+%d],%%r%d\n", reg, off, tmp); 
} 

No SPARC instructions load unaligned values, so bl kfetch needn't decide 
between aligned and unaligned loads, which the MIPS bl kfetch does. 
bl kun ro 11 has used x. max_una l i gned_ load to pick a block size and 
guarantee that the alignment is no smaller than the block size. bl kfetch 
need only choose between loading an 8-bit byte, a 16-bit halfword, or a 
32-bit word. bl kstore mirrors bl kfetch: 

(SPARC functions 466) += 
static void blkstore(k, off, reg, tmp) 
int k, off, reg, tmp; { 

} 

if (k == 1) 
print("stb %%r%d, [%%r%d+%d]\n", 

else if (k == 2) 
print("sth %%r%d, [%%r%d+%d]\n", 

else 
print("st %%r%d,[%%r%d+%d]\n", 

.... 
492 493 464 ... 

tmp, reg, off); 

tmp, reg, off); 

tmp, reg, off); 

All SPARC blk procedures use generic register names like r9. If we tried 
to use the g, i, 1, and o names that we use elsewhere, we'd need to 
change the interface between the bl k procedures to pass symbolic regis
ter names instead of integral register numbers, which would complicate 
adapting l cc to emit binary object code directly, for example. 

blkloop emits a loop to copy size bytes from a source address -
formed by adding register sreg and offset soff - to a destination ad
dress - formed by adding register dreg and offset doff: 

(SPARC functions 466) += 
static void blkloop(dreg, doff, sreg, soff, size, 
int dreg, doff, sreg, soff, size, tmps[]; { 

(SPARC bl kloop 494) 
} 

.... 
493 464 

tmps) 

tmp names three registers to use as temporaries. Each iteration copies 
eight bytes. Initial code points s reg to the end of the source block and 
tmp [2] to the end of the target block. This fragment has two arms. Block 
sizes that fit in a signed 13-bit field are processed directly. Larger block 
sizes are computed into register tmps [2], and the register is added to 
the incoming source and destination addresses. 

493 

356 blkfetch 
460 " (MIPS) 
492 " (SPARC) 
513 " (X86) 
368 blkunroll 
403 reg 
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blkcopy 367 
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{SPARC bl kloop 494)= 494 .... 493 
if ((size&-7) < 4096) { 

print("add %%r%d,%d,%%r%d\n", sreg, size&-7, sreg); 
print("add %%r%d,%d,%%r%d\n", dreg, size&-7, tmps[2]); 

} else { 
tmps[2]); print("set %d,%%r%d\n", size&-7, 

print("add %%r%d,%%r%d,%%r%d\n", 
print("add %%r%d,%%r%d,%%r%d\n", 

sreg, tmps[2], sreg); 
dreg, tmps[2], tmps[2]); 

} 

If the block's size is not divisible by eight, then an initial bl kcopy copies 
the stragglers: 

... 
{SPARCblkloop494)+= 494 494 493 .... 

blkcopy(tmps[2], doff, sreg, soff, size&?, tmps); 

The loop decrements registers sreg and tmp[2] by eight for each itera
tion. It does tmp[2] immediately, but pushes sreg's decrement forward 
to fill the branch delay slot at the end of the loop: 

... 
494 494 493 .... {SPARC bl kl oop 494) += 

print("l: dee 8,%%r%d\n", tmps[2]); 

The loop next calls b 1 kcopy to copy eight bytes from the source to the 
destination. The source offset is adjusted to account for the fact that 
s reg should've been decremented by now: 

{SPARC bl kl oop 494) += 
blkcopy(tmps[2], doff, sreg, soff - 8, 8, tmps); 

Finally, the loop continues if more bytes remain: 

{SPARC bl kloop 494)+= 
print("cmp %%r%d,%%r%d; ", tmps[2], dreg); 
pri nt("bgt lb; "); 
print("dec 8,%%r%d\n", sreg); 

Further Reading 

... 
494 494 493 .... 

... 
494 493 

The SPARC reference manual elaborates on the architecture of this ma
chine (SPARC International 1992). Patterson and Hennessy (1990) explain 
the reasons behind delay slots. Krishnamurthy (1990) surveys the liter
ature in instruction scheduling, which fills delay slots. 
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Exercises 

17.l Add a flag that directs the back end to emit instructions instead of 
calls to multiply and divide signed and unsigned integers. 

17.2 Adapt 1 cc's SPARC code generator to make better use of gl-g7 and 
to keep some floating-point variables in floating-point registers. Re
call that the calling convention and thus all previously compiled 
library routines preserve none of these registers. 

17.3 Find some use for at least some of the delay slots after uncondi
tional jumps. For example, the slot after an unconditional jump 
can be filled with a copy of the instruction at the jump target, and 
the jump can be rewritten to target the next instruction. Some opti
mizations require buffering code and making an extra pass over it. 
The MIPS R3000 architecture has such delay slots too, but the stan
dard assembler reorders instructions to fill them with something 
more useful, so we could ignore the problem there. 

17.4 Find some use for at least some of the delay slots after conditional 
branches. It may help to exploit the annul bit, which specifies that 
the instruction in the delay slot is to have no effect unless the 
branch is conditional and taken. Set the annul bit by appending 
,a to the opcode (e.g., be, a L4). 

17.5 Some SPARC chips stall for at least one clock cycle when a load 
instruction immediately precedes an instruction that uses the value 
loaded. The object code would run just as fast with a single nop 
after the load, though it would be one word longer. Reorder the 
emitted assembler code to eliminate at least some of these stalls. 
Proebsting and Fischer (1991) describe one solution. 

17.6 Some leaf routines need no register window, but still lose the leaf 
optimization because they need a frame pointer. For example, some 
functions that return structures need no window, but do use a 
frame pointer. Change 1 cc to generate a frame but no register win
dow for such routines. 

17.7 The SPARC code generator includes idiosyncratic code to ensure 
that the spiller can emit code to store a register when no allocable 
registers are free. Devise a short test program that exercises this 
code. 

495 
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18 
Generating X86 Code 

This book uses the name X86 for machines compatible for the purposes 
of code generation with the Intel 386 architecture, which include the 
Intel 486 and Pentium architectures, plus clones from manufacturers like 
AMD and Cyrix. The 1 burg specification uses approximate Intel 486 cycle 
counts for costs, which often but not always gives the best result for 
compatibles. Some costs are omitted because they aren't needed. For 
example, if only one rule matches some operator, there is no need for 
costs to break ties between derivations. 

The X86 architecture is a CISC, or complex instruction set computer. 
It has a large set of variable-length instructions and addressing modes. 
It has eight 32-bit largely general registers and eight 80-bit floating-point 
registers organized as a stack. 

There are many C compilers for the X86, and their conventions (e.g., 
for calling functions and returning values) differ. The code generator in 
this chapter uses the conventions of Borland C + + 4.0. That is, it interop
erates with Borland's standard include files, libraries, and linker. Using 
1 cc with other X86 environments may require a few changes; documen
tation on the companion diskette elaborates. 

There are many X86 assemblers, and they don't all use the same syn
tax. lee works with Microsoft's MASM 6.11 and Borland's Turbo Assem
bler 4.0. That is, it emits code in the intersection of the languages ac
cepted by these two assemblers. Both have instructions that list the des
tination operand before the source operand. The registers have names 
instead of numbers. Table 18.1 describes enough sample instructions to 
get us started. 

The file x86. c collects all X86-specific code and data. It's an 1 burg 
specification with the interface routines after the grammar: 

(x86.md496}= 
%{ 
(X86 macros498} 
(lburg prefix 375} 

(interface prototypes} 
(X86 prototypes} 
(X86 data 499} 
%} 
(terminal declarations 376} 

%% 
(shared rules 400} 
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Assembler 

mov al,byte ptr 8 
mov dword ptr 8[edi*4],l 

subu eax,7 
fsub qword ptr x 

jmp Ll 
cmp dword ptr x,7 

jl Ll 

dword 020H 

Meaning 

Set register a 1 to the byte at address 8. 
Set to one the 32-bit word at the address 
formed by adding eight to the product of 
register edi and four. 
Subtract seven from register eax. 
Subtract the double-precision 
floating-point value in the memory cell 
labelled x from the top of the 
floating-point stack. 
Jump to the instruction labelled Ll. 
Compare the 32-bit word at address x with 
seven and record the results in the 
condition flags. 
Branch to Ll if the last comparison 
recorded less-than. 
Initialize the next 32-bit word in memory 
to hexadecimal 20. 

TABLE 18.1 Sample X86 assembler input lines. 

(X86 rules 503) 
%% 
(X86 functions 498) 
(X86 interface definition 497) 

The last fragment configures the front end and points to the X86-specific 
routines and data in the back end: 

(X86 interface dehnition 497) = 497 
Interface x86IR = { 

1, 1, 0, /* char */ 
2, 2, 0, /* short */ 
4, 4, 0, /* int */ 
4, 4, 1, /* float */ 
8, 4, 1, /* double */ 
4, 4, 0, /* T * */ 
0, 4, 0, /* struct; so that ARGB keeps stack aligned */ 
1, /* little_endian */ 
0, /* mulops_calls */ 
0, /* wants_callb */ 
1, /* wants_argb */ 
0, /* left_to_right */ 
0, /* wants_dag */ 
(interface routine names) 
(symbol-table emitters 498) 

497 

79 Interface 
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IREG 361 
left_to_right 88 

mkreg 363 
parsefl ags 370 
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{l, (Xi nterface initializer355)} 
} ; 

The MIPS and SP ARC conventions evaluate arguments left to right, but 
the X86 conventions evaluate them right to left, which is why the inter
face flag left_to_right is zero. 

X86 conventions offer no standard way for compilers to encode sym
bol tables in assembler code for debuggers, so 1 cc's X86 back end in
cludes no symbol-table emitters: 

(symbol-table emitters 498) = 497 
0, 0, 0, 0, 0, 0, 0, 

18.1 Registers 

The X86 architecture includes eight general registers. Assemblers typi
cally refer to them by a name - eax, ecx, edx, ebx, esp, ebp, esi, and edi 
- rather than by a number. 1 cc's register allocator needs a number to 
compute shift distances for register masks, so 1 cc borrows the encoding 
from the binary representation of some instructions: 

(X86 macros 498) = 496 

enum { EAX=O, ECX=l, EDX=2, EBX=3, ESI=6, EDI=7 }; 

Conventions reserve ebp for the frame pointer and esp for the stack 
pointer, so 1 cc doesn't allocate them. 

progbeg builds the structures that describe the registers: 

(X86 functions 498) = 501 497 
"" static void progbeg(argc, argv) int argc; char *argv[]; { 

int i; 

(shared progbeg 371) 

parseflags(argc, argv); 
int reg [EAX] = mkreg("eax", EAX, 1, !REG); 
i nt reg [ EDX] = mkreg("edx", EDX, 1, !REG); 
intreg[ECX] = mkreg("ecx", ECX, 1, !REG); 
int reg [EBX] = mkreg("ebx", EBX, 1, !REG); 
int reg [ES!] = mkreg("esi", ES!, 1, !REG); 
intreg[EDI] = mkreg("edi", EDI, 1, !REG); 
(X86 progbeg 499) 

} 

Assembler code uses different names for the full 32-bit register and 
its low order 8- and 16-bit subregisters. For example, assembler code 
uses eax for the first 32-bit register, ax for its bottom half, and al for 
its bottom byte. This rule requires initializing separate register vectors 
for shorts and characters: 
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(X86 data 499)= 
static Symbol charreg[32], shortreg[32], intreg[32]; 
static Symbol fltreg[32]; 

(X86 progbeg 499)= 
shortreg[EAX] = mkreg( 11 ax 11

, EAX, 1, !REG); 
shortreg[ECX] = mkreg( 11 cx 11

, ECX, 1, !REG); 
shortreg[EDX] mkreg( 11 dx 11

, EDX, 1, !REG); 
shortreg[EBX] = mkreg( 11 bx 11

, EBX, 1, !REG); 
shortreg[ESI] = mkreg( 11 si 11

, ES!, 1, !REG); 
short reg [EDI] = mkreg( 11 di 11

, EDI, 1, !REG); 

... 

501 496 ... 

499 498 ... 

(X86 progbeg 499) += 499 500 498 ... 
charreg[EAX] = mkreg( 11 al 11

, EAX, 1, !REG); 
charreg[ECX] = mkreg( 11 cl 11

, ECX, 1, !REG); 
char reg [EDX] = mkreg( 11 dl 11

, EDX, 1, !REG); 
charreg[EBX] = mkreg( 11 bl 11

, EBX, 1, !REG); 

No instructions address the bottom byte of esi or edi, so there is no byte 
version of those registers. Byte instructions can address the top half of 
each 16-bit register, but 1 cc does without these byte registers because 
using them would complicate code generation. For example, ever would 
need to generate one sequence of instructions when the operand is in 
the low-order byte and another sequence when the operand is next door. 
Table 18.2 summarizes the allocable registers. 

The floating-point registers are organized as a stack. Some operands 
of some instructions can address an arbitrary floating-point register -
from the top down - but some crucial instructions effectively assume a 
stack. For example, all variants of floating-point addition require at least 
one operand to be atop the stack. The assembler operand st denotes the 
top of the stack, and st(l) denotes the value underneath it. Pushing a 
value on the stack causes st to denote a new cell and st(l) to denote 
the cell previously denoted by st. 

1 cc was tailored for registers with fixed names, not names that change 
as a stack grows and shrinks. The X86 floating-point registers violate 

Int Short Char 

eax ax al 
ecx ex cl 
edx dx dl 
ebx bx bl 
esi si 
edi di 

TABLE 18.2 Allocable X86 registers. 

498 EAX 
498 EBX 
498 ECX 
498 EDI 
498 EDX 
498 ESI 
361 IREG 
363 mkreg 

499 
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EAX 498 
EBX 498 
ECX 498 
EDI 498 
EDX 498 
ESI 498 

FREG 361 
getreg 412 

!REG 361 
mkreg 363 

mkwildcard 363 
rmap 398 

tmask 410 
vmask 410 
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these assumptions, so 1 cc disables its register allocator for the X86 
floating-point registers and lets the instructions manage the registers. 
For example, a load instruction pushes a value onto the stack and thus ef
fectively allocates a register; an addition pops two operands and pushes 
their sum, so it effectively releases two registers and allocates one. 

The register allocator can't be disabled by simply clearing the entries 
in rmap for floats and doubles. If a node yields a value, then the reg
ister allocator assumes that it needs a register, and expects the node's 
syms [RX] to give a register class. So we need a representation of the 
floating-point registers, but the representation needs to render the reg
ister allocator harmless. One easy way to do this is to create registers 
with zero masks, which causes getreg to succeed always and to change 
no significant compiler state: 

.... 
499 500 498 ... (X86 progbeg 499)+= 

for ( i = 0 ; i < 8 ; i ++) 
fl treg [i] = mkreg ("%d", i , 0, FREG) ; 

This dodge permits 1 cc's register allocator to work, but it can't do a very 
good job. This problem exemplifies a trade-off common in retargetable 
compilers. We move as much code as seems reasonable into the machine
independent parts of the compiler, but then those parts are fixed, and 
code generators for targets with features not anticipated in the design 
require idiosyncratic work-arounds and emit suboptimal code. 

rmap stores the wildcard that identifies the default register class to 
use for each type: 

.... 
(X86 progbeg 499)+= 500 500 498 ... 

rmap[C] = mkwildcard(charreg); 
rmap[S] = mkwildcard(shortreg); 
rmap[P] = rmap[B] = rmap[U] = rmap[I] = mkwildcard(intreg); 
rmap[F] = rmap[D] = mkwildcard(fltreg); 

tmask and vmask identify the registers to use for temporaries and to al
locate to register variables. The X86 gives 1 cc only six general registers, 
and some of these are spilled by calls, block copies, and other special in
structions or sequences of instructions. If there are too many common 
subexpressions, 1 cc's simple register allocator can emit code that does 
to the registers what thrashing does to pages of virtual memory. The 
conservative solution thus reserves all six general registers for tempo
raries and allocates no variables to registers. 

(X86 progbeg 499)+= 

tmask[IREG] = (l<<EDI) 
I (l«EDX) 

vmask[IREG] = O; 

(l«ESI) 
(l«ECX) 

(l«EBX) 
(l«EAX); 

1 cc does likewise for the floating-point registers. 

.... 
500 501 498 ... 
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(X86 progbeg 499) += 

tmask[FREG] = Oxff; 
vmask[FREG] = O; 

... 
500 501 498 ... 

progbeg also emits some boilerplate required to assemble and link the 
emitted code: 

(X86 progbeg 499)+= 
print(".486\n"); 
print(" .model small\n"); 
print("extrn _turboFloat:near\n"); 
print("extrn _setargv:near\n"); 

... 
501 501 498 ... 

The references to external symbols direct the linker to arrange a partic
ular floating-point package and code to set argc and argv in each main 
routine. 

To switch from one segment to another requires two directives: an 
ends that names the current segment, and a segment that names the 
new one: 

(X86 data 499)+= 
static int cseg; 

(X86 functions 498) + = 
static void segment(n) int n; { 

if (n == cseg) 

} 

return; 
if (cseg == CODE) 

print("_TEXT ends\n"); 
else if (cseg == DATA I I cseg 

print("_DATA ends\n"); 
cseg = n; 
if (cseg == CODE) 

print("_TEXT segment\n"); 
else if (cseg == DATA I I cseg 

print("_DATA segment\n"); 

... 
499 509 496 ... 
... 

498 502 497 ... 

BSS I I cseg LIT) 

BSS I I cseg -- LIT) 

export needs a directive that must appear between segments. CODE, DATA, 
LIT, and BSS are all positive, so export can use segment(O) to close the 
active segment without opening a new one. 

progbeg clears cseg, which records that the back end is between seg
ments: 

(X86 progbeg 499)+= 
cseg = O; 

... 
501 509 498 ... 

progend emits boilerplate that closes the current segment and the en
tire assembler program: 

91 BSS 
91 CODE 
91 DATA 
90 export 

501 

456 " (MIPS) 
490 " (SPARC) 
523 " (X86) 
361 FREG 

91 LIT 
89 progbeg 

433 " (MIPS) 
466 " (SPARC) 
498 " (X86) 

89 progend 
466 " (SPARC) 
502 " (X86) 
410 tmask 
410 vmask 
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count 81 
NELEMS 19 
optype 98 

progbeg 89 
(MIPS) " 433 

(SPARC) " 466 
(X86) " 498 
segment 91 

(MIPS) " 459 
(SPARC) " 491 

(X86) " 501 
spill 427 

x.kids 359 
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(X86 functions 498) += 
static void progend() { 

segment(O); 
print("end\n"); 

} 

... 
501 502 497 .... 

target records that an operator needs a specific register, and clobber 
calls spi 11 to spill and reloads busy register that are overwritten by a 
few operators: 

(X86 functions 498) += 
static void target(p) Node p; { 

switch (p->op) { 
(X86 target 508) 
} 

} 

static void clobber(p) Node p; { 
static int nstack = O; 

} 

nstack = ckstack(p, nstack); 
switch (p->op) { 
(X86 clobber 513) 
} 

... 
502 502 497 .... 

The cases missing above appear with the instructions for the germane 
operators in the next section. clobber tracks in nstate the height of 
the stack of floating-point registers. When progbeg disabled allocation 
of these registers, it also disabled the spiller, so the X86 code generator 
must cope with floating-point spills itself. ckstack adjusts nstate to 
record the result of the current instruction: ... 
(X86 functions 498) += 502 507 497 .... 

#define isfp(p) (optype((p)->op)==F I I optype((p)->op)==D) 

static int ckstack(p, n) Node p; int n; { 
int i; 

} 

for (i = O; i < NELEMS(p->x.kids) && p->x.kids[i]; i++) 
if (isfp(p->x.kids[i])) 

n--; 
if (isfp(p) && p->COUnt > 0) 

n++; 
if (n > 8) 

error("expression too complicated\n"); 
return n; 
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The for loop pops the source registers, and the subsequent if statement 
pushes any result. Floating-point instructions done for side effect -
such as assignments and conditional branches - push nothing. ckstack 
directs the programmer to simplify the expression to avoid the spill. 1 cc 
merely reports the error because such spills are rare, so reports are un
likely to irritate users. If 1 cc ignored the problem completely, however, 
it would silently emit incorrect code for some programs, which is unac
ceptable. Exercises 18.8 and 18.9 explore related matters. 

18.2 Selecting Instructions 

Table 18.3 summarizes the nonterminals in lee's lburg specification for 
the X86. It provides a high-level overview of the organization of the tree 
grammar. 

Integer and address constants denote themselves: 

(X86 rules 503) = 
aeon: ADDRGP 
aeon: con 

"%a" 
"%0" 

504 497 ..... 

A base address may be an ADDRGP or the sum of an aeon and one of the 

Name 

aeon 
addr 
addrj 
base 
cm pf 
con 
conl 
con2 
con3 
flt 
index 
mem 
memf 
mr 
mrcO 
mrcl 
mrc3 
re 
res 
reg 
stmt 

What It Matches 

address constants 
address calculations for instructions that read and write memory 
address calculations for instructions that jump 
unindexed address calculations 
floating-point comparands 
constants 
the integer constant 1 
the integer constant 2 
the integer constant 3 
floating-point operands 
indexed address calculations 
memory cells used by general-purpose operators 
memory cells used by floating-point operators 
memory cells and registers 
memory cells, registers, and constants whose memory cost is 0 
memory cells, registers, and constants whose memory cost is 1 
memory cells, registers, and constants whose memory cost is 3 
registers and constants 
register cl and constants between 0 and 31 inclusive 
computations that yield a result in a register 
computations done for side effect 

TABLE 18.3 X86 nonterminals. 

503 

502 ckstack 



504 

range 388 
reg 403 
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general registers. The assembler syntax puts the register name in square 
brackets: 

(X86 rules 503)+= 
base: ADDRGP 
base: reg 
base: ADDI(reg,acon) 
base: ADDP(reg,acon) 
base: ADDU(reg,acon) 

11%all 
11 [%0] II 
11%1[%0] II 
11%1[%0] II 
11%1[%0] II 

... 
503 504 497 ..... 

If the register is the frame pointer, the same operation computes the 
address of a formal or local: 

(X86 rules 503)+= 
base: ADDRFP 11%a[ebp]" 
base: ADDRLP 11%a[ebp]" 

... 
504 504 497 ..... 

Some addresses use an index, which is a register scaled by one, two, four, 
or eight: 

(XB6 rules 503)+= 
... 

504 504 497 ..... 
index: reg "%0 11 
index: LSHI(reg,conl) "%0*2" 
index: LSHI(reg,con2) "%0*4" 
index: LSHI(reg,con3) "%0*8" 

conl: CNS TI "1" range(a, 1, 1) 
conl: CNSTU "l" range(a, 1, 1) 
con2: CNSTI "2" range(a, 2, 2) 
con2: CNSTU "2" range(a, 2, 2) 
con3: CNSTI "3" range(a, 3' 3) 
con3: CNSTU "3" range(a, 3' 3) 

Recall that cost expressions are evaluated in a context in which a denotes 
the node being labelled, which here is the constant value being compared 
with small integers. The unsigned shifts to the left are equivalent to the 
integer shifts: 

(XB6 rules 503)+= 
index: LSHU(reg,conl) "%0*2" 
index: LSHU(reg,con2) "%0*4" 
index: LSHU(reg,con3) "%0*8" 

... 
504 504 497 ..... 

A general address may be a base address or the sum of a base address 
and an index. The front end puts index operations on the left; see Sec
tion 9.7. 

(XB6 rules 503) + = 
addr: base "%0" 

... 
504 505 497 ..... 
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addr: ADDI(index,base) 
addr: ADDP(index,base) 
addr: ADDU(index,base) 

"%1[%0]" 
"%1[%0]" 
"%1[%0]" 

If the base address is zero, the sum degenerates to just the index: 

(X86 rules 503)+= 
addr: index "[%0]" 

.... 
504 505 497 ..... 

Many instructions accept an operand in memory. Assemblers for many 
machines encode the datatype in the instruction opcode, but here the 
operand specifier does the job. word denotes a 16-bit operand, and dword 
a 32-bit operand. 

(X86 rules 503)+= 
mem: INDIRC(addr) 
mem: INDIRI(addr) 
mem: INDIRP(addr) 
mem: INDIRS(addr) 

"byte ptr %0" 
"dword ptr %0" 
"dword ptr %0" 
"word ptr %0" 

.... 
505 505 497 ..... 

Some instructions accept a register or immediate operand, some accept 
an operand in a register or memory, and some accept all three: 

(X86 rules 503)+= 
.... 

505 505 497 ..... 
re: reg "%0" 
re: con "%0" 

mr: reg "%0" 
mr: mem "%0" 

mrcO: mem "%0" 
mrcO: re "%0" 

Some instructions in the last class access memory without cost; others 
suffer a penalty of one cycle, and still others a penalty of three cycles: 

(X86 rules 503)+= 
.... 

505 505 497 ..... 
mrcl: mem "%0" 1 
mrcl: re "%0" 

mrc3: mem "%0" 3 
mrc3: re "%0" 

The lea instruction loads an address into a register, and the mov instruc
tion loads a register, constant, or memory cell: 

(X86 rules 503)+= 
reg: addr 
reg: mrcO 

"lea %c,%0\n" 1 
"mov %c,%0\n" 1 

.... 
505 506 497 ..... 

505 

403 reg 



506 

emit 92 
emit 393 
move 394 

moveself 394 
reg 403 

requate 394 
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reg: LOADC(reg) "mov %c,%0\n" move(a) 
reg: LOADI(reg) "mov %c,%0\n" move(a) 
reg: LOADP(reg) "mov %c,%0\n" move(a) 
reg: LOADS(reg) "mov %c,%0\n" move(a) 
reg: LOADU(reg) "mov %c,%0\n" move(a) 

mov incurs no additional penalty for its memory access, so it uses mrcO. 
Recall that the cost function move returns one but also marks the node 
as a register-to-register copy; emit, requate, and moveself collaborate 
to remove some marked instructions. 

Integral addition and subtraction incur a one-cycle penalty when ac
cessing memory, so they use mrcl: 

(X86 rules 503)+= 
reg: ADDI (reg , m rel) "?mov %c,%0\nadd %c,%1\n" 
reg: ADDP(reg,mrcl) "?mov %c,%0\nadd %c,%1\n" 
reg: ADDU(reg,mrcl) "?mov %c,%0\nadd %c,%1\n" 
reg: SUBI(reg,mrcl) "?mov %c,%0\nsub %c,%1\n" 
reg: SUBP(reg,mrcl) "?mov %c,%0\nsub %c,%1\n" 
reg: SUBU (reg, mrcl) "?mov %c,%0\nsub %c,%1\n" 

The bitwise instructions are similar: 

(X86 rules 503)+= 
reg: BANDU(reg,mrcl) 
reg: BORU(reg,mrcl) 
reg: BXORU(reg,mrcl) 

"?mov %c,%0\nand %c,%1\n" 
"?mov %c,%0\nor %c,%1\n" 
"?mov %c,%0\nxor %c,%1\n" 

1 
1 
1 
1 
1 
1 

.... 
505 506 ... 

.... 
506 507 
1 
1 
1 

... 

497 

497 

Recall that a leading question mark in the assembler template tells emit 
to omit the first instruction in the template if the current instruction 
reuses the first kid's destination register. That is, if %c is eax, %0 is ebx 
and %1 is ecx, then the SUBU template above emits 

mov eax,ebx 
sub eax,ecx 

but if %c is eax, %0 is eax, and %1 is ecx, the same template emits 

sub eax,ecx 

The binary instructions clobber their first operand, so the general imple
mentation must start by copying their first operand into the destination 
register, but the copy is redundant in many cases. The costs above are 
estimates, because 1 cc doesn't determine whether the mov is needed until 
it allocates registers, which is too late to help select instructions. This is 
a classic phase-ordering problem: the compiler must select instructions 
to allocate registers, but it must allocate registers to compute instruction 
costs accurately. 

The binary operators above have a variant that modifies a memory 
cell. Some fix the other operand to be one. For example, the instruction 



18.2 • SELECTING INSTRUCTIONS 

inc dword ptr i 

bumps i by one. 

(X86 rules 503) += 
... 

506 507 497 ... 
stmt: ASGNI(addr,ADDI(mem,conl)) "inc %1\n" memop(a) 
stmt: ASGNI(addr,ADDU(mem,conl)) "inc %1\n" memop(a) 
stmt: ASGNP(addr,ADDP(mem,conl)) "inc %1\n" memop(a) 
stmt: ASGNI(addr,SUBI(mem,conl)) "dee %1\n" memop(a) 
stmt: ASGNI(addr,SUBU(mem,conl)) "dee %1\n" memop(a) 
stmt: ASGNP(addr,SUBP(mem,conl)) "dee %1\n" memop(a) 

The lone operand identifies the source operand and the destination. 
memop confirms that the tree has the form ASGNa(x ,b(INDIR(x) ,c)): 

(X86 functions 498) += 
... 

502 507 497 ... 
static int memop(p) Node p; { 

if (generic(p->kids[l]->kids[O]->op) == INDIR 
&& sametree(p->kids[O], p->kids[l]->kids[O]->kids[O])) 

return 3; 
else 

return LBURG_MAX; 
} 

memop confirms the overall shape of the tree, and sametree confirms that 
the destination is the same as the first source operand: 

(X86 functions 498) += 
static int sametree(p, q) Node p, q; { 

return p == NULL && q == NULL 

... 
507 511 497 ... 

I I p && q && p->op == q->op && p->syms[O] 
&& sametree(p->kids[O], q->kids[O]) 
&& sametree(p->kids[l], q->kids[l]); 

== q->syms[O] 

} 

Other variants on the binary operators permit the second operand to be 
a register or constant: 

(X86 rules 503)+= 
... 

507 508 497 ... 
stmt: ASGNI(addr,ADDI(mem,rc)) "add %1,%2\n" memop(a) 
stmt: ASGNI(addr,ADDU(mem,rc)) "add %1,%2\n" memop(a) 
stmt: ASGNI(addr,SUBI(mem,rc)) "sub %1,%2\n" memop(a) 
stmt: ASGNI(addr,SUBU(mem,rc)) "sub %1,%2\n" memop(a) 

stmt: ASGNI(addr,BANDU(mem,rc)) "and %1,%2\n" memop(a) 
stmt: ASGNI(addr,BORU(mem,rc)) "or %1,%2\n" memop(a) 
stmt: ASGNI(addr,BXORU(mem,rc)) "xor %1,%2\n" memop(a) 

Each integral unary operator clobbers its lone operand: 

507 

403 stmt 



508 

cse 346 
EAX 498 
ECX 498 

memop 507 
range 388 

reg 403 
rtarget 400 

RX 362 
setreg 399 

stmt 403 
VREG 361 
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.... 
(X86 rules 503)+= 

reg: BCOMU(reg) 
reg: NEGI(reg) 

507 508 497 
"?mov %c,%0\nnot %c\n" 2 
"?mov %c,%0\nneg %c\n" 2 

stmt: ASGNI(addr,BCOMU(mem)) 
stmt: ASGNI(addr,NEGI(mem)) 

"not %1\n" memop(a) 
"neg %1\n" memop(a) 

... 

The shift instructions are similar to the other binary integral instruc
tions, except that the shift distance must be constant or in byte register 
cl, which is the bottom of register ecx: 

(X86 rules 503) += 
.... 

508 509 ... 
reg: LSHI(reg,rcS) "?mov %c,%0\nsal %c,%1\n" 2 
reg: LSHU(reg, rcS) "?mov %c,%0\nshl %c,%1\n" 2 
reg: RSHI(reg,rcS) "?mov %c,%0\nsar %c,%1\n" 2 
reg: RSHU(reg,rcS) "?mov %c,%0\nshr %c,%1\n" 2 

stmt: ASGNI(addr,LSHI(mem,rcS)) 
stmt: ASGNI(addr,LSHU(mem,rcS)) 
stmt: ASGNI(addr,RSHI(mem,rcS)) 
stmt: ASGNI(addr,RSHU(mem,rcS)) 

res: CNSTI "%a" range(a, 0, 31) 
res: reg "cl" 

"sal %1,%2\n" memop(a) 
"shl %1,%2\n" memop(a) 
"sar %1,%2\n" memop(a) 
"shr %1,%2\n" memop(a) 

497 

We take care to emit no shifts by constants less than zero or greater than 
31. There are many X86 assemblers, so we can't be sure that some won't 
issue a diagnostic for undefined shifts. rtarget arranges to compute into 
cl all shift counts that aren't constants between zero and 31 inclusive: 

(is p->kids[l] a constant common subexpression?508)= 
generic(p->kids[l]->op) == INDIR 

&& p->kids[l]->kids[O]->OP == VREG+P 
&& p->kids[l]->syms[RX]->u.t.cse 
&& generic(p->kids[l]->syms[RX]->u.t.cse->op) == CNST 

(X86 target 508) = 
case RSHI: case RSHU: case LSHI: case LSHU: 

if (generic(p->kids[l]->op) != CNST 

509 ... 

508 

502 

&& ! C (is p->ki ds [1] a constant common subexpression? 508))) { 
rtarget(p, 1, intreg[ECX]); 
setreg(p, intreg[EAX]); 

} 
break; 

The call on setreg above ensures that this node doesn't target ecx. If it 
did, the mov instruction that starts the template would clobber ecx and 
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thus cl before its value has been used. eax is not the only acceptable 
register, but non-constant shift amounts were rare in our tests, so it 
wasn't worth tailoring a wildcard without ecx for these shifts. 

The i mu l instruction multiplies signed integers. One variant multiplies 
a register by a register, constant, or memory cell: 

(X86 rules 503) + = 
... 

508 509 497 ... 
reg: MULI(reg,mrc3) "?mov %c,%0\nimul %c,%1\n" 14 

Another variant takes three operands and leaves in a register the product 
of a constant and a register or memory cell: 

(X86 rules 503)+= 
reg: MULI(con,mr) "imul %c,%1,%0\n" 13 

... 
509 509 497 ... 

The remaining multiplicative instructions are more constrained. The 
mul instruction multiples unsigned integers. 

... 
509 510 497 ... (X86 rules 503) += 

reg: MULU(reg,mr) "mul %1\n" 13 

It expects its first operand in eax and leaves its result in the double 
register edx-eax; eax holds the low-order bits, which is the result of the 
operation, unless the operation overflows, in which case ANSI calls the 
result undefined, so eax is as good a result as any: 

(X86 target 508) += 

case MULU: 
setreg(p, quo); 
rtarget(p, 0, intreg[EAX]); 
break; 

... 
508 510 502 ... 

quo and rem denote the eax-edx register pair, which hold a product after 
an unsigned multiplication and a dividend before a division. After a 
division, eax holds the quotient and edx the remainder. 

(X86 data 499) += 
... 

501 496 

static Symbol quo, rem; 

... 
501 498 (X86 progbeg 499)+= 

quo= mkreg("eax", EAX, 1, IREG); 
quo->x.regnode->mask I= l<<EDX; 
rem= mkreg("edx", EDX, 1, IREG); 
rem->x.regnode->mask I= l<<EAX; 

The div instruction divides integers. It expects its first argument in the 
edx-eax double register, and it leaves the quotient in eax and the remain
der in edx: 

498 EAX 
498 EDX 
361 IREC 
361 mask 
363 mkreg 
403 reg 

500 

400 rtarget 
399 setreg 
362 x.regnode 



510 

EAX 498 
ECX 498 

emit2 356 
(MIPS) " 444 

(SPARC) " 478 
(X86) " 511 

move 394 
quo 509 
reg 403 
rem 509 

rtarget 400 
setreg 399 
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.... 
(X86 target 508) += 509 512 502 

case DIVI: case DIVU: 
setreg(p, quo); 
rtarget(p, 0, intreg[EAX]); 
rtarget(p, 1, intreg[ECX]); 
break; 

case MODI: case MODU: 
setreg(p, rem); 
rtarget(p, 0, intreg[EAX]); 
rtarget(p, 1, intreg[ECXJ); 
break; 

... 

An xor instruction clears edx to prepare for an unsigned division: 
.... 

(X86 rules 503)+= 509 510 497 ... 
reg: DIVU(reg,reg) "xor edx,edx\ndiv %1\n" 
reg: MODU(reg,reg) "xor edx,edx\ndiv %1\n" 

The cdq instruction propagates eax's sign bit through edx to prepare for 
a signed division: 

(X86 rules 503)+= 
reg: DIVI(reg,reg) "cdq\nidiv %1\n" 
reg: MODI(reg,reg) "cdq\nidiv %1\n" 

.... 
510 510 497 ... 

The first instruction clobbers edx, so it's vital that that the divisor be 
elsewhere. Targeting it into ecx above is one solution. It's gratuitously 
restrictive, but integer division and modulus are not particularly com
mon. 

The conversions between integral and pointer types are vacuous and 
thus implemented by mov instructions. move marks them as such in 
hopes of eliminating them: 

(X86 rules 503)+= 
reg : CVIU C reg) 
reg: CVPU(reg) 
reg: CVUI C reg) 
reg: CVUP(reg) 

"mov %c,%0\n" 
"mov %c,%0\n" 
"mov %c,%0\n" 
"mov %c,%0\n" 

move(a) 
move(a) 
move(a) 
move(a) 

.... 
510 510 497 ... 

movsx and movzx are like mov, but they sign- or zero-extend to widen the 
input: 

(X86 rules 503)+= 
.... 

510 511 497 ... 
reg: CVCI(INDIRC(addr)) "movsx %c,byte ptr %0\n" 3 
reg: CVCU(INDIRC(addr)) "movzx %c,byte ptr %0\n" 3 
reg: CVSI(INDIRS(addr)) "movsx %c,word ptr %0\n" 3 
reg: CVSU(INDIRS(addr)) "movzx %c,word ptr %0\n" 3 

movsx and movzx can also operate on registers, but they require help 
from emit2, because the source operand must name the 8- or 16-bit sub
register: 
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(X86 rules 503) +== 
.... 

510 511 497 ... 
reg: CVCI(reg) "# extend\n" 3 
reg: CVCU(reg) "# extend\n" 3 
reg: CVSI(reg) "# extend\n" 3 
reg: CVSU(reg) "# extend\n" 3 

.... 
(X86 functions 498) +== 507 512 497 

static void emit2(p) Node p; { 
(X86 emit2 511) 

} 

(result 511) == 
p->syms[RX]->x.name 

... 

511 

(X86 emit2 511)== 511 511 ... 
#define preg(f) ((f)[getregnum(p->x.kids[O])]->x.name) 

if (p->op == CVCI) 
print("movsx %s,%s\n", (result511), preg(charreg)); 

else if (p->op == CVCU) 
pri nt("movzx %s ,%s\n", (result511), preg(charreg)); 

else if (p->op == CVS!) 
print("movsx %s,%s\n", (result511), preg(shortreg)); 

else if (p->op == CVSU) 
print("movzx %s,%s\n", (result511), preg(shortreg)); 

The integral narrowing conversions also require special treatment: 

(X86 rules 503)+== 
.... 

511 512 ... 
reg: CVIC(reg) "# truncate\n" 1 
reg: CVIS(reg) "# truncate\n" 1 
reg: CVUC(reg) "# truncate\n" 1 
reg: CVUS(reg) "# truncate\n" 1 

497 

The template "?mov %c,%0\n" and cost move(a) would move the input 
to the output and omit the move when the source and destination are the 
same, but mov expects both its source and target to be the same size, so 
when a mov is necessary, emi t2 emits one but uses the 16-bit version of 
the source and target registers, which mollifies the assembler and copies 
enough bits for all integral narrowing conversions: 

(X86 emit2 511)+== 
else if (p->op == CVIC I I p->op == CVIS 

I I p->OP == cvuc I I p->Op == CVUS) { 
char *dst = shortreg[getregnum(p)]->x.name; 
char *src = preg(shortreg); 
if (dst ! = src) 

.... 
511 511 

403 reg 
362 RX 
359 x.kids 
362 x.name 

511 



512 

docall 367 
EDI 498 
ES! 498 

maxargoffset 366 
mkactual 366 
rtarget 400 

stmt 403 
target 357 

(MIPS) " 435 
(SPARC) " 468 

(X86) " 502 
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print("mov %s,%s\n", dst, src); 
} 

The mov instruction stores as well as loads: 

{X86 rules 503)+= 
stmt: ASGNC(addr,rc) "mov byte ptr %0,%1\n" 1 
stmt: ASGNI(addr,rc) "mov dword ptr %0,%1\n" 1 
stmt: ASGNP(addr,rc) "mov dword ptr %0,%1\n" 1 
stmt: ASGNS(addr,rc) "mov word ptr %0,%1\n" 1 

... 
511 512 497 ..... 

ARGI and ARGP are analogous to ASGNI and ASGNP, but their target is a 
new cell atop the stack. They use the push instruction, which pushes an 
argument onto the stack: 

{X86 rules 503) += 
stmt: ARGI(mrc3) "push %0\n" 1 
stmt: ARGP(mrc3) "push %0\n" 1 

... 
512 513 497 ..... 

The mrc3 above is correct, if counter-intuitive. push 0 takes four cycles 
even though 

mov eax,O 
push eax 

takes only two. 
doarg calls mkactua l, which computes the stack offset for the next 

actual argument and updates maxargoffset. Unlike 1 cc's RISC targets, 
the X86 has a push instruction that obviates any need for mkactual's 
stack offset, but doarg still calls mkactual to compute maxargoffset, 
which doca 11 stores in CALL nodes because the ca 11 instructions need 
it to pop the actual arguments off the stack after the call. 

{X86 functions 498) += 
static void doarg(p) Node p; { 

mkactual(4, p->syms[O]->u.c.v.i); 
} 

... 
511 513 497 ..... 

ASGNB copies a block of memory. The movsb instruction copies a byte 
from the address in esi to the address in edi, then adds one to each 
of those registers. The rep string-instruction prefix repeats the suffix in
struction ecx times, so the combination rep movsb copies ecx bytes from 
the address in esi to the address in edi. target arranges to compute 
the source and destination addresses into esi and edi: ... 

510 513 502 ..... {X86 target 508) += 
case ASGNB: 

rtarget(p, 0, intreg[EDI]); 
rtarget(p, 1, intreg[ESI]); 
break; 

The template for ASGNB copies the size of the block into ecx and issues 
the rep movsb: 



18.2 • SELECTING INSTRUCTIONS 

(X86 rules 503)+= 
.... 

512 513 497 ... 
stmt: ASGNB(reg,INDIRB(reg)) "mov ecx,%a\nrep movsb\n" 

ARGB is similar. The source is the ARGB's lone child: 

(X86 target 508)+= 

case ARGB: 
rtarget(p->kids[O], 0, intreg[ESI]); 
break; 

.... 
512 517 502 ... 

The destination is fixed to be the top of the stack, so the template starts 
by allocating a block atop the stack and pointing edi at it: 

.... 
513 513 497 ... (X86 rules 503)+= 

stmt: ARGB(INDIRB(reg)) "sub esp,%a\nmov edi,esp\n_ 
mov ecx,%a\nrep movsb\n" 

rep clobbers ecx and movsb clobbers esi and edi: 

(X86 clobber 513)= 
case ASGNB: case ARGB: 

spill(l<<ECX I l<<ESI I l<<EDI, !REG, p); 
break; 

The bl k procedures aren't needed: 

(X86 functions 498) += 
static void blkfetch(k, off, reg, tmp) 
int k, off, reg, tmp; {} 
static void blkstore(k, off, reg, tmp) 
int k, off, reg, tmp; {} 
static void blkloop(dreg, doff, sreg, soff, size, 
int dreg, doff, sreg, soff, size, tmps[]; {} 

517 502 ... 

.... 
512 518 497 ... 

tmps) 

The fragment (interface routine names) expects static bl k procedures 
and appears in x86IR, so we must define the routines, but they don't 
have to do anything because nothing calls them 

The floating-point instructions use a stack of eight 80-bit registers. 
All temporary values are 80 bits; ANSI C allows calculations to use extra 
precision, so the code generator need not compensate. 

Some floating-point instructions take an operand from memory. The 
operand, not the operator, specifies the type: 

(X86 rules 503)+= 
memf: INDIRD(addr) 
memf: INDIRF(addr) 
memf: CVFD(INDIRF(addr)) 

"qword ptr %0" 
"dword ptr %0" 
"dword ptr %0" 

.... 
513 514 497 ... 

The fl d instruction loads a floating-point value from memory and pushes 
it onto the floating-point stack: 

498 ECX 
498 EDI 
498 ESI 
361 IREG 
403 reg 
400 rtarget 
427 spill 
403 stmt 
497 x86IR 

513 



514 

reg 403 
stmt 403 
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.... 
(X86 rules 503)+= 513 514 497 ..... 

reg: memf "fl d %0\n" 3 

fstp pops the floating-point stack and stores the result in memory: 

(X86 rules 503)+= 
.... 

514 514 497 ..... 
stmt: ASGND(addr,reg) "fstp qword ptr %0\n" 7 
stmt: ASGNF(addr,reg) "fstp dword ptr %0\n" 7 
stmt: ASGNF(addr,CVDF(reg)) "fstp dword ptr %0\n" 7 

Floating-point arguments travel on the memory stack, so a subtraction 
allocates space for them, and an fstp fills the space: 

(X86 rules 503)+= 

stmt: ARGD(reg) 
stmt: ARGF(reg) 

.... 
514 514 ..... 

"sub esp,8\nfstp qword ptr [esp]\n" 
"sub esp,4\nfstp dword ptr [esp]\n" 

497 

The unary operators change the element atop the floating-point stack. 
For example, the fchs instruction negates the top of the stack: 

.... 
(X86rules503)+= 514 514 497 ..... 

reg: NEGD(reg) "fchs\n" 
reg: NEGF(reg) "fchs\n" 

The binary operators work on the top two elements of the floating-point 
stack or on the top element and an operand from memory: 

(X86 rules 503)+= 
.... 

514 514 ..... 497 
flt: memf " %0" 
flt: reg "p st(l) ,st" 

For example, the instruction 

fsubp st(l),st 

subtracts the top of the stack (st) from the element one (st(l)) un
derneath it and pops (the p suffix) the stack once, discarding the value 
subtracted. The instruction 

fsub qword ptr x 

subtracts the 64-bit value of x from the top of the stack. The p suffix 
is missing, so the height of the floating-point stack doesn't change. The 
other binary operators are similar: 

(X86 rules 503)+= 

reg: ADDD(reg,flt) 
reg: ADDF(reg,flt) 
reg: DIVD(reg,flt) 
reg: DIVF(reg,flt) 
reg: MULD(reg,flt) 
reg: MULF(reg,flt) 

"fadd%1\n" 
"fadd%1\n" 
"fdiv%1\n" 
"fdiv%1\n" 
"fmul%1\n" 
"fmul%1\n" 

reg: SUBD(reg,flt) "fsub%1\n" 
reg: SUBF(reg, flt) "fsub%1\n" 

.... 
514 515 497 ..... 
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The conversion from float to double does nothing to a floating-point reg
ister, because the register is already 80 bits wide and thus needs no 
further widening. CVFD's widening has thus already been done: 

... 
514 515 497 ... (X86 rules 503) += 

reg: CVFD(reg) "# CVFD\n" 

No instruction directly narrows a double to a float, so we must store the 
value into a temporary float, which narrows the value. Then we reload 
the value, which widens it again, but the extra precision is gone: 

(X86 rules 503)+= 

reg: CVDF(reg) 

... 
515 515 497 ... 

"sub esp,4\nfstp dword ptr O[esp]\n_ 
fld dword ptr O[esp]\nadd esp,4\n" 12 

The conversion from double to integer is similar. The instruction fi stp 
pops the floating-point stack, converts the value to an integral value, and 
stores it in memory: 

(X86 rules 503)+= 
... 

515 515 497 ... 
stmt: ASGNI(addr,CVDI(reg)) "fistp dword ptr %0\n" 29 

If the code needs the integral result in a (general) register, then we'll 
create, use, and free a temporary on the stack in memory: 

(X86 rules 503)+= 
reg: CVDI(reg) 

... 
515 515 497 ... 

"sub esp,4\n_ 
fistp dword ptr O[esp]\npop %c\n" 31 

The fi l d instruction loads an integer, converts it to an 80-bit floating
point value, and pushes it onto the floating-point stack: 

(X86 rules 503) += 
... 

515 515 497 ... 
reg: CVID(INDIRI(addr)) "fild dword ptr %0\n" 10 

If the operand comes from a (general) register, then we create, use, and 
free another temporary on the stack in memory: 

(X86 rules 503)+= 
reg: CVID(reg) 

... 
515 515 497 ... 

"push %0\n_ 
fild dword ptr O[esp]\nadd esp,4\n" 12 

The jmp instruction jumps unconditionally. lt accepts a label, register, 
or memory cell: 

(X86rules 503)+= 
... 

515 516 497 ... 
addrj: ADDRGP "%a" 
addrj: reg "%0" 2 
addrj: mem "%0" 2 

61 ptr 
403 reg 
403 stmt 

515 



516 

reg 403 
stmt 403 
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stmt: JUMPV(addrj) "jmp %0\n" 3 
stmt: LABELV "%a:\n" 

The conditional branches compare two values and branch when the con
dition is met. The cmp instruction does the comparisons and has several 
variants. One compares a memory cell with a register or constant. The 
signed integers have all six relationals: 

(X86 rules 503)+= 

stmt: EQI(mem,rc) 
stmt: GEI(mem,rc) 
stmt: GTI(mem,rc) 
stmt: LEI(mem,rc) 
stmt: LTI(mem,rc) 
stmt: NEI(mem,rc) 

"cmp %0,%1\nje %a\n" 
"cmp %0,%1\njge %a\n" 
"cmp %0,%1\njg %a\n" 
"cmp %0,%1\njle %a\n" 
"cmp %0,%1\njl %a\n" 
"cmp %0,%1\njne %a\n" 

5 
5 
5 
5 
5 
5 

.... 
515 516 497 ..... 

The unsigned integers have only four because EQI and NEI work for un
signed integers too: 

(X86 rules 503) += 
.... 

516 516 497 ..... 
stmt: GEU(mem,rc) "cmp %0,%1\njae %a\n" 5 
stmt: GTU(mem,rc) "cmp %0,%1\nja %a\n" 5 
stmt: LEU(mem,rc) "cmp %0,%1\njbe %a\n" 5 
stmt: LTU(mem,rc) "cmp %0,%1\njb %a\n" 5 

Another variant of cmp compares a register to a constant, a memory cell, 
or another register, so we repeat the signed and unsigned rules above 
with this combination of operands: 

(X86 rules 503)+= 
.... 

516 516 497 ..... 
stmt: EQI(reg,mrcl) "cmp %0,%1\nje %a\n" 4 
stmt: GEI (reg, mrcl) "cmp %0,%1\njge %a\n" 4 
stmt: GTI(reg,mrcl) "cmp %0,%1\njg %a\n" 4 
stmt: LEI(reg,mrcl) "cmp %0,%1\njle %a\n" 4 
stmt: LTI(reg,mrcl) "cmp %0,%1\njl %a\n" 4 
stmt: NEI(reg,mrcl) "cmp %0,%1\njne %a\n" 4 

stmt: GEU(reg, mrcl) "cmp %0,%1\njae %a\n" 4 
stmt: GTU(reg,mrcl) "cmp %0,%1\nja %a\n" 4 
stmt: LEU(reg,mrcl) "cmp %0,%1\njbe %a\n" 4 
stmt: LTU(reg,mrcl) "cmp %0,%1\njb %a\n" 4 

The instruction fcomp x pops one element from the floating-point 
stack and compares it with the operand x in memory. The fcompp variant 
pops both comparands from the floating-point stack. The nonterminal 
cmpf allows one rule to emit both variants: 

(X86 rules 503)+= 

cmpf: memf " %0" 
cmpf: reg "p" 

.... 
516 517 497 ..... 
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The similar nonterminal flt, which is defined on page 514, won't do, 
because the assembler requires a st(l), st on binary operators but cu
riously forbids it on fcomp. fcomp stores the result of the comparison in 
some machine flags. The instruction fststw ax stores the flags in the 
bottom of eax, and the instruction sahf loads them into the flags tested 
by the conditional branch instructions: 

(X86 rules 503) += 
... 

516 517 497 .... 
stmt: EQD(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\nje %a\n" 
stmt: GED(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njbe %a\n" 
stmt: GTD(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njb %a\n" 
stmt: LED(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njae %a\n" 
stmt: LTD(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\nja %a\n" 
stmt: NED(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njne %a\n" 

stmt: EQF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\nje %a\n" 
stmt: GEF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njbe %a\n" 
stmt: GTF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njb %a\n" 
stmt: LEF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njae %a\n" 
stmt: LTF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\nja %a\n" 
stmt: NEF(cmpf,reg) "fcomp%0\nfstsw ax\nsahf\njne %a\n" 

clobber records that the floating-point conditional branches destroy eax: ... 
513 518 502 .... (X86 clobber 513)+= 

case EQD: case LED: case GED: 
case EQF: case LEF: case GEF: 

spill(l<<EAX, !REG, p); 
break; 

case LTD: case GTD: case NED: 
case LTF: case GTF: case NEF: 

The ca 11 instruction pushes on the stack the address of the next in
struction and jumps to the address specified by its operand: 

(X86 rules 503) += 
reg: CALLI(addrj) 
stmt: CALLV(addrj) 

"call %0\nadd esp,%a\n" 
"call %0\nadd esp,%a\n" 

... 
517 518 497 .... 

The add instruction pops the arguments off the stack after the call. The 
front end points each call node's syms [OJ at a symbol equal to the num
ber of bytes of actual arguments. The %a causes this number to be emit
ted. The return value arrives in eax: 

(X86 target 508) += 
case CALLI: case CALLV: 

setreg(p, intreg[EAX]); 
break; 

case RETI: 
rtarget(p, 0, intreg[EAX]); 
break; 

... 
513 502 

517 

357 clobber 
435 " (MIPS) 
468 " (SPARC) 
502 " (X86) 
498 EAX 
361 !REG 
403 reg 
400 rtarget 
399 setreg 
427 spi 11 
403 stmt 
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askregvar 412 
AUTO 80 

callee 93 
caller 93 

EAX 498 
EDX 498 

!REG 361 
isfloat 60 

mkauto 365 
progbeg 89 

(MIPS) " 433 
(SPARC) " 466 

(X86) " 498 
reg 403 

rmap 398 
spill 427 
stmt 403 
ttob 73 

vmask 410 
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Floating-point functions return a value in the top of the stack of floating
point registers: 

(X86 rules 503)+= 
reg: CALLF(addrj) 
reg: CALLD(addrj) 

(X86 clobber 513)+= 

"call %0\nadd esp,%a\n" 
"call %0\nadd esp,%a\n" 

case CALLO: case CALLF: 
spill(l<<EDX I l<<EAX, !REG, p); 
break; 

... 
517 518 497 .... 

... 
517 502 

Return nodes exist, as usual, more to guide register targeting than to 
emit code: 

(X86 rules 503)+= 
... 

518 497 
stmt: RETI(reg) "# ret\n" 
stmt: RETF(reg) "# ret\n" 
stmt: RETD(reg) "# ret\n" 

18.3 Implementing Functions 

The front end calls local to announce a local variable, including the 
temporaries that it generates. The code generator assigns no floating
point locals - not even temporaries - to registers, so local starts by 
forcing them onto the stack: 

(X86 functions 498) += 
static void local(p) Symbol p; { 

if (isfloat(p->type)) 
p->sclass = AUTO; 

} 

if (askregvar(p, rmap[ttob(p->type)]) == 0) 
mkauto(p); 

... 
513 518 497 .... 

Floating-point and integral locals are handled asymmetrically because 
integral temporaries are assigned to registers. Other locals aren't, but 
progbeg cleared vmask [IREG], which directs askregvar to keep bona fide 
variables out of registers. 

The front end calls the interface procedure function to announce a 
new routine: 

(X86 functions 498) += 
static void function(f, caller, callee, n) 
Symbol f, callee[], caller[]; int n; { 

int i; 

... 
518 520 497 .... 
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(XB6 function 519) 
} 

It emits the procedure prologue, which includes a label and instructions 
to save ebx, esi, edi, and ebp: 

(XB6 function 519)= 
print("%s:\n", f->x.name); 
print("push ebx\n"); 
print("push esi\n"); 
print("push edi\n"); 
Print("push ebp\n"); 
print("mov ebp,esp\n"); 

519 519 ..... 

The prologue code also updates ebp. Figure 18.1 shows an X86 frame. 
Next, function clears the state of the register allocator and calculates 

the stack off set for each incoming argument. The first resides 20 "Qytes 
frorp. ebp: 16 bytes save registers and four more save the return adQ.ress . 

(XB6 function 519)+= 
(clear register state410) 
offset = 16 + 4; 
for Ci= O; callee[i]; i++) { 

(assign offset to argument i 520) 
} 

high addresses 

incoming 
arguments 

return address 

saved ebx 
saved esi 
s~ved edi 

ebp--. saved ebp 

locals and 
temporaries 

low addresses 

FIGURE 18.1 A fr~me for the X86. 

.... 
519 520 519 ..... 
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16 

12 

8 

4 

0 

519 

93 callee 
92 function 

448 " (MIPS) 
484 " (SPARC) 
518 " (X86) 
364 offset 
362 x.name 
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AUTO 80 
callee 93 
caller 93 

emitcode 341 
framesize 366 
function 92 
(MIPS) " 448 

(SPARC) " 484 
(X86) " 518 
gencode 337 

maxoffset 365 
offset 364 
print 18 

roundup 19 
sclass 38 

stringf 99 
x.name 362 

x.offset 362 
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offset gives the off set from ebp to the next argument. It determines 
the x. offset and x. name fields of the callee and caller views of the ar
guments: 

(assign offset to argument i 520)= 519 
Symbol p = callee[i]; 
Symbol q = caller[i]; 
p->x.offset = q->x.offset = offset; 
p->x.name = q->x.name = stringf("%d", p->x.offset); 
p->sclass = q->sclass = AUTO; 
offset+= roundup(q->type->size, 4); 

The scl ass fields are set to record that no arguments are assigned to 
registers, and offset is adjusted for the next argument and to keep the 
stack aligned. 

function then calls gen code to process the body of the routine. It 
first resets offset and maxoffset to record that no locals have yet been 
allocated: 

(X86 function 519) += 

offset = maxoffset = O; 
gencode(caller, callee); 
framesize = roundup(maxoffset, 4); 
if (framesize > 0) 

print("sub esp,%d\n", framesize); 

... 
519 520 519 .... 

When gencode returns, maxoffset is the largest value that offset took 
on during the lifetime of gencode, so code to allocate the rest of the 
frame can now be emitted into the prologue. Then function calls 
emi tcode to emit the body of the routine, and it calls print directly 
to emit the epilogue, which merely undoes the prologue: 

(X86 function 519)+= 
emitcode(); 
print("mov esp,ebp\n"); 
print("pop ebp\n"); 
print("pop edi\n"); 
print("pop esi\n"); 
print("pop ebx\n"); 
print("ret\n"); 

18.4 Defining Data 

... 
520 519 

The front end calls defsymbo 1 to announce each new symbol: 

(X86 functions 498) + = 

static void defsymbol(p) Symbol p; { 

... 
518 521 497 .... 
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(X86 defsymbol 521) 
} 

Static locals get a generated name to avoid other static locals of the same 
name: 

(X86 defsymbol 521)= 

if (p->scope >= LOCAL && p->sclass == STATIC) 
p->x.name = stringf("L%d", genlabel(l)); 

521 521 .... 

Generated symbols already have a unique numeric name. defsymbo 1 sim
ply prefixes a letter to make a valid assembler identifier: 

(X86 defsymbol 521)+= 
else if (p->generated) 

p->x.name = stringf("L%s", p->name); 

... 
521 521 521 .... 

Conventions for exported globals prefix an underscore to the name: 
... 

(X86 defsymbol 521)+= 521 521 521 .... 
else if (p->scope == GLOBAL I I p->sclass == EXTERN) 

p->x.name = stringf("_%s", p->name); 

Hexadecimal constants must be reformatted. Where the front end uses 
Oxff, the X86 assembler expects OffH: 

(X86 defsymbol 521)+= 

else if (p->scope == CONSTANTS 
&& (isint(p->type) I I isptr(p->type)) 
&& p->name[O] == 'O' && p->name[l] == 'x') 

p->x.name = stringf("O%sH", &p->name[2]); 

... 
521 521 521 .... 

The front end and back ends share the same name for the remaining 
symbols, such as decimal constants and static globals: 

(X86 defsymbol 521)+= 

else 
p->x.name = p->name; 

... 
521 521 

The interface procedure address does for symbols that use offset arith· 
metic, like _up+28, what defsymbol does for ordinary symbols: 

... 
(X86 functions 498) += s20 s22 497 .... 

static void address(q, p, n) Symbol q, p; int n; { 
if (p->scope == GLOBAL 
I I p->sclass == STATIC I I p->sclass EXTERN) 

q->x.name = stringf("%s%s%d", 
p->x.name, n >= 0 ? "+" : "", n); 

else { 
q->x.offset = p->x.offset + n; 

521 

38 CONSTANTS 
89 defsymbol 

457 " (MIPS) 
491 " (SPARC) 
520 " (X86) 
80 EXTERN 
50 generated 
45 genlabel 
38 GLOBAL 
60 isint 
60 isptr 
38 LOCAL 
37 scope 
80 STATIC 
99 stringf 

362 x.name 
362 x.offset 
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(SPARC) " 490 
(X86) " 521 

defaddress 91 
(MIPS) " 456 

(SPARC) " 490 
(X86) .. 523 
stringd 29 

swap 371 
Value 47 

x.name 362 
x.offset 362 
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q->x.name = stringd(q->x.offset); 
} 

} 

For variables on the stack, address simply computes the adjusted offset. 
For variables .accessed using a label, it sets x. name to a string of the form 
name± n. If the offset is positive, the literal "+" emits the operator; if 
the off set is negative, the %d emits it. 

The front end calls defconst to emit assembler directives to allocate 
and initialize a scalar to a constant. The argument ty identifies the 
proper member of the union v: 

(X86 functions498}+= 
static void defconst(ty, v) int ty; Value v; { 

switch (ty) { 
{X86 defconst 522} 

} 
} 

... 
521 523 497 ... 

Most cases simply emit the member into an assembler directive that al
locates and initializes a cell of the type ty: 

(X86 defconst 522}= 

case C: print("db %d\n", 
case S: print("dw %d\n", 
case I: print("dd %d\n", 
case U: print("dd 0%xH\n", 
case P: print("dd 0%xH\n", 

v.uc); 
v.ss); 
v. i ) ; 
v.u ); 
v.p ); 

return; 
return; 
return; 
return; 
return; 

522 ... 522 

The assembler's real4 and real8 directives are unusable because they 
can't express floating-point constants that result from arbitrary expres
sions (e.g., with casts), so defconst emits floating-point constants in hex
adecimal: 

(X86 defconst 522}+= 

case F: 
print("dd 0%xH\n", *(unsigned *)&v.f); 
return; 

... 
522 522 522 ... 

The two halves of each double must be exchanged if 1 cc is running on 
a little endian and compiling for a big endian, or vice versa: 

(X86 defconst 522}+= 
... 

522 522 

case D: { 
unsigned *p = (unsigned *)&v.d; 
print("dd 0%xH,0%xH\n", p[swap], p[l - swap]); 
return; 
} 

The interface procedure defaddress allocates space for a pointer and 
initializes it to a symbolic address: 
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(X86 functions 498) += 
static void defaddress(p) Symbol p; { 

print("dd %s\n", p->x.name); 
} 

... 
522 523 497 ..... 

defconst's switch case for pointers initializes a pointer to a numeric 
address. 

The interface procedure defstri ng emits directives that initialize a 
series of bytes: 

... 
(X86 functions 498) += 523 523 497 ..... 

static void defstring(n, str) int n; char *str; { 

} 

char *s; 

for (s = str; s < str + n; s++) 
pri nt("db %d\n", (*s)&0377); 

It finds the end of the string by counting, because ANSI C escape codes 
permit strings with embedded null bytes. 

The front end calls export to expose a symbol to other modules. The 
public assembler directive does just that: 

(X86 functions 498) + = 
static void export(p) Symbol p; { 

print("public %s\n", p->x.name); 
} 

... 
523 523 497 ..... 

The extern directive makes visible in the current module a symbol ex
ported by another module, but it may not appear inside a segment, so 
the interface procedure import temporarily switches out of the current 
segment: 

(X86 functions 498) + = 
static void import(p) Symbol p; { 

int oldseg = cseg; 

} 

if (p->ref > O) { 
segment(O); 

} 

print("extrn %s:near\n", p->x.name); 
segment(oldseg); 

... 
523 524 497 ..... 

The near directive declares that the external can be addressed directly. 
The flat memory model and its 32-bit addresses permit direct addresses 
for everything, so it's unnecessary to understand near and the related 
directives unless one is generating segmented code, which is harder. 

523 

459 cseg (MIPS) 
492 " (SPARC) 
501 " (X86) 

91 defconst 
455 " (MIPS) 
490 " (SPARC) 
522 " (X86) 

38 ref 
91 segment 

459 " (MIPS) 
491 " (SPARC) 
501 " (X86) 
362 x.name 
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align 78 
BSS 91 

(MIPS) cseg 459 
(SPARC) " 492 

(X86) " 501 
defconst 91 
(MIPS) " 455 

(SPARC) " 490 
(X86) " 522 

import 90 
(MIPS) " 457 

(SPARC) " 491 
(X86) " 523 

ref 38 
seg 265 

segment 91 
(MIPS) " 459 

(SPARC) " 491 
(X86) " 501 

x.name 362 
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1 cc's implementation of segment for the X86 takes care that the call 
segment (0) switches out of the current segment but not into any new 
segment. import checks the symbol's ref field to emit the directives 
only if the symbol is used, because some X86 linkers object to gratuitous 
extrns. 

The front end calls the interface procedure global to define a new 
global. If the global is initialized, the front end next calls defconst, so 
global allocates space only for uninitialized globals, which are in the 
BSS segment: 

(X86 functions 498) += 
static void global(p) Symbol p; { 

print("align %d\n", 

} 

p->type->align > 4? 4 : p->type->align); 
print("%s label byte\n", p->x.name); 
if (p->u.seg == BSS) 

print("db %d dup (O)\n", p->type->size); 

.... 
523 524 497 ..... 

The front end calls the interface procedure space to define a block of 
global data initialized to zero: 

(X86 functions 498) += 
static void space(n) int n; { 

if (cseg != BSS) 
print("db %d dup (O)\n", n); 

} 

Further Reading 

.... 
524 497 

Various reference manuals elaborate on the architecture of this ma
chine (Intel Corp. 1993). The assembler manuals that come with Mi
crosoft's MASM and Borland's Turbo Assembler elaborate on the assem
bler language in general and the directives that control the various mem
ory models in particular. 

Exercises 

18.1 Scan the X86 reference manual for instructions that l cc could use 
but doesn't. Add rules to emit these instructions. Benchmark the 
compiler before and after each change to determine which changes 
pay off. 

18.2 Some of l cc's opcodes commute, which means that for every rule 
like 
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reg: ADDI(reg,mrel) "mov %e,%0\nadd %e,%1\n" 2 

we might also have a rule 

reg: ADDI(mrel,reg) "mov %e,%1\nadd %e,%0\n" 2 

Experiment with adding some commuted rules. Which ones make a 
significant difference? Which can't make a difference because the 
front end never generates them? 

18.3 Some noncommutative operations have a dual that exchanges their 
operands. For example, the rule 

stmt: GTI(reg,mrel) "emp %0,%1\njg %a\n" 2 

has the dual 

stmt: GTI(mrel,reg) "emp %1,%0\njl %a\n" 2 

because x > y if and only if y < x. Try to find some X86 dual 
rules that pay off. 

18.4 rep movsb copies eex bytes one at a time. rep movsw copies eex 
16-bit units about twice as fast, and rep movsd copies eex 32-bit 
units another rough factor of two faster. Change the block-copy 
code to exploit these instructions when it can. 

18.5 lee's function prologues and epilogue save and restore ebx, esi, 
and edi even if the routine doesn't touch them. Correct this blem
ish and determine if it was worth the effort. 

18.6 Reserve one general register and assign it to the most promising 
local. Measure the improvement. Repeat the experiment for more 
registers. Which number of register variables gives the best result? 

18.7 lee emits lea edi ,l[edi] for the addition in f(i+l). We'd prefer 
i ne edi, but it's hard to adapt the X86 code generator to emit that 
code for this particular case. Explain why. 

18.8 Construct a small C program that draws ekstaek's diagnostic. 

18.9 Revise the X86 code generator to spill and reload floating-point reg
isters without help from the programmer. See the discussion of 
ekstaek. 
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19 
Retrospective 

l cc is one way to build a C compiler. Hundreds of technical decisions 
were made during l cc's design and implementation, and there are viable 
alternatives for many of them. The exercises in the previous chapters 
suggest some alternatives. This chapter looks back at l cc's design and 
discusses some of the global design alternatives that would most affect 
the current implementation. These alternatives are the ones that, with 
the benefit of hindsight, we might now prefer. 

Many of the programming techniques used in l cc, such as Chapter 2's 
storage allocator and the string management described in Section 2.5, 
are useful in a wide range of applications. The symbol-table module, 
described in Chapter 3, is specific to l cc, but can be easily adapted to 
other applications that need similar functions, and the input module in 
Section 6.1 can be used anywhere high-speed input is important. 

The parsing techniques detailed in Chapter 8 are useful in applications 
that must parse and evaluate expressions, such as spreadsheets. Even 
l burg has applications beyond its use for selecting instructions, as de
scribed in Chapter 14. The matchers l burg generates know little about 
l cc's nodes and they can be used for problems that boil down to match
ing patterns in trees. The approach epitomized by lburg - generating 
a program from a compact specification of its salient attributes - has 
wide applicability. Other compilers routinely use this approach for gen
erating lexical analyzers and parsers with tools like LEX and YACC, for 
example. 

19.1 Data Structures 

Sharing data structures between the front end and the code generator 
is manageable because there are few such structures. A disadvantage 
of this approach, however, is that the structures are more complex than 
they might be in other designs, which compromises simplicity. For exam
ple, symbols represent all identifiers across the interface. Symbols have 
many fields, but some are relevant only to the front end, and access to 
them can be regulated only by convention. Some symbols use only a few 
of the fields; labels, for example, use only the name field and the fields 
in u. l. A data structure tailored to labels would be much less cluttered. 

C shares the blame for this complexity: Specifying all of the possi
bilities requires a type system richer than C's. Some of the complexity 
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might be avoided by defining separate structures - for example, one 
for each kind of symbol and another for private front-end data - but 
doing so increases the data-structure vocabulary and hence complexity. 
Type systems with inheritance simplify defining variants of a structure 
without also complicating uses of those variants. The type systems in 
object-oriented languages, such as Oberon-2, Modula-3, and C++, have 
the necessary machinery. In these languages, we would define a base 
symbol type with only the fields common to all symbols, and separate 
types for each kind of symbol. These types would use inheritance to 
extend the base type with symbol-specific fields. 

In Modula-3, for example, the base type might be defined simply as 

TYPE Symbol = OBJECT 
name: TEXT 

END; 

which defines an object type with one field, name, that holds a string. A 
type for labels would add fields specific to labels: 

TYPE Label = Symbol OBJECT 
label: INTEGER; 
equatedto: Label 

END; 

which defines Label to be an object type with all of Symbol's fields plus 
the two label-specific fields. Procedures that manipulate Symbo 1 s can 
also manipulate Labels, because a Label is also a Symbol. 

The same mechanism could be used for the other data structures, such 
as types, trees, and nodes. The back-end extensions - the x fields of 
symbo 1 s and nodes - would be unnecessary because the back end could 
define additional types that extend front-end types with target-specific 
fields. 

Object-oriented languages also support methods, which are proce
dures that are associated with and operate on values of a specific type. 
Methods would replace some of the interface functions, and they would 
eliminate switch statements like the ones in the implementations of 
defconst, because the methods would be applied to only specific types. 

19.2 Interface 

1 cc's code-generation interface is compact because it omits the inessen
tial and makes simplifying assumptions. These omissions and assump
tions do, however, limit the interface's applicability to other languages 
and machines. 

The interface assumes that signed and unsigned integers and long 
integers all have the same size. This assumption lets 1 cc make do with 
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nine type suffixes and 108 type-specific operators, but it complicates 
full use of some 64-bit machines. If we had it to do over again, we might 
use distinct type suffixes for signed and unsigned characters, shorts, 
integers, and long integers, and for floats, doubles, and long doubles. 
We've even considered backing such types into 1 cc, though it's hard to be 
enthusiastic about the chore. For example, adding a suffix for just long 
doubles would add at least 19 operators and code in both the front and 
back ends to handle them. This change wouldn't need a lot of additional 
code in a few places; it would need a few lines of code in many places. 
Another alternative is for the suffixes to denote only datatype, not size, 
and to add separate suffixes for each size. For example, ADDI2 and ADDI4 
would denote addition of 2-byte and 4-byte integers. The sizes could also 
be carried elsewhere in a node instead of being encoded in the operator 
names. 

The interface assumes that all pointers have the same representation. 
This assumption complicates targeting word-addressed machines, where 
pointers to units smaller than a word - like characters - need extra bits 
to identify a unit within the word. Differentiating between character and 
word pointers would add another suffix and at least 13 more operators. 
We don't regret this assumption yet, but we haven't targeted a word
addressed machine yet either. 

The operator repertoire omits some operators whose effect can be 
synthesized from simpler ones. For example, bit fields are accessed with 
shifting and masking instead of specific bit-field operators, which may 
complicate thorough exploitation of machines with bit-field instructions. 
On the other hand, the front end special-cases one-bit fields and gen
erates efficient masking dags, which often yields better code than code 
that uses bit-field instructions. 

The interface has gone through several revisions and has been simpli
fied each time by moving functionality into the front end or by pruning 
the interface vocabulary. For example, earlier versions had an interface 
function and an operator to implement switches. Each revision made the 
back ends smaller, but blemishes remain. 

On one hand, we may have moved too much into the front end. For 
example, there were once operators for such holes in the opcode x type 
matrix as INDIRU, RETP, and CVUD; cutting the redundancy saved a lit
tle code, but a more regular operator set would be easier to learn. As 
another example, the back end doesn't see the code list and can tra
verse it only via gen code and emi tcode. Several people have used 1 cc 
to study global optimizations, and some found that they needed finer 
control over the traversals. To get this control, they had to expose the 
code list to the back end - that is, have the code list be the interface 
- and move more ambitious versions of gen code and emi tcode into the 
target-independent part of the back end. This change replaces interface 
functions like 1oca1 with the equivalent code-list entry. An interface that 
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exposed the code list - or a flow graph - together with standard im
plementations of gencode and emi tcode would permit clients to choose 
between simplicity and flexibility. 

On the other hand, the interface could be simpler yet. For example, 
ASGN and CALL have type-specific variants that take different numbers 
of operands. This variability complicates decisions that otherwise could 
be made by inspecting only the generic operation. Operators that al
ways generate trivial target code are another example. A few operators 
generate nothing on some targets, but some, like CVUI and CVIU, gener
ate nothing on all current or conceivable targets. Production back ends, 
like those described in this book, take pains to avoid generating vacuous 
register-to-register moves for these operators. Similarly, the narrowing 
conversions CV{UI} x {CS} are vacuous on all targets and might well be 
omitted. 

Several interface conventions, if not obeyed, can cause subtle errors. 
For example, the interface functions local and function, and the code 
for the operator CALLB collaborate to generate code for functions that 
return structures. Three sites in the back end must cooperate perfectly, 
or the compiler will silently generate incorrect code. The front end could 
deal with such functions completely and thus eliminate the interface flag 
wants_ca 11 b, but this would exclude some established calling sequences. 
Similar comments apply to ARGB and the flag wants_argb. The trade-off 
for generating compatible calling-sequence code is a more complex code
generation interface. 

l cc's interface was designed for use in a monolithic compiler in which 
the front end and back ends are linked together into a single program. 
This design complicates separating the front and back ends into separate 
programs. Some of the interaction is two-way; the upcalls from the inter
face function function to gencode and emitcode are examples. These 
upcalls permit the front end to generate conversion code required at 
function entry. The back end examines few fields in the source-language 
type representation; it uses front-end functions like i sstruct to query 
types. To make the back end a separate program, type data must be 
transmitted to answer such queries, and the back end might have to im
plement the function entry conversions. 

19.3 Syntactic and Semantic Analyses 

l cc interleaves parsing and semantic analyses. This approach is typical 
of many compilers based on the classical design for recursive-descent 
parsers that has been used widely since the early 1960s. It's easy to 
understand and to implement by hand, and it yields fast compilers. 

Many languages, such as C, were designed for one-pass compilation, 
in which code is emitted as the source program is consumed, as in l cc. 
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Most languages have a declaration-before-use rule: They insist that iden
tifiers be declared before they are used, except in specific contexts, and 
they provide mechanisms that help programmers comply. For example, 
the C declaration 

extern Tree (*optree[])(int, Tree, Tree); 

declares, but does not define, optree so that it can be used before it's 
defined. Other examples include the forward structure declaration de
scribed on page 276 and Pascal's forward declaration. The sole purpose 
of these kinds of declarations is to make one-pass compilation possible. 

Modern languages, such as Modula-3 and ML, have no such rules. 
In Modula-3, for example, declarations are definitions; they introduce 
names for constants, types, variables, exceptions, and procedures, and 
they can appear in any order. The order in which they appear affects 
only the order in which initializations are executed. This flexibility can 
be confusing at first, but Modula-3 has fewer linguistic rules and special 
cases than does C, which makes it easier to understand in the long run. 

Languages with these kinds of features demand multiple-pass compil
ers because the entire source must be consumed in order to resolve the 
dependencies between declarations, for example. These compilers sepa
rate syntax analysis from semantic analysis because they must. The first 
pass usually builds an AST (abstract syntax tree) for the entire source 
program, and subsequent passes traverse the AST adding pass-specific 
annotations. For example, the declarations pass in a Modula-3 com
piler analyzes only declarations, builds symbol tables, and annotates the 
nodes in the AST with pointers to symbol-table entries. The code genera
tion passes might visit procedure nodes and their descendants, generate 
code, and annotate procedure nodes with the equivalent of 1 cc's code 
lists. 

1 cc's one-pass approach has its advantages. It consumes less memory 
than AS Ts require, and it can be faster because simple constructs don't 
pay for the time overhead associated with building and traversing ASTs. 
Initializations of large arrays exemplify these advantages; 1 cc compiles 
them in space proportional to only their largest single initializer, and 
can thus handle initializations of any size. Compilers that use ASTs usu
ally build a tree for an entire list of initializers, and thus may limit the 
maximum size of an initialization in order to avoid excessive memory 
use. 

On modem computers, however, the time and space efficiency of one
pass compilers is no longer as important as the flexibility of the AST 
approach. Separating the various compilation passes into AST traversals 
can simplify the code for each pass. This approach would simplify 1 cc's 
modules that parse and analyze declarations, expressions, and state
ments, and it would make the corresponding chapters in this book easier 
to understand. 
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Using ASTs would also make it easier to use l cc for other purposes. 
Parts of l cc have been used to build browsers, front ends for other back 
ends, back ends for other front ends, and link-time and run-time code 
generators, and it has been used to generate code from within a.Tl inter
preter and a debugger. l cc's design did not anticipate some of these 
uses, and at least some of these projects would have been easier if l cc 
had built ASTs and let clients traverse and annotate them. 

19.4 Code Generation and Optimization 

Code generation requires trade-offs. Ambitious optimizers emit better 
code, but they're bigger and slower. A bigger compiler would've taken 
us longer and wouldn't have fit in a book, and a slower compiler would 
cost time for us and for all programmers, for whom compilation time is 
often a bottleneck. So l cc emits satisfactory code, but other compilers 
can beat it on this score. 

l cc's instruction selection is optimal for each tree in isolation, but the 
boundaries between the code for adjacent trees may be suboptimal. l cc 
would benefit from a final peephole optimization pass to clean up such 
problems. Of the various optimizations that one might add, however, 
this one is probably the simplest, but our past experience suggests it 
would yield the least. 

l cc's interface is designed to support only code generation; it has no 
direct support for building a flow graph or other structures that facilitate 
global optimization. More elaborate versions of function and gen could 
collaborate to build the relevant structures, perform optimizations, and 
invoke the simpler gen, but generating flow graphs from ASTs is a more 
general solution. 

l cc's register allocator is rudimentary. It allocates some variables and 
local common subexpressions to registers, but in all other respects it is 
minimal. A modern graph-coloring register allocator would do better. We 
resisted a more ambitious register allocator mainly because we estimated 
that it would add over 1,000 lines, or roughly 10%, to the compiler, and 
we already had to omit parts of the compiler from this book. 

l cc's SPARC code needs instruction scheduling now, and other targets 
are likely to need scheduling in the future. Ideally, scheduling interacts 
with register allocation, but a postpass scheduler would probably be sim
pler and would thus fit l cc better. 

19.5 Testing and Validation 

This book's companion diskette includes some programs that we use to 
test l cc at every change. This first-level testing compares the emitted 
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assembler code and the output of the assembled program with saved 
baseline assembler code and output. Sometimes we expect the assembler 
code to change, so the first comparison can tell us nothing, but it's worth 
doing because sometimes it fails unexpectedly and thus tells us that a 
change to the compiler went overboard. 

We also test, though somewhat less often, using the language confor
mance section of the Plum-Hall Validation Suite for ANSI C compilers 
and with a large set of numeric programs translated from Fortran. The 
numeric programs have more variables, longer expressions, and more 
common subexpressions than the other tests, which strains the register 
allocator and thus tests the spiller better. Spills are rare, so spillers are 
often hard to test. 

1 cc's test suite includes material that came to us as bug reports, but 
we wish we'd saved more. lee has been in use at AT&T Bell Laboratories 
and Princeton University since 1988 and at many other sites since then. 
Many errors have been reported, diagnosed, and corrected. Electronic 
news summarized each repair for users at Bell Laboratories and Prince
ton, so that users might know if they needed to discard old binaries. We 
recorded all the news messages, but next time we'd record more. 

First, we'd record the shortest possible input that exposes each bug. 
Just finding this input can be half the battle. Some bug reports were 
nothing more than a note that 1 cc's code for the program gave a wrong 
answer and a pointer to a directory full of source code. It's hard to find 
a compiler error when all you have is a large, unknown source program 
and thousands of lines of object code. We usually start by trimming 
the program until another cut causes the bug to vanish. Almost all bugs 
have, in the end, been demonstrated by sample code of five lines or fewer. 
Next time, we'd save these programs with sample input and output, and 
create a test harness that would automatically recheck them. One must 
resist the temptation to omit bugs deemed too arcane to reoccur. We've 
sometimes reintroduced an old bug when fixing a new one, and thus had 
to track and fix the old one a second time. A test harness would probably 
pay for itself after one or two reintroduced bugs. 

We'd also link at least some bugs with the code that corrects them. 
1 cc was not originally written as a literate program; the English here 
was retrofitted to the code. In this, we encountered several compiler 
fragments that we could no longer explain immediately. Most of them 
turned out to repair bugs, but we'd have saved time if we'd kept more 
sample bugs - that is, the source code and sample input and output -
nearby in comments or, now, in possibly elided fragments of the literate 
program. 

Another kind of test suite would help retargeters. When writing a 
back end for a new target, we don't implement the entire code generator 
before we start testing. Instead, we implement enough to compile, say, 
the trivial program 
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main() { 
printf("Hello world\n"); 

} 

When we get 1 cc to compile that correctly, we trust - perhaps naively -
all simple function calls and use them to test another primitive feature 
that is needed for most other testing. Integer assignment is a typical 
second step: 

main() { 
int i = O; 
pri ntf("%d\n", i); 

} 

We continue testing with a series of similar programs. Each is simple, 
tests exactly one new feature, and uses as few other features as possible, 
in order to minimize the amount of assembler code and compiler traces 
we must read if the test program fails. We never took the time to collect 
the tiny test programs as a guide for future retargetings, but doing so 
would have saved us time in the long run, and it would save you time 
when you write an 1 cc back end for your favorite computer. 

Further Reading 

Schreiner and Friedman (1985) describe how to use LEX (Lesk 1975) and 
YACC (Johnson 1975) by building a toy compiler for a small language. 
Holub (1990) and Gray et al. (1992) describe more modern variants of 
these compiler tools and how to implement them. 

Budd (1991) is a gentle introduction to object-oriented programming 
and object-oriented programming languages; he describes SmallTalk, 
C + +, Object Pascal, and Objective-C. The reference manuals for C + + 
(Ellis and Stroustrup 1990), Oberon-2 (Mossenbock and Wirth 1991), and 
Modula-3 (Nelson 1991) are the definitive sources for those languages. 

Ramsey (1993) adapted 1 cc to be an expression server for the retar
getable debugger 1 db. The server accepts a C expression entered during 
debugging and a symbol table, compiles the expression as if it appeared 
in a context described by the supplied symbol table, and evaluates it. 
Ramsey wrote a back end that emits Postscript instead of assembler lan
guage, and 1 db's embedded Postscript interpreter evaluates the gener
ated code and thus evaluates the expression. He also modified 1 cc to 
emit 1 db symbol tables. 

Appel (1992) describes a research compiler for ML that builds ASTs 
and makes more than 30 passes over them during compilation. 

Our paper describing an earlier version of 1 cc (Fraser and Hanson 
199lb) compares 1 cc's size and speed and the speed of its generated 
code with the vendor's compilers and with gee on the VAX, Motorola 
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68020, SPARC, and MIPS R3000. lee generated code that was usually 
better than the code generated by the commercial compiler without opti
mization enabled. A companion paper gives measurements that support 
our intuition that register spills are rare (Fraser and Hanson 1992). 

Lamb (1981) describes a typical peephole optimizer. The peephole 
optimizer copt is about the simplest possible; it is available by anony
mous ftp from research. att. com. Davidson and Fraser (1984) describe 
a peephole optimizer driven by a formal description of the target ma
chine. 

Chaitin et al. (1981) describe register allocation by graph coloring, 
and Krishnamurthy (1990) surveys some of the literature in instruction 
scheduling. Proebsting and Fischer (1991) describe one of the simplest 
integrations of register allocation and instruction scheduling. 
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Bold page numbers refer to definitions. For a fragment or an identifier, 
roman numbers ref er to its uses in code, and italic numbers ref er to its 
uses in the text. Fragments and identifiers without definitions identify 
those omitted from this book. 

abstract-declarator, 270, 308 
(abstract function), 267,270 
abstract machine code, 99 
abstract syntax trees, 5, 147, 530 

dags in, 312, 318, 342 
operators specific to, 149, 313 
prefix form for, 148 

(access the fi.eld described byq), 
182-83 

activation record, see frame 
ADA, 127 
ADD+D,6 
ADDD,82,376,439,480, 514 
ADDF,82,376,439,480, 514 
ADD,82, 84, 109, 158, 177, 181,183, 

192,204-5,209,211-12,242,318 
add,205,206,283-84 
ADD+I, 148-49 
ADDI, 82, 149, 313, 376, 387, 393, 404, 

430,436,438,470-71,474, 504-7 
addlocal,211,219,234,319,325 
ADDP, 82-83,376,386,404,436,438, 

470-71,474,504-7 
(ADD+P transformations), 209, 210-12 
address calculations 

MIPS,436 
SPARC, 470 
X86, 503 

addressed,49, 58,61, 7~ 95, 179, 
210, 296, 327, 449, 483, 486 

(Address),217,219 
Address, 211, 217, 219, 338, 339-40, 

341 
address, 89, 90, 211, 217, 219, 339-40, 

457,458,490,521, 522 
(address of), 164, 179 
ADDRF, 84, 168, 169, 179,319,388,399 
ADDRF+P, 5-6 
ADDRFP,86,34~351, 361,376,388, 

436,469,470,504 
(ADDRG,ADDRF),319 
ADDRG,84,168, 169, 179,319, 327, 

340,469 
ADDRG+P, 148 
ADDRGP, 6, 8, 83, 247, 351, 376, 436, 

442,469,475-76, 503,515 

(ADDRL), 319 
ADDRL, 84, 168,169, 179,319, 388, 

399,420 
ADDRLP, 346, 341, 351, 361, 376, 371, 

388, 396, 404, 425-26, 436, 469, 
470-72, 504 

addrof, 189, 190,191 
(ADD .. RSH),318,319 
addrtree,210,211,212,219, 328,339 
addtree,109,155, 159, 192 
ADD+U,204 
ADDU,82,376,404,436,438,470-71, 

474,504-7 
(affi.rmation), 164 
Aflag,62, 159,160,180,188,221, 

225,235, 243,260, 262,266, 280, 
290-91,297,459,492 

(a fragment label), 1-2 
aggregate types, 54 
-A,62,124, 160,244,263,281,292, 

296,459,492 
-a,220 
align,26-27, 54, 56-58,61-63, 72, 78, 

19, 182, 282-83, 285,328, 334, 
348,365-66,449,458,492, 524 

alignment 
of allocated memory, 27 
of structures and unions, 283, 285 

(allocate a new block), 27, 28 
allocate, 24-25, 26, 21, 28, 31, 32-34, 

91 
(allocate registers), 402, 415, 417 
allocating registers, 354, 408, 413, 417 
allocation arenas, see arenas 
(alloc.c), 25 
alloc.c, 15-16 
ambiguous languages, 129 
ANDAND, 109, 163 
(AND), 318, 323 
AND,109,149, 160, 174,225,313,318, 

322-23, 335 
andtree, 109, 192, 322 
(an identifi.er), 167, 170 
(announce q), 211 
(announce the constant, if necessary), 

48,49 
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append,34, 73,271,274,294-95,299 
applicative functions, 150 
apply,41,42 
arena, 25, 26, 44 
arenas,23,97, 150,224,229,254 
ARG+B,185,246 
ARGB, 82, 88, 355, 367, 376, 434, 446, 

447, 465, 483, 513, 529 
argc, 89, 305-6, 307, 370, 433, 458, 

466,498 
ARGD,82, 376,444-46,478,479, 514 
ARGF,82, 376,444-46,47~ 514 
(ARG), 318, 334 
ARG, 82-83, 84-86, 88, 150, 184-86, 

18~ 318, 332,333,334-36,35~ 
359,403,405,445,477-79 

ARG+I,185 
ARGI,83, 376,444-46,477, 512 
argoffset,358,366,366,445 
ARGP,83,332,376,444-46,477,512 
argreg,444,445-46,449 
ARGS, 17, 18 
argument-build area, 94, 366 

MIPS, 452 
SPARC, 477, 487 

argument evaluation order, 88, 183, 
332 

argument transmission, 356 
MIPS, 444, 449-50 
SPARC, 477 
X86, 512, 519 

argv, 89, 305-6, 307, 370, 433, 458, 
466,498 

arithmetic conversions, 173 
arithmetic types, 54 
_arity,389 
(array), 267, 268 
ARRAY,49, 54, 57,60,62-63,69, 72-73, 

109,266,268 
array,61,62, 72, 123, 182,242,266, 

302, 304 
arrays 

parsing declarations of, 268 
sizes of initialized, 264 
structures in, 285 

(arrives in an i -register, belongs in 
memory), 486 

ASGN+B,246 
ASGNB, 83, 85, 88, 355, 367, 434, 

446-47, 482, 484, 512 
ASGNC,389,401,437,471-72, 512 
ASGN+F, 5 
ASGNF,~401,438,471-72,514 
(ASGN),318, 328-29 
ASGN, 83-86, 157-58, 190, 197, 198, 

245, 316, 318, 320, 328-29, 334, 
336,343,348, 352,361,385,396, 
399, 402, 405, 422, 425, 472, 529, 
555 

asgn,191,202,234,302,339 
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ASGN+I, 166,331,350 
ASGNI, 86, 374, 387, 400, 401, 437, 

471-72, 507-8, 512,515 
asgnnode,348 
ASGNP,86,401,437,471-72, 507, 512 
(asgntree), 197-99 
asgntree, 157, 192, 196, 197, 245, 

282,350 
askfixedreg,409,411 
askreg,409-10,411,412-13,433 
(askregvar),412-13 
askregvar, 357, 410-11, 412, 418, 

447, 450-51, 483, 486, 518 
assembler templates, 8, 354, 376, 392 

question mark in, 506 
assert(0),3 
assertions, use of, 3 
(assign field offsets), 280, 282, 285 
(assign), 196 
assign, 18~195, 196, 197,244 
assigning registers, 3 54, 408 
(assign location for argument i ), 

449-50 
assignment-expression, 154, 157 
assignments 

dags for, 328 
multiple, 331 
of arguments to parameters, 338 
of structures, 199 
results of, 198 
to bit fields, 198, 329 
to pointers, 196 
to qualified types, 198 
values of, 328 

(assign offset to argument i ), 519, 520 
(assign output register), 417, 418 
(assign r to nodes), 418, 419 
associativity, 130, 152 
AST, see abstract syntax trees 
atop,62, 174, 193,275,327 
(augmented assignment), 157, 158 
augmented assignments, 158, 312 
AUT0,39,80, 94-95, 187, 191,211, 

255-56,261-63,264,275,28~ 
291, 294, 295, 297, 304, 412-13, 
423,449,486, 518, 520 

(auto local), 299 
autos,294, 294-95,299,484,486-87 
avail, 25, 26-27 

backpatching, 349 
backslash,124, 126 
backtracking, 133 
BAND,84, 177,198,207,209,318, 

330-31 
basic blocks, 313 
BCOM,84,318 
BCOMI,83 
BCOMU,83,439,474-75, 508 
-b,220,249 
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big endian, 87, 370, 431 
binary-expression, 154, 161 
binary, 173, 192-93, 200 
(bind.c), 96 
bind.c,96 
Binding,96 
bindings,96, 306 
bitcount,452 
bit fields, 13, 66 

and endianness, 66, 87 
assigning constants to, 330 
assignments to, 329, 350 
extracting, 320 
postincrementing, 336 
sign extending, 320 
simplifying references to, 208 
storage layout of, 2 79 
types permitted for, 281 
unnamed, 309 

bittree, 192, 198, 209,215, 330-31, 
332 

BLANK, 110, 111-12 
(blkcopy),367-68 
blkcopy,357,367,368, 372,434, 

446-47, 460, 482, 494 
blkfetch, 355, 356, 368-69, 460, 461, 

492,493, 513 
blkloop,355,356,367-69,460,493, 

513 
blkreg,434,447 
blkstore,355,356,368,460,461, 

493, 513 
blkunroll, 367, 368, 371, 493 
(Blockbeg),217,219 
Blockbeg, 7, 217, 219, 293, 294, 295, 

338, 339, 341 
blockbeg,93,95, 339,355, 365 
(Blockend),217,220 
Blockend, 7, 217, 219, 293, 294, 338, 

339, 341 
blockend,93,95,339,355,365, 366 
block moves, 199, 355, 367 

MIPS, 434, 446, 460 
SPARC, 482, 492 
X86, 512 

BOR, 84, 318,330-31 
Borland International, Inc., 496 
bottom-up hashing, 349 
bottom-up parsing, 127, 145 
bp,97, 392 
branch, 224, 225, 227, 230, 232, 237, 

243, 244, 246, 247 
branch tables 

density of, 238, 250 
emitting, 342 
generated code for, 242 
MIPS indirect jumps for, 441 
overhead of, 241 
SPARC indirect jumps for, 475 
traversing, 238, 240, 251 

X86 indirect jumps for, 515 
(break statement), 221, 232 
bsize,105, 106-107 
BSS,91,265,300, 304,458,459,491, 

192, 501, 524 
btot,50, 74,346 
buffer,105, 106, 107 
BUFSIZE, 105, 105, 107, 112, 122, 125 
(build an ADD+P tree), 192, 193 
(build the protot}-pe), 273, 274 
~builtin_va_alist,484 
BURM, 373, see also lburg 
(BURM signature), 378-81, 389-91, 

406 
BXOR, 84, 318 

C++, 527 
CALL+B, 184-86, 189-90,245-46, 

332-33 
CALLB, 85, 88, 186, 332, 465, 476, 483, 

529 
CALLO, 86,442,443,476-77, 518 
callee,93,94,286, 290,292-93, 

337-38, 448-49, 451, 453, 484-85, 
487-88, 518-20 

callee-saved registers 
MIPS, 452, 454 
SPARC, 468 

caller, 93, 94, 286, 292-93, 337-38, 
448-49,451,453,484-85,487-89, 
518, 520 

caller-saved registers, 410, 428 
MIPS, 444 
SPARC, 468 

CALLF, 86,442,443,476-77,518 
(CALL), 318, 332 
CALL, 84-86, 88, 151, 171, 184, 186, 

189, 199,245,316, 318, 332, 333, 
336,343, 344, 361, 366,396,402, 
417, 427, 429, 445, 512, 529 

call,186, 190, 199,335,476 
CALL+I,185-86, 190,245 
CALLI, 86, 400, 403, 417, 442, 443-44, 

476-77, 517 
calling conventions, 93, 94, 184, 338, 

529 
MIPS, 432, 449 
SPARC, 465, 468 
X86,496 

CALLP, 86 
calls, 85 

as common subexpressions, 347 
(calls), 166, 186 
calltree,187, 189, 190 
CALL+V,186 
CALLV, 85, 332,333,442,476-77,517 
(case label), 221, 234 
caselabel,234,235 
(cases for one-character operators and 

punctuation), 112 
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(cases for two-character operators), 
112 

cast, 174, 175, 171, 178, 119, 180, 
181, 188, 189, 192-94, 197, 202-3, 
210, 212, 214, 233-34, 235, 242, 
245, 331 

(cast l and r to type ty), 192, 193-95 
casts, 179 
cfields, 65, 66, 197, 282 
cfoldcnst,208,209 
cfunc,243, 244,290,291,293-94,333 
chain rules, 376 
(changes flow of control?), 416, 417 
character-constant, 122 
characters 

classifications of, 110 
signed vs. unsigned, 206, 257 

CHAR,48, 54, 58,60, 69, 73,82, 109, 
115, 175, 253, 256, 251, 271, 280, 
295 

charmetric, 58, 78 
chartype,57, 58, 74, 123, 177,207 
(check for floating constant), 117 
(check for inconsistent linkage), 261, 

262 
(check for invalid use of the specifier), 

255,256 
(check for legal statement 

termination), 221, 222 
(check for redefinition of tag), 67 
(check for unreachable code), 218 
(check if prototype is upward 

compatible), 70, 71 
checklab, 22~293, 309 
(checkref), 296-97 
checkref, 292-93, 296, 297, 299, 303, 

348 
(c.h), 16 
c.h, 16, 18 
%c,392 
CISC, 496 
ck, 388 
ckstack,502, 503, 525 
(classify SPARC parameter), 485, 486 
(dear register state), 410, 448, 485, 

519 
clobber, 357, 396, 410, 417, 424-25, 

427, 429, 435, 444, 468, 471, 479, 
502,517 

(dose a scope in a parameter list), 272 
closures, 42 
cmp,242,251 
cmptree,109, 192, 193, 194, 195 
CNSTC,82,388, 389,403,437,470,473 
CNST+D,6 
(CNST), 318, 327 
CNST, 82, 84, 167, 177, 193-94, 198, 

202, 203-5, 234, 318, 326-27, 330, 
388, 473, 508 
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CNSTI, 82, 378, 388, 403, 437, 439, 
470,473-74, 504,508 

code generator, overview of, 353 
code-generator generators, 13, 373 
codehead,217,291,338, 339,341 
CODE,91,265,293,342,452,459,491, 

501 
Code, 211,217,218, 220,233, 246-47, 

291, 293,338,341 
code, 211, 217, 218, 219-20, 233, 243, 

246-41, 294, 311 
codelist, 217, 218, 236-37, 243, 

246-47,249, 291,338,339 
code lists, 7, 217, 291, 311, 528 

appending forests to, 223, 311 
codes for entrtes in, 218 
emitting code from, 341 
generating code from, 337 

command-line options, 307 
-A, 62, 124, 160, 244,263, 281, 292, 

296,459,492 
-a,220 
-b, 220,249 
-d, 238,370 
-g,219,341 
-G,458 
-P, 75,304 
-p,466 
-pg,466 
-target,96, 306 
-x, 51 

comma operator, 156, 335 
(comment or/), 112 
common subexpressions, 6, 80, 223, 

312, 313, 342, 418 
allocating registers for, 343 
bonus match for, 383 
invalidating, 223, 316, 321, 323, 

326,328 
recomputing, 360, 382 

commutative operators, 204 
commute,204,204,207,208 
comparing strings, 29, 45 
compatible, 193, 194 
compiler-construction tools, 12 
(complement), 164 
compose, 72, 72,261,298 
composing conversions, 1 7 4 
composite types, 71 
(compound),294-96 
compound,221,245, 291-92,293,298 
compound-statement, 216, 285, 293 
compound statements, 339, 365 
computed, 197,210,211, 328 
computed symbols, 90, 210, 339, see 

also Address 
(compute p->offset), 282, 283-84 
(computety), 255, 257 
(concrete function), 267, 268 
(COND),318, 325-26 
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COND,149, 159-60, 190, 200,318, 322, 
324-26, 335 

cond, 174,200,206,225, 322 
conditional-expression, 154, 157, 159 
conditional,224,225,229, 326 
conditionals, 200, 224 

values of, 326 
(condtree), 200-202 
condtree, 159, 192,200 
(confi.g.h), 355, 357-58, 361-62, 365, 

377 
config.h, 16, 79,81-82,95 
constant, 115 
constant-expression, 202 
constant expressions, 203 

overflow in, 205 
constant folding, 147, 202 

ofconversions,206 
constant,47,49, 119, 168,327 
constants, 80 

enumeration, 68 
floating point, 47, 92, 456 
initializing, 91, 305 
installing, 98 
integer, 49 
out-of-line, 47, 49, 78, 327 
overflow of, 117 
representing, 4 7 

(constants), 38, 47 
CONSTANTS, 38, 40, 47, 48, 80, 89, 303, 

521 
constants, 39, 40, 47, 48, 51, 303, 

305, 313 
constexpr,202,203,234 
CONST, 54,60,63,69, 72-73, 109, 180, 

183,201,256-57,266,268,302 
const,48 
const locations, 197 
consttree, 160, 165-67, 170, 174, 177, 

183, 193, 198, 201,208-9, 242, 
320, 330-31 

continued fragments, 2 
(continue statement), 221, 228 
conventions, see calling conventions 
conversions 

between unsigneds and doubles, 
176 

MIPS arguments, 450 
narrowing,440,472,511 
of conditionals to values, 160 
of values to conditionals, 17 4 
preserving value or sign, 173 

(convertp tosuper(pty)), 175 
(convertp tosuper(ty)), 175, 176 
(convertp toty), 175, 177 
Coordinate,37,38, 39,41, 51-52,80, 

99, 108, 159, 162, 186, 220,228, 
258,260,274,277, 286,290,298, 
338,341 

(copy argument to another register?), 
450-51 

costs 
in tree grammars, 3 7 4 
lburg, 376, 388 
of chain rules, 3 76 

count,81, 82, 85,315,343,346-48, 
502 

(count uses of temporaries), 382, 384 
cover, tree, 373, 377 
(cp points to a Jump to lab), 246, 247 
(cp points to a Label + lab), 247, 248 
cross-compiler, 14, 79, 370 
cross-reference lists, 51 
cseg,459,491,492,501,523-24 
cse,346,384-85,400,413,416, 

418-19,508 
(CVx,NEG,BCOM), 318,319 
CVC,84, 175,206,318 
CVCI, 387, 404, 437, 438, 439, 472, 

475, 499, 510-11 
cvcu, 437, 438, 439, 472, 475, 510-11 
CVD+F,5 
CVDF,8,440,451,481,514-15 
CVD,84, 176-77,207,318 
CVD+I,6 
CVDI,440,441,481, 515 
CVFD,440,481,513, 515 
CVF,84, 175,318 
CVIC,440,472-73, 511 
CVID,440,462,481, 515 
CVI,84, 176-77,206-7,318 
CVIU,403,440,472, 510,529 
CVP,84, 175,206,318 
CVP+U, 176 
CVPU,86,404,440,472,510 
CVS, 84, 175,318 
CVS!, 83, 437, 438, 439, 472, 475, 

510-11 
CVSU, 83, 437, 438, 439, 472, 475, 

510-11 
cvtcnst,206 
cvtconst, 207, 327 
cvu, 84, 176-77,206,318 
CVUI,83,404,440,473, 510, 529 
CVU+P,245 
CVUP,86,404,440,473, 510 

d6,433,445 
dag.c, 311 
dag,314,315-16 
dagnode,315 
dags, 6, 78,81,342 

allocating and initializing, 98, 315 
argument operators, 85 
assignment operators, 83 
avoiding, 89, 340, 343 
back-end extension to, 82 
conversion operators, 83 
converting trees to, 223, 311 
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execution order of, 86 
forests of, 223, 311 
jmilpi;, 83 
mµltiplicative operators as calls, 87, 
' 31l:\, 343 

opera:fors, 81-82, 84, 98 
references to, 81 
roots1 see root nodes 
searching for, 315 

dalign, 358, 368, 369, 446, 447, 461, 
482,483 

dangling-else ambiguity, 131 
DATA,91, 264,265,458,459,491,501 
(dclglobal),260,261-63 
dclglobal,253,260,261-63,290,298 
(dcllocal),298-99,301 
dcllocal,253,260,263,294,295, 

291, 298, 303, 309 
(dclparam),274,275 
dclparam, 253, 271, 272, 274, 275, 

287-88, 298 
dclrl,265,266,267,268,270,308 
dcl r, 258-59, 265, 266, 268-70, 273, 

281, 308-9 
dead jumps, 246 
(deallocate arenas), 253, 254 
deallocate, 24, 25, 27, 28, 32-33, 223, 

224, 254, 311 
(debugger extension), 38 
debuggers, 217,249 

symbol tables for, 39, 51, 79, 
219-20,341,432,465 

(debugging implementation), 25 
decimal-constant, 116 
(decimal constant), 116, 117 
declaration, 254 
declaration-before-use rule, 308, 530 
declarations, 254 
declaration-specifiers, 254 
declarator, 266 
(declare a parameter and append it to 

list), 273 
(declare id a typedef for tyl), 260 
(declare id with typetyl), 258, 260 
decl.c,253 
decl, 253, 257, 258, 265, 269, 285-86, 

287,295,298 
DECR, 109, 110, 164, 166 
defaddress,91, 92,242,251,342, 

456,490, 522, 523 
default argument promotions, 71, 189, 

288 
(default label), 221, 234 
defconst, 91, 92, 305, 371, 455, 456, 

490, 522, 523-24, 521 
defglobal,264,265,300,304-5,342 
(define L, if necessary, and L + 1), 233, 

236 
(define an initialized global), 458 
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(define an uninitialized global), 458, 
459 

defined,48, 50, 6~ 90,210,219, 226, 
261, 264,271-72, 274-75, 278, 
288,290,294, 297,299-300,302, 
304-5, 346 

(define function id), 259 
definelab,224,225,226,230,234, 

236, 241, 246, 241, 291, 292, 312 
definept,220,221-22,224, 227-30, 

232-33,243,291,292,302 
defining constants, 91 

MIPS, 455 
SPARC, 490 
X86, 522 

definitions, 254 
(Defpoint),217,220 
Defpoint, 7, 217, 220, 338, 341 
defpoint,229 
defstring,92, 305,456,490, 523 
defsymbol,46, 49-50,89,90,242,263, 

300, 303,457,491,520, 521 
delay slots, 475, 481, 494 
density,238,239, 250 
DEREF,109, 166 
deref,61, 169,182 
derivations, 128 
deterministic finite automaton, 107 
dfl ag, 358, 370 
diagnostics, see errors, reporting 
-d,238 
digit, 114 
Digital Equipment Corporation, 431 
DIGIT, 110, 111, 113-14,117,119-21 
directed acyclic graphs, see dags 
discarding tokens, 140, 144 
DIV,84, 109,318,319,344 
div,206 
(DIV •. MOD), 318 
doarg, 356, 357, 403, 445, 446-41, 

477, 512 
doargs,306,307 
docall, 366,367,402-3,445, 512 
doconst,303, 305,327 
doextern,264,303, 308 
doglobal,303,304, 308 
(do statement), 221 
DOUBLE,49, 54, 58,60,69, 73,82, 109, 

175, 256-57 
doublemetric,58, 79 
(double the size of values and 

1 abel s), 235 
(double-to-unsigned conversion), 176 
doubletype,57, 58, 74,93, 121, 173, 

175-77,189,202,288 
dumpcover,390,406 
dumpmatches,406 
dumprule,390 
dumptree,389,390 
dynamicprogramming,374,379 
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EAX,498,499-500, 508-10, 517-18 
EBNF, 20 
EBX,498,499-500 
ECX,498,499-500, 508,510, 513 
EDI,498,499-500, 512-13 
EDX,498,499-500, 509, 518 
(eliminate or plant the jump), 248, 249 
emit2, 353-54, 356, 392-93,444, 

446-47, 478, 479, 482-83, 510, 
511 

(emitasm),391, 392 
emitasm, 353-54,391,392,394 
(emitcode Blockbeg),341 
(emitcode Blockend),341 
(emitcode Defpoint),341 
(emitcode Gen,Jump,Label), 341, 

342 
emitcode,93,217,243,286, 311,337, 

341, 342, 353-54, 448, 454, 484, 
490,520, 528-29 

(emitcode Local),341 
(emitcode Switch),341,342 
(emit epilogue), 93 
emit,92, 93, 96, 100-101, 340-41,342, 

353-56, 391-92, 393, 477, 506 
( emitleaf prologue), 488 
(emit profiling code), 490 
(emit prologue), 93 
emitter,394 
emitting instructions, 354, 356, 391 
(emit unrolled loop), 368, 369 
enclosing scope, see nested scopes 
endianness, 87, 370, 431 
(end of input), 112, 124 
enode.c, 147, 155, 171 
(ensure there are at least MAXLINE 

characters), 114, 115, 116, 120 
enterscope,42, 51, 269,271,287,294 
entry sequence, 9, 341, 354, 366 

MIPS, 452 
SPARC, 488 
X86,519 

(enum constants), 38, 69 
enumdcl, 256-57, 310 
enumeration-constant, 115 
enumeration constants, 68 
ENUM, 39, 54,60, 68,69, 73, 109, 170, 

175,256, 301, 310 
enum-specifier, 310 
Env, 9~ 219, 339,365 
EOI, 5, 112, 134, 144,222,253 
epilogue, see also exit sequence 

lburg, 375 
EQ, 84, 160, 174,318,322,340,417 
EQI, 441, 475, 516 
(EQ •. LT), 318, 321 
eqtree, 192, 194, 195,209,242 
eqtype,48,69, 70-71, 72, 194-9~200, 

261,263, 289-90,298,301 
equal,248, 248 

equated,340,341, 342, 351 
equatedto,46,248,341 
(equate LABEL to L + 1), 325 
equate lab, 247, 248, 323, 325, 340, 

350-51 
ERANGE, 120, 121 
errcnt, 142-43, 30~338,341 
errno, 120, 121 
error. c, 141 
error, 142, 143 
errors 

detecting, 140 
recovering from, 140 
reporting, 20, 142 

escape-sequence, 122 
escape sequences, 121, 126 
ESI,498,499-500, 512-13 
evaluation order, 166, 172, 312, 326, 

335 
event.c, 14 
event hooks, 160,244, 293 
execution ordering, 354, 359, 409, 413, 

428 
execution points, 217, 220 
exitparams, 259, 269-70,272,274 
exitscope,42,44, 51,59, 259,269, 

272, 274, 292-94 
exit sequence, 10,244,292,354,366 

MIPS, 454 
SPARC,490 
X86, 520 

expanded basic blocks, 313 
expect, 141, 142, 14~ 158, 165, 180, 

187, 222, 224, 226, 228-29, 
233-34, 268,270-71, 293-95,302 

explicit conversions, 179 
export,90, 265,293,456,490, 501, 

523 
exprO, 141, 156,222, 223,229, 350 
exprl, 153, 155, 156, 157, 158, 163, 

188,202, 203,276, 302 
expr2, 153,157, 159, 161,203 
expr3, 153,158, 159, 161, 162, 163, 

171,191 
expr.c, 147 
expression, 154 
expressions, rearranging, 212 
(expression statement), 221, 222 
expr, 153, 155, 156, 159, 164-65, 172, 

181,224,225,233,243, 350 
extended Backus-Naur form, see EBNF 
extension 

to interface records, 3 54 
to nodes, 358 
to symbols, 362 

external identifiers, 263, 299 
consistency of declarations for, 300 
definitions of, 304 
importing, 303 
MIPS, 456 
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SPARC, 490 
X86,523 

external linkage, 261 
externals,39,40, 111,263,297, 

300-301, 303 
EXTERN, 39,80, 168,211,256,259, 

261-64,297-301, 304-5,457, 521 
(extern local), 299, 300 

fatal, 143 
fcon, 117, 120 
%F,392,436 
(FIELD), 319, 320 
FIELD, 149, 165, 183, 197-98,209, 

313, 319, 320, 328, 329, 336-31 
Field,65,66,68, 76, 182-83,280,282, 

329 
field, 66, 76, 182, 182-83, 198, 209, 

219-82,320, 329 
fieldleft,66,320 
fieldmask,66, 198,209,329 
fieldref,68, 76, 182 
fieldright,66,209,329,331 
fields 

computing offsets and alignments 
of, 282, 309 

qualified, 282 
references to, 181 
simplifying references to, 211 
storage layout of, 279 

fields, 276 
(fields for registers), 362-63 
(fields for temporaries), 362 
fields, 68, 217, 278, 279, 280, 283, 

285, 309-10 
fieldsize,66, 198, 320,329 
file,38, 104, 105,111, 125,142 
file scope, 35 
fillbuf, 103-105, 106, 111-12, 115, 

124 
finalize, 168, 263, 297, 303, 305, 

307, 321 
findlabel,46,222,224,230,234-36, 

246-47,322-23,325 
finite automaton, 107 
firstarg,332,333,334 
firstfile,104, 105, 142 
first,25,26,28 
FIRST sets, 134, 143, 146 
fixup,340, 341, 351 
flist,65, 66,68,282 
FLOAT,48,54,58, 73,82,109,175,256 
floating-constant, 120 
floating types, 54 
floatmetric,58, 79 
floattype,57, 58, 71, 74,93,121, 

173, 177,189,207,288 
flow graphs, 313, 531 
FLTRET,443,444 
FLTTMP,434,443-44 

FLTVAR,434 
foldaddp,209,210 
foldcnst,204,205,207,208-9 
foldcond, 230,250 
f.oldstyle,63, 189 
FOLLOW sets, 136, 140, 146 
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foreach, 41, 42, 68, 269, 288, 292-93, 
296, 303 

forest,220,246-49,311,321,325, 
328,334,340, 342-43,402, 
414-15, 417 

forests 
circularly linked lists for, 311 
generating code for, 337 

formals 
MIPS, 436 
MIPS register, 450 
offsets for, 362 
SPARC, 469, 485 
X86, 519 

format codes, 99 
%S, 118 
%t,62 

(for statement), 221, 228 
(forstmt), 229-30 
forstmt,221,228,230,250 
fprint,97, 142,144,306-7,389-90 
f.proto,63, 189 
fragment definitions, 1 
fragment uses, 2 
frame, 93, 354, 364 

MIPS, 447, 452 
SPARC, 487 
X86, 520 

frame pointer, 9, 364 
SPARC, 467 
X86,498 

framesize,358,366, 392,452-55, 
487-88, 520 

freeblocks,27,27-28,33 
free,23,25,32-33 
(free input registers), 417, 418 
freemask,358,365-66,410,410,428 
freg2,433,434,443-44,467,476 
FREG,361, 365-66,434,443-44, 

451-52,454,467-68,477,488, 
500-501 

freg, 467, 476 
freturn, 64, 97, 186, 243-44, 286, 294, 

487 
(funcdefn),286,290-93 
funcdefn, 41, 221, 259, 212, 274, 285, 

286, 290-94, 333, 337, 348 
FUNC,41,46,49,97,205,210,218,226, 

229, 233, 239, 254, 260, 271, 
274-75, 287, 292, 295, 299, 315, 
424 

func,64, 73, 186,266,290 
funcname, 159, 186, 187-89,225 
function-dei1nition 285 
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(function detinition?), 259 
FUNCTION,49, 54, 57, 59-60,64,69, 

72-73,109,266,268,270 
function, 85, 89-90, 92, 93-94, 100, 

211, 216, 252, 276, 286, 287, 289, 
292, 293, 294, 311, 333, 337, 341, 
353-54, 362, 366,410,443,447, 
448, 451-54, 463, 484, 485-90, 
518, 519-20, 529, 531 

function pointers, 176, 193 
functions 

declarations of, 270 
definitions of, 259, 270, 285, see 

also funcdefn 
emitting code for, 92 
leaf, 487 
order of evaluating arguments to, 88 
passing structures to, 88, 169, 183, 

185, 190 
returning structures from, 85, 88, 

183, 187, 245, 292, 294,332, 
529, see also retv 

returning structures from on the 
SPARC, 484 

variadic, see variadic functions 
with no arguments, 64 

function scope, 3 7 
(function symbols), 38, 290 
function types, 54 

garbage collection, 32 
gcc,4, 533 
GE,84, 160, 174,318,322,340,417, 

441 
(gencode Address), 338, 339 
(gencode Blockbeg), 338,339 
(gencode Blockend),338,339 
(gencode Gen,Jump,Label),338,340 
gencode, 93-95, 216, 219, 286, 292, 

299, 311, 337, 338, 341, 343, 
353-54, 447, 451, 484, 487, 520, 
528-29 

(generate a linear search), 241 
(generate an indirect jump and a 

branch table), 241, 242-43 
(generate an initialized static tl), 302 
(generate a temporary to hold e, if 

necessary), 233 
(generate ca 11 er to ca 11 ee 

assignments), 338 
generated code 

for branch tables, 242 
for conditional expressions, 324 
for if statements, 224 
for loops, 227 
for switch selection, 236, see also 

branch tables 
for switch statements, 231 
for&&, 322 

generated,46,49, 50,80, 197,210, 
305,457,491,521 

generated symbols, 47, 49, 80, 168 
MIPS, 457 
SPARC, 491 

(generate nodes fore++), 335, 336-37 
(generate the selection code), 233, 

236-37 
generic,97, 98, 151 
generic operators, 84, 149, 203 
Gen, 7, 217, 220, 223, 225, 311, 313, 

338, 340, 341 
gen, 79, 81, 92, 93, 95-96, 100-101, 

340-41, 343, 353-56, 385, 388, 
402, 403, 409, 414, 445, 447, 484, 
487, 531 

genident,49, 50, 168,234, 242,291, 
294,302,327 

genlabel,45,46,49,67-68,98,210, 
222,224,227-28,232,234, 241, 
278,281, 290,323,325,457,460, 
491,521 

(genre load), 426 
genreload,409,420,424-25,426 
(genspill),424-25 
genspill,396,409,420,423,424 
(get a new block), 26, 27 
getchr, 108, 126,226,295 
getreg,409-10,412,418,422,427, 

500 
getrule,382,390-91,419 
(gettok cases), 111, 112-14, 116, 119, 

122 
gettok, 108, 110, 111, 115, 117, 119, 

123, 125, 134, 142 
-g,219,341 
GLOBAL,38,40,41,42,49,58-59,61, 

62,80, 89, 168,211,253,256,259, 
261-62,289,297,300,302,303, 
327,457, 521 

global, 51,90,265,458,459,492, 524 
global optimization, 531 
(globals), 38, 265 
globals,39,40,41,262,301 
GNU C compiler, see gee 
gnum,458 
(goto statement), 221, 227 
gp,433,458 
grammars, 19 

tree, 373 
greg,466,467,473,488 
GT, 84,160, 174,242,318,322,340, 

417,441 

(h - hash code for str, end - 1 past 
end ofstr), 30, 31 

hascall, 151, 171, 186, 187-88 
hashing strings, 30 
(hash op and ty), 56, 57 
HASHSIZE,40,44-46,48 
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hash tables, 30, 40, 314 
hasproto,75,260 
hexadecimal-constant, 126 
(hexadecimal constant}, 116 
HEX, 110, 111 

ICON,102,116, 123,167 
icon, 117, 126 
(id, tyl ~ the first declarator}, 258 
(id, tyl ~ the next declarator}, 2 58 
(ident}, 267 
identifier, 114 
identifiers, number of references to, 

296, see also refi nc 
i denti fie rs, 39, 40, 41, 44, 68, 115, 

219, 260, 270, 272, 275, 288, 292, 
294, 296-91, 298-99, 303-4, 310 

identities, eliminating, 207 
identity,207,208,209,210 
(id}, 275 
ID, 109, 114, 115,155, 157, 167, 182, 

221-22,227,229,234,253,256, 
258, 267-68,271,277,295 

idtree, 168, 170, 185, 189,191, 199, 
222, 225,242,245,292,296,302, 
326-27, 339 

IEEE floating point, 370, 456 
IF,108, 113, 155,157,221-22,229, 

234,271,277, 280,295 
(if statement}, 221, 224 
ifstmt,224,225,228, 326 
(illegal character}, 111 
immediate instructions 

MIPS, 438, 443, 463 
SPARC, 463, 469 

imm,469,470-72 
implicit conversions, 6, 172 
import,90,264,30~456,457,491, 

523, 524 
incomplete types, 56 
(increment sum}, 1 
incr,158, 165-66, 111, 192 
INDIRB, 348, 446, 441, 482, 513 
INDIRC, 86,400,437-38,471-72,505, 

510 
INDIR+D,5 
INDIRD, 6, 8,401,438,471-72,513 
(indirection}, 164, 179 
INDIR+F,6 
(INDIR}, 319 
INDIR, 83-84, 86, 169, 118-19, 181, 

190, 191, 233, 316, 319-21, 
336-37, 343, 345, 346, 347, 349, 
361, 383, 384, 395, 399, 415, 422, 
425-26, 507-8 

INDIR+I, 148,336 
INDIRI, 86, 311, 383, 400, 401, 43 7, 

471, 505, 515 
INDIRP, 86, 95, 321, 341, 401, 437, 

471, 505 
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infd,104, 105,106,307 
infile, 307 
inheritance, 527 
init.c,14 
initglobal,264,299,300,302,309 
(initialize for a struct function}, 187 
(initialize}, 93 
(initialize MIPS register structures}, 

433,434 
(initialize new-style parameters}, 287 
(initialize old-style parameters}, 

287-89 
initializer, 254 
initializer, 264 
initializers, 263 
(initialize SPARC register structures}, 

466, 467-68 
input buffer sentinel, 103, 106 
input.c, 125 
inputinit,105, 106,307 
install, 44, 45, 51, 58-59, 61, 67, 

226-21, 260, 262, 275, 299-300 
(install new string str}, 30, 31 
(install token in stmtlabs, if 

necessary}, 226, 227 
instructions 

emitting, 391 
MIPS samples, 430 
ordering, 409, 413, 428 
scheduling, 428, 463, 475, 481, 494, 

531 
selecting,354,373,402,531 
SPARC samples, 463 
two-operand, 393, 419 
X86 samples, 496 

instruction trees 
projecting, 359, 385, 426 

intconst,49,328,334,348,367,445, 
477 

integer-constant, 116 
integral promotions, 71, 172, 189 
integral types, 54 
Intel Corporation, 496 
(interface flags}, 79, 87-89 
(interface}, 16, 78-79, 96 
Interface, 79,96,306,431,464,497 
interface record, 79, 252 

back-end extension to, 354 
binding to a specific, 96, 306 

(interface routine names), 432, 464, 
497 

(interface to instruction selector}, 356, 
379 

internal linkage, 261 
intexpr,203,268,281 
INT,48,54,58,69, 73-74,82, 109, 113, 

175, 256-57 
intmetric,58, 78, 79 
INT_MIN,29, 30,205,207 
INTRET,443,444 
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INTTMP,434,443-44 
inttype,57,60, 66,173 
INTVAR,434 
inverted type, 265 
IREG,361, 365-66,434,443-46,449, 

451-52,454-55,467-6~47~ 
479-80,488,498-500, 509, 513, 
517-18 

ireg,433,434,437,443,445,467, 
476,485-86,489-90 

IR,46,49,50, 58,61, 96, 168, 188,211, 
242,263, 265,282, 284, 291-94, 
300,303-5, 306, 333-34, 338-40, 
342, 344, 346, 368-69, 371, 382, 
389-92,400,402-3,417,419 

IRIX operating system, 431 
isaddrop, 179, 191, 197, 199, 210-12, 

233,316, 328 
isarith, 60, 178, 180, 192-93, 196, 

200 
isarray,60,62-64,81, 168, 174, 179, 

181-83, 189, 193, 264,275, 298, 
302, 304-5, 327 

iscallb, 191, 199,245,246 
iscall,343,344,347 
ischar,60 
isconst,60,63, 73, 180, 183, 196-97, 

201,264, 282,302 
isdouble,60, 173,489 
isenum,60,61, 71, 74, 180, 189-90, 

195 
isfloat,60,449,483,486,490, 518 
isfunc,60,62-65, 159, 165, 168, 174, 

176, 179, 186, 192, 194-95,201, 
225,259, 261,263-64, 275, 282, 
289-90,296,298, 302,304-5,457 

isint,60, 71, 74,180, 189, 192, 194, 
203,233-34,451,453,521 

isnullptr, 194, 195-96,201 
(is p->ki ds [1] a constant common 

subexpression?), 508 
ispow2,208 
isptr,60,61, 175, 177, 179-82, 186, 

190, 192, 194-97, 201,245, 319, 
521 

isqual,60,63 
isscalar,60,297,302,412,483 
isstruct,60, 168, 182, 187-89, 

196-97, 199,275, 286, 291-94, 
298,302,319,449,485,487, 529 

(is this a simple leaf function?), 
487-88 

istypename, 115, 164-65,256,259, 
270-71,273,278,280,287, 295 

isunion,60 
isunsigned,60, 71, 118, 169, 173, 

178, 197-98, 346 
isvoidptr, 194, 195-96,201 
isvolatile,60,63, 73, 180, 183, 196, 

201,233,275,282,296,298,319 

(JUMP), 318, 321 
JUMP,84,242,318,340, 341,343 
Jump, 217, 218, 220, 227, 246, 247, 

249,291, 311,338, 340,341 
jump,247, 312, 325,327 
jumpstojumps, 247 
JUMPV, 83, 227, 247, 321, 417, 441, 

475, 516 

keyword, 113 
keywords, 102 
%k,99 
_kids, 381, 406 
kids, 81, 83, 86, 98, 149, 359, 386-87, 

409, 422, 426-27 
kill, 316, 317, 328, 349 
kind, 115, 143, 143-44,217-18,222, 

229,246-49, 253, 259,268, 271, 
287,291,295,338, 341 

K&R C, see pre-ANSI C compilers 

(l, r - for a bit-field assignment), 328, 
329 

(Label,Gen,Jump),217,220 
LABEL, 83-84,343, 396 
Label, 7, 217, 218, 220, 226, 246, 

247-48,291,311,338,340, 341 
_label,353-54, 378,379, 388 
labelnode,323,325 
labels, 80 

appending code-list entries for, 246 
appending dags to the forest for, 

323 
case and default, 234 
compiler-generated, 45-46 
equality of, 248 
equated, 248, 340 
exit-point, 292 
local, 222 
removing dags from the forest for, 

325 
source-language, 45-46, 226 
true and false, 225, 312, 321 
undefined, 227 

(labels), 38, 46 
LABELS,38,46, 80, 89,227,242, 291, 

293,491 
labels, 40, 41, 46-47, 230, 232-33, 

235,243,291,342 
LABELV, 101, 226,246, 248-49, 323-24, 

325,417,441,475, 516 
l burg, 13, 373 

approximate costs, 441 
arity of terminals, 376 
chain rules, 3 76 
configuration, 375 
costs, 3 76, 388 
dags versus trees, 373 
epilogue,375 
guidelines, 404, 436, 438 
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labeller, 374, 377 
MIPS nonterminals, 43 5 
nonterminals, 3 73 
prologue, 375 
reducers, 374, 379, 381 
SPARC nonterminals, 469 
specifications, 3 75 
subtrees, 380 
terminals, 373 
tree cover, 377 
X86 nonterminals, 503 

LBURG_MAX,37~388-89,404, 507 
(lburg prefix), 375, 431, 463, 496 
leaf functions, 487 
(leave argument in place?), 449, 450 
LEFT_CHILD, 375 
left factoring, 139 
leftmost derivation, 128 
left_to_right, 88, 183, 186, 332, 

333, 334, 351, 498 
LE, 84, 109, 160, 174, 318, 322,340, 

417,441 
length,34,274,295 
LEQ,109 
LETTER,110, 111, 113-14, 119 
level,40-41,42,44,62,67, 187,191, 

202, 219,234, 253,256, 259-60, 
269, 272,275, 278,292, 294, 
296-300 

lexical analyzer, 5, 102 
generators, 107, 124 

lifetimes of allocated objects, 23 
limit,17,25-26,28,103, 104, 

105-107, 111, 112, 115, 122, 
123-24 

limits.h,30 
(linearize forest), 402, 414 
linearize,353-54,409,413,413-14, 

425, 428 
line boundaries, 103 
line, 104, 10~ 106, 10~ 111 
lineno,104, 10~111, 12~215 
linkage,261 
linked lists, use of, 34 
(list CALL+B arguments), 333 
list.c,14,34 
listed nodes, see root nodes 
List, 34, 37, 51, 52, 13, 271, 294 
list, 17,34,271,274,321,321,325, 

327-28, 333-34, 336-37 
(l i stnodes cases), 318 
listnodes, 111, 186, 222, 223, 225, 

242, 311-13, 315, 317, 318, 319, 
320-23, 325, 326, 328-30, 331, 
332, 333, 334-31, 342, 349-50 

literate programming, see noweb 
LIT,91,264,26~302,305,342,459, 

491, 501 
little endian, 87, 370, 431 
little_endian,87,284, 371 

INDEX 

LOADD,439,482 
LOAD, 361, 398, 400, 417, 420, 473, 411 
LOADI,400,439,473, 506 
(Local), 217, 219 , 
LOCAL,38,49-50, 80, 89,260,269,294, 

297-98,299, 32~346,457,491, 
521 ', 

Local, 217, 219, 319, 338, 339, 341-, 
346 

local, 50, 85, 89, 90, 93, 95, 98, 2lli 
217, 338, 339, 346, 410, 447, 483, 
487, 518, 528-29 

locals, 217, 294 
assigning registers to, 296 
declared explicitly as registers, 297 
declared extern, 300 
initialization of, 302 
MIPS, 436, 447 
offsets for, 362 
SPARC, 469, 483 
X86, 518 

loci, 52 
locus,52 
(logical. not), 164 
longdouble,57, 58, 121,257 
LONG, 54, 109,256-57 
long input lines, 103, 105, 122, 125 
long string literals, 2 
longtype,57, 58, 71,118,257 
lookup, 45, 51, 67, 115, 226, 260-61, 

263, 275,278, 289-90,297-98, 
300, 301,303 

loop handles, 222, 228, 293 
LSH,84, 198,208,318,320,331 
LT,84, 160, 174,242,318,322,340, 

417,441 
ltov,34, 73,271,272,274,295 
l value, 169, 174, 178, 179, 181, 190, 

191, 197,329,331 
lvalues, 53, 169 

main.c, 305 
(main), 305, 306-7 
main,305,306-7 
malloc,23,2~2~28, 32-33 
map, 110, 111, 112, 117, 119-21, 

123-24 
(map initializer), 110 
mask,329-31,361, 363,395,410-12, 

417-19,422-23,427-28,477, 509 
(mask out some input registers), 418, 

419 
maxargoffset,358,366,367,448, 

451-52,454,48~487, 512 
maxlevel,59, 59, 61 
MAXLINE, 105, 105, 112, 114, 115, 116, 

122, 126 
maxoffset,358,365,366,448,452, 

481, 520 
MAXTOKEN,111, 114, 124 



INDEX 

max_unaligned_load,355 
(mayrecalc), 385 
mayrecalc,357,361, 384,385 
memcmp,34 
memop, 507,507 
memset,24,57,317 
(metrics), 78, 79 
Metrics, 78, 79 
(M), 15 
Microsoft Corporation, 496 
mini-indices, 4 
MIPS 

address calculations, 436 
argument-build area, 452 
argument transmission, 444, 449-50 
block moves, 434, 446, 460 
callee-saved registers, 452, 454 
caller-saved registers, 444 
calling conventions, 432, 449 
defining constants, 455 
entry sequence, 45 2 
exitsequence,454 
external identifiers, 456 
formals, 436 
frame, 447, 452 
generated symbols, 45 7 
immediate instructions, 438, 443, 

463 
instruction suffixes, 436 
l burg nonterminals, 435 
locals, 436, 447 
pseudo-instructions, 432, 441 
register formals, 450 
registers, 432 
register variables, 432, 434 
return address, 432, 442-43, 455 
return register, 432, 443 
sample instructions, 430 
scratch registers, 432, 434, 443 
segments, 459 
stack pointer, 432, 434 
structure arguments, 449, 454 
variadic functions, 448-49, 453 
wildcards, 434 
zero register, 432, 437 

mips.c,373,430 
(MIPS clobber), 435, 443 
(MIPS defconst), 455-56 
(MIPS defsymbol ), 457 
mipsebIR,96,431 
mi pse lI R, 96, 431 
(MIPS emit2), 444, 446-47 
(MIPS function), 448-49, 451-55 
(MIPS interface definition), 431 
(mi ps. md), 431 
(MIPS rules), 431, 436-44, 446 
(MIPS target), 435, 437, 443, 445, 447 
(MIPS type metrics), 431 
missing tokens, 141 
mkactual,357, 366,445,477, 512 

mkauto,357, 364,365,44~ 483,518 
mkreg, 358,362,363,434-35,467, 

498-500, 509 
mkwildcard,358, 363,434,467, 500 
ML, 74, 530 
MOD, 84,318,319,344 
Modula-3, 308, 527, 530 
modules in l cc, 15 
monolithic compilers, 5 29 
move,358, 394,439,472, 506,510 
moveself, 353-54, 393, 394, 395, 406, 

416, 472, 477, 506 
(move the tail portion), 106, 107 
MS-DOS, 496 
MUL, 84, 109, 177, 193, 208, 318, 319, 

344 
mul, 206 
MUL+I, 148 
mulops_calls, 87, 171, 319, 343, 344, 

350, 465, 480 
multiple assignments, 331 
multiple-pass compilation, 530 
multree, 109, 192, 193,215 

(n ~ *ty's size), 193 
name, 37,44-46,48-49, 58,66-68, 76, 

80,96,170, 182,197, 210,263-64, 
281-82, 286-88, 290, 297-98, 300, 
303-4,306, 362,389,449,45~ 
484,491, 521 

name spaces, 36 
navigating fragment definitions, 2 
ncalls,93, 290, 293, 333,448-49,451, 

484,487 
needconst, 202, 203, 205, 207, 234, 

235 
NeedsReg, 398,417 
(negation), 164, 178 
NEGD,439,482,514 
NEG, 84, 178,318 
NE, 84,160, 174,208,318,322, 340, 

417 
NE!, 441, 475, 516 
NELEMS,19, 30,31,40, 56,59,315-16, 

392,413,415,418-19,422-23, 
428,502 

nested calls, 183, 186, 335 
nested scopes, 35 
nesting levels, see scope, levels 
NEW0,24,41,44,46,48-49,68, 150, 

210,266, 315,363,424 
newarray,24-25,28, 233,239,274, 

287,290, 292 
newconst, 98 
newfield,68,281 
NEW,24, 31,33,57,218, 287,292 
NEWLINE, 110, 111,123-24 
newnode, 98, 246, 311, 312, 315, 

316-1~ 320,328,333-34,346-48, 
400,425-26 
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newstruct, 66, 67, 68, 77, 277, 278, 
310 

(new-style argument), 188 
new-style functions, 63, 187-88, 270, 

272, 287 
and old-style declarations, 286, 289 

newtemp,50, 98,423 
nextline, 103-104, 105, 106, 111, 

112, 122, 124, 125 
nodecount,222, 223,314,315-16, 317 
Node,81 
node,81, 149, 313, 314,315,31~ 

318-20, 327, 349, 353, 358, 361, 
397, 402, 527-28 

NODEPTR_TYPE,375,378,381 
nodes, back-end extension to, 358 
nondigit, 114 
nonterminals, 19 

l burg, 373 
MIPS lburg, 435 
SPARC l burg, 469 
X86 lburg, 503 

notangle, 1-2, 16 
notarget,358,403,404,440,473 
(NOT), 318, 322 
NOT, 149, 160, 174,225,318, 322 
noweave, 1 
noweb, 1, 14,21 
nstack,502 
nstate, 502 
_ntname,406 
_nts, 380-81 
null characters, 12 3 
nullcheck, 179, 181-82,215 
null-pointer errors, 179, 214 
null pointers, 194, 196, 201 
number,361, 363,446,453-54,488-90 
(numeric constants), 167 

Oberon-2, 527 
object-oriented languages, 527 
object pointers, 176, 193 
octal-constant, 126 
(octal constant), 116 
offset,66, 183, 211, 219,283, 339, 

358, 362,364,365, 366,444-45, 
448-49, 451, 485, 487, 489-90, 
519, 520 

offsets 
for formals, 362 
for locals, 362 
initializing, 365 

oldparam,288 
(old-style argument), 188, 189 
old-style functions, 188, 270-71, 287 

and new-style declarations, 286, 289 
oldstyle,63,64, 73, 187, 189,259, 

266,272-73,286 
(omit leading register copy?), 392, 393 
omitted assertions, 3 

omitted fragments, 3 
omitted modules, 14 
one-pass compilation, 529 
opaquetypes,39, 56 

INDEX 

(open a scope in a parameter list), 268, 
269,270 

operating systems 
IRIX, 431 
MS-DOS, 496 
Ultrix, 431 

operators, 528 
(operators), 82 
oper, 155, 157, 158, 163 
opindex,98, 151,315,398,417 
OP_LABEL,375, 376 
_opname,389 
optree, 155, 158, 163, 174, 177, 181, 

191,212,242 
optype, 74,98, 151,203, 322,398, 

400,417-18,423-24,426,445-46, 
477,502 

ordering instructions, 359 
oreg,467,476-77,480,489 
(OR), 318 
OR,109, 149, 160, 174,225,318, 

322-23, 335, 349 
OROR,109, 163 
OTHER, 110, 111 
outfil e, 307 
outflush,17, 9~98,99,293,307 
outofline, 58,61, 78, 79 
output buffer, 97 
output.c, 14, 16, 18,392 
outs, 16, 1~9~99,392 
outtype,75 

(p - unary), 164, 165 
parameters, see also formals 

representing with two arrays, 286, 
337 

parameters, 259, 268, 270, 271, 274, 
286-88 

PARAM,38, 6~ 80, 89, 168,269, 272, 
288,291,293,296-98 

(parse fields), 280 
parseflags,358,370,458,498 
(parse -G flag), 433, 458 
(parse new-style parameter list), 271, 

273 
(parse old-style parameter list), 271 
(parse one argument), 187, 188 
(parse one field), 280, 281-82 
parser, tree, 373 
parser generators, 127, 145 
(parse SPARC flags), 466 
parse trees, 129, 147 
parsing functions, 133, 137, 151 

simplifying, 139, 161 
partitioning case labels, 239, 250 
(pass a structure directly), 188, 191 
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patterns, tree, 373 
peephole optimization, 406, 531, 534 
perfect hashing, 114, 125 
PERM, 31,48-49, 57-59,61,67-68, 73, 

97,254,260, 262,274,290,300, 
363 

-P, 75,304 
(plant an event hook for a call), 187 
(plant an event hook for a struct 

return), 245 
(plant an event hook for return p), 245 
(plant event hook for return), 244 
(plant event hook), 221 
(plant event hooks for?: ) , 159 
(plant event hooks for && I I ), 163 
pointer, 267 
(pointer->field), 166, 182 
(pointer), 267, 268 
POINTER,49, 54,60-61,69, 72-73,82, 

109, 175,266,268 
pointer, 155, 156, 159, 163, 165, 173, 

174, 178-82, 186, 188, 197,242, 
244 

pointers 
additions of integers to, 192 
assignments to, 196 
comparing, 201 
simplifying additions involving, 209 
types for, 54, 528 

pointersym,61 
(pointer-to-pointer conversion), 175, 

176 
position-independent code, 251 
(postdecrement), 166 
postfix-expression, 154, 164 
postfix, 153, 164-65,166, 186, 214, 

336 
(postincrement), 166 
Postscript, 533 
pp-number, 119 
ppnumber,118, 119, 120 
pre-ANSI C compilers, 16, 122 
precedence, 131, 152 
prec, 152-53, 155,157, 162 
(predecrement), 164 
(preincrement), 164, 165 
(prelabel caseforASGN), 399 
(prelabel), 398-400 
prelabel, 353-54, 397, 398, 399-400, 

402,418, 420 
preload,398 
preprocessing numbers, 119 
preprocessor, ANSI C, 4 
preprocessor output, 4, 125 
primary-expression, 154, 166 
primary, 123, 164, 166,167 
(print an ANSI declaration for p), 304, 

305 
printdecl, 75-76,305 
printf,2, 99, 142, 188 

print, 18, 9~ 99,352,469, 520 
printproto, 75, 76 
procedure activation record, see frame 
productions, 19, 127 
prof.c, 14 
profiling, 220 
profio.c, 14 
progbeg,89, 305,307, 399,410,433, 

447, 466, 467, 498, 501-2, 518 
progend, 89, 305, 307, 433, 466, 501, 

502 
program,253,305,307 
projecting instruction trees, 359, 385, 

426 
prologue, see also entry sequence 

lburg,375 
promote, 71, 172-73, 174,178, 189-90, 

193,233,245,287-88 
promoting subword arguments, 338 
prototypes 

in types, see types 
printing, 75 

(prune), 386-87 
prune, 353-54, 385, 386,387,402, 

409, 425-27 
pseudo-instructions 

MIPS, 432, 441 
SPARC, 463, 470 

(p->syms [2] - a generated 
temporary), 346, 348 

ptr,61, 61, 64, 72, 169-70, 174, 179, 
182-83, 191, 201, 266, 275, 291, 
293-94, 515 

ptrmetric,61, 79 
(put even lightly used locals in 

registers), 483 
putreg,409,410,417-18,424 

(q - the r.h.s. tree), 329, 330-31 
(*q represents p's rvalue), 316 
qual,62,63, 72-73, 180, 183,201, 257, 

266,302 
qualified types, 54, 182, 197 
(qualify ty, when necessary), 182, 183 
question mark 

in assembler templates, 506 
quick-fit allocation, 32 
quo,509, 509 

ralloc, 353-54, 409-10, 417, 418-19, 
424, 425, 462, 477 

range, 358,388, 389,437,439,443, 
469,473-74,504, 508 

rep, 111,112-17, 119-20 
readsreg,395,396 
(recompute max level ) , 59, 60 
recursive-descent parsing, 127, 133 
recursive structure declarations, 2 76 
redeclaration errors, 67, 252, 260-61, 

269,275, 278,298 
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reduce, 353-54, 382, 384-85, 387, 402, 
470 

{reduce k?), 368, 369 
reducers, 379, 381 
ref,38, 168, 211, 221, 224,230, 236, 

246-49,294, 296-98, 302-3, 322, 
339, 346, 523, 524 

{refill buffer), 105, 106 
refinc,168,169,220, 221,222,224, 

225, 229, 233, 290, 291 
regcount,291,290299 
reg, 356, 400-401, 403, 404, 405, 

436-44,446,460-61,469-78, 
480-82,484-86,489-90,492-93, 
504-6, 508-11, 513-18 

register allocation, 354 
by graph coloring, 428, 531 

register allocator 
overview, 409 

register assignment, 354 
REGISTER, 39,80, 94-95, 179,202, 234, 

256, 270,273,275,296, 297-99, 
346-47, 348, 399, 412, 417-18, 
424,450,451,453,483,486,488 

{register local), 299 
registers 

allocation of, 408, 413, 417 
assigning variables to, 94 
assignment of, 408 
caller-saved, 410, 428 
floating-point, 361 
general-purpose, 361 
global allocation, 408 
MIPS, 432 
MIPS callee-saved, 452, 454 
MIPS caller-saved, 444 
MIPS formals, 450 
MIPS return, 432, 443 
MIPS scratch, 432, 434, 443 
MIPS zero, 432, 437 
reloading spilled, 425 
SPARC, 465, 476 
SPARC callee-saved, 468 
SPARC caller-saved, 468 
SPARC return, 476 
SPARC scratch, 467-68 
SPARC zero, 465, 473 
spilling, 357, 409, 420, 472, 502 
targeting, 357 
X86,498 
X86 return, 517 
X86 scratch, 500 

register sets, see wildcards 
registers,294,295,299 
register symbols, 362 

initializing, 362 
register targeting, 397 
register-to-register copies, 354, 360, 

394, 397, 415, see also moveself 
and requate 

register variables, 361, 399, 418 
MIPS, 434 
SPARC, 468, 483 
X86, 500 

INDEX 

register windows on the SPARC, 463, 
465 

Regnode,361,362,411,422 
relink,413,414 
rem, 509, 509 
{remove the entry at cp), 246, 247 
{remove types with u. sym->scope >= 

lev), 59 
rename,488,489,490 
reprune,409,426,426-27 
{requate), 395-96 
requate,353-54, 393,394, 395-90 

407, 472, 506 
reset, 311, 317, 321, 323-24, 325, 

326,328-29,333 
{reset refi nc if -a was specified), 221 
{result), 511 
resynch,106, 125 
resynchronization directives, 106, 125 
retargeting lee, 357 
RET+B,245 
RETB, 85 
{retcode), 244-45 
retcode,243,244,290,291, 295 
{RET), 318 
RET, 84-86, 244, 245, 318, 350, 417, 

443, 476 
RET+l,6, 245 
RETI,86,400,443,476,517-18 
RET+P,245 
RETP,86 
retstruct,484,487 
return address 

MIPS,432,442-43,455 
SPARC, 475, 490 
X86, 519 

{return a structure), 245 
{return a tree for a struct parameter), 

168, 170 
returning structures, see also functions, 

returning structures from 
SPARC, 487 

return register 
MIPS,432,443 
SPARC, 476 
X86,517 

{return statement), 221, 243 
{return the symbol if p's value== v), 

48 
retv,245-46,291, 291-92,294-95 
retype, 151, 171, 174-77, 179, 181-82, 

197,202,209,233 
reuse,382-83,384,390-91,406 
rewrite,353-54,402,403,425 
RIGHT_CHILD,375 
right context, 136 
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(RIGHT), 318, 335 
RIGHT, 149, 151, 155, 156, 166, 171, 

181,184-86,187-89,190, 191, 
199-200,208,212-13,245, 318, 
324, 333, 335-36 

rightkid, 151, 160,165, 171, 174 
RISC, 430, 463 
rmap, 358, 398, 399, 417, 434, 447, 

450, 467, 483, 500, 518 
rmtypes,42,44,59,67 
root,155, 156, 190, 191,200,208, 

302,350 
root nodes, 321, 343 
roundup,19,26,99,283,285,365-66, 

449,451-53,485,487,490, 520 
RSH,84, 177, 198, 318,320 
RSH+I,320 
RSHI,331,439,474, 508 
RSH+U,320 
rtarget, 358, 400, 401, 435, 443, 445, 

447, 468, 476, 477, 480, 508, 
512-13, 517 

_rule,379, 380-82 
rule, 391 
rules, in tree grammars, 373 
rvalue, 169, 169, 174, 179, 181-83, 

242,245,331 
rvalues, 53, 168 
RX,362,384-86,392-96,399-400,404, 

415-20, 423-24, 428, 477, 479, 
508, 511 

salign,358,368,369,446-47,460, 
461,482,483 

sametree,507 
sample instructions 

MIPS,430 
SPARC, 463 
X86,496 

(save argument i ), 453 
(save argument in a register), 453, 454 
(save argument in stack), 453, 454 
scanner, see lexical analyzer 
(scan one string literal), 122, 123 
(scan past a floating constant), 120, 

121 
(scan past a run of digits), 121 
scatter,31 
scheduling instructions, 428, 475, 481, 

494 
sclass, 38, 39, 80, 93-95, 399, 450-51, 

483, 486, 520 
scope, 35, 80 

in parameter lists, 67, 259, 269 
interrupted, 36 
levels, 38 

scope, 37, 41, 44, 46, 47, 48-49, 59-60, 
67,80,89,168,210-11,219,227, 
260-62,275,278,289,296-98, 
300,457,491, 521 

scratch registers 
MlPS,432,434,443 
SPARC, 467-68 
X86, 500 

(search for an existing type), 57 
seg,265,458,492, 524 
segment,90,91,265,452,459,491, 

501,502,523, 524 
segments, 90 

MIPS, 459 
SPARC, 491 
X86,501 

selecting instructions, 354, 373, 402 
(select instructions for p), 402 
selection code, 236 
semantic errors, 140 
(semicolon), 221, 222 
sentential forms, 128 
Sethi-Ullman numbering, 428 
set, 141,143-44, 361,363,395, 

410-12,418-19,422,428,445-46, 
449,453 

(set p and ty), 255, 256 
setreg, 358, 398, 399, 400, 435, 437, 

443, 468, 473, 476-77, 480, 508, 
517 

(set tva l's type and value), 120, 121 
(settval 's value), 118 
(set tva 1 and return ICON or SCON), 

123 
(shared interface definition), 431, 432 
(shared progbeg), 371, 433, 466, 498 
(shared rules), 400, 403, 431, 463, 496 
short-circuit evaluation, 322, 335 
SHORT,48,54,58,69, 73,82, 109, 175, 

256-57 
shortmetric,58, 78 
shorttype,57, 58, 74,177,207,257 
shtree,192. 198,215, 320,331 
%S, 99, 118 
side effects, 156 
signedchar,57,58, 177,257 
Silicon Graphics Corporation, 431 
simp.c,147 
(simplify cases), 203, 204-9 
simplify, 175, 176, 183, 192-95,203, 

204, 207, 208, 212, 214-15, 235, 
250,326, 342 

(sizeof). 164, 165 
size_t,24,165 
skipto, 141, 143,144,222,271 
(skip whitespace), 111, 112 
source-code fragments, 1 
source coordinates, 5, 38, 51, 99, 102, 

338 
space,92,300,304,459,491,492, 524 
SPARC 

address calculation, 4 70 
argument-build area, 487 
argument transmission, 4 77 
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block moves, 482, 492 
branch tables, 475 
calling conventions, 465, 468 
defining constants, 490 
entry sequence, 488 
exit sequence, 490 
external identifiers, 490 
formals, 469, 485 
frame, 487 
frame pointer, 467 
generated symbols, 491 
immediate instructions, 463, 469 
l burg nonterminals, 469 
locals, 469, 483 
pseudo-instructions, 463, 470 
registers, 4 76 
register variables, 468, 483 
register windows, 463, 465 
return address, 475, 490 
returning structures, 484, 487 
return register, 4 76 
sample instructions, 463 
scratch registers, 46 7-68 
segments, 491 
stack pointer, 467 
variadic functions, 478, 484-85, 489 
wildcards, 467 
zero register, 465, 473 

(SPARC bl kloop), 493, 494 
sparc.c,373,463 
(SPARC clobber), 468, 477, 479-80 
(SPARCemit2), 478, 479, 482 
(SPARC function), 484-85, 487-90 
(SPARC interface definition), 464 
sparcIR,96,464 
(sparc.md), 463 
(SPARC rules), 463, 469-78, 480-82 
(SPARC target), 468, 473, 476-77, 

480 
(SPARC type metrics), 464, 465 
specifier, 255, 256-57, 258, 265, 

213, 280 
spillee,409,412,420,422,429 
(spill floats and doubles from iO-i 5), 

489 
(spill), 428 
spill, 357, 358, 409-10, 412, 427, 

435, 443, 444, 468, 472, 477, 479, 
502, 513, 517-18 

spilling registers, 357, 409, 420, 472, 
502 

(spi 11 r), 423 
spillr,409,420,423,428 
spri ntf, 64-65, 15 
src,108, 110,220,338 
stabblock,80,464 
stabend,80 
stabfend,80 
stabinit,80,432,464 
stabline,80,432,464 

stabsym,80,432,464 
stabtype,80,464 
stack pointer, 364 

MIPS, 432, 434 
SPARC, 467 
X86,498 

%start,376 
Start,7,217,217-18,290,339 
start nonterminal, 12 7 
_state,379,384 
state,358, 379,384 
STATLLABEL,375 

INDEX 

statement, 216 
statement,221,222, 224-25,226, 

228, 230, 232, 233-35, 236, 290, 
294, 295 

(statement label or fall thru to 
default), 221, 226 

statements 
break, 232 
case labels, 2 34 
continue, 228 
for, 228 
if,224 
loop, 227 
missing values in return, 244 
nesting level, 222, 293 
return, 225,243,291 
selection code for switch, 236 
switch, 230 
using semicolons to terminate, 216 

STATIC,39,48,80, 168,211,242,253, 
256, 258-59,261-62, 263,271, 
287,293,295,297,299-300,302, 
304, 327,457,459,491-92, 521 

(static local), 299, 300 
stdarg.h, 17 
_STDC_, 11-18 
(still in a new-style prototype?), 187, 

188 
STMT,97, 150,223, 224, 229, 254, 266, 

295, 311 
stmt, 376, 401, 403, 405, 437-38, 

441-44, 446, 471-72, 475-78, 
481-82, 507-8, 512-18 

stmtlabel,226 
stmtlabs,226,226,291,293,309 
strength reduction, 208 
string.c,28 
(string constants), 167, 168 
stringd,29, 33,46,49,67-68, 99,210, 

274,281,365,449,458,484,486, 
522 

stringf,99,275, 363,457,467,491, 
520-21 

_string,390 
string,29,29, 58-59,61,99, 123 
string-literal, 122 
string literals, 103, 122 
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stringn,29,30,33-34, 56, 102,114, 
123, 168 

strings, storing, 29 
string table, 30 
strtod, 120-21, 125 
structarg, BO, BB,292,293 
(structdcl ), 277-78 
structdcl, 66-67, 256-57, 277, 310 
(struct.field), 166 
STRUCT, 54,60,69, 73,82,109,256 
structmetric, 79,282 
struct-or-union-specifier, 276 
structure arguments, see also 

functions, passing structures to 
MIPS, 449, 454 

(structure return block?), 483, 484 
SUB, B4, 109, 178,212,242,318 
sub, 206 
subinstructions, 354, 385, 409 
subject tree, 3 73 
SUBP, B3,438,474,506-7 
(subscript), 166, 181 
subscripting, 181 
subtree, l burg, 380 
subtree, 109, 192,215 
SUBU,438,474, 506 
Sun Microsystems, Inc., 463 
super, 175, 177, 214 
supertypes, 174 
swap,358,371,456, 522 
(swcode), 240, 241 
swcode,239,240,241,251,342 
swgen,237,239,240, 250 
switch branch tables, see branch tables 
(Switch), 217,242 
switch handles, 222, 232, 293 
Switch, 217, 218, 232, 233, 236, 242, 

243,249,338,341,342 
(switch statement), 221, 232 
SWSIZE,232,233 
swstmt,232,233, 236 
Swtch,221,224,228,231,235,239-40 
swtoseg,26~293, 342 
(symbol flags), 38, 50, 179, 211, 292 
Symbol,37,39, 52, 110 
symbol, 37, 40, 55, 65, 6B, 7B, BO, 117, 

274, 362, 527 
symbols 

back-end extension to, 39, 81 
computed, see computed symbols 
target-specific names for, 89 

symbols,52 
(symbol-table emitters), 497, 498 
symbol tables, 35 
sym.c, 51, 55 
syms,81, B3,98, 362 
syntax-directed translation, 349 

Table,39,40,44-45, 52,219,226 
table, 39-40,41,44,242-43,291,342 

tables, 52 
tags, see types 
tail,233,236-37,343,348 
-target,96,306 
target,357,435,43~443-46,468, 

473, 476-77, 4BO, 502, 512 
targeting registers, 357, 397 
templates, assembler, 354, 376, 392 
temporaries, 46, 50, 80, 90, 98, 158, 

319,339 
for common subexpressions, 340, 

344,346 
for conditionals, 326 
for structure return values, 185, 332 
for switch expressions, 231 
linking uses of, 362, 415 

(temporaries), 38, 346 
temporary, 50, BO, 90,187, 191,202, 

210,319, 346,384, 386,396,413, 
415, 418-19 

tentative definitions, 255, 303 
%term,376 
(tenninal declarations), 376, 431, 463, 

496 
terminals, 19 

lburg,373 
( tenninate list for a varargs 

funcaon),273,274 
(test for correct termination), 155, 

156, 157 
test,141, 142, 14~ 156, 229,235, 

258,278,280 
test suites, 5 3 2 
texpr,150,229-30 
%t,62,99 
t, 108 
tmask, 358, 410, 417, 422, 434, 46B, 

500 
tmpnode, 346, 347, 348 
tmpregs,434,446,482 
tnode,266,268,270 
token, 108 
token codes, 5, 99, 102 

associated values for, 102, 110, 113 
definitions of, 110 

(token.h), 109 
token.h,60, 109, 110, 143, 155,191 

including, 109, 143, 155, 191 
token, 108, 110, 114-16, 117, 123, 

142, 182,226-27,267,271,277 
tokens, 5, 19, 102 
top-down parsing, 128 
(tp is a tree fore++), 335, 336 
trace.c, 14 
translation-unit, 253 
trashes,3B5 
tree 

cover, 373, 377 
parser, 373 
partial cover, 374 
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patterns, 373 
subject, 373 
transformations, 12 

tree.c, 147, 150 
tree grammars, 8, 373 

ambiguity in, 374 
costs in, 374 

Tree, 148 
tree, 148, 150, 155, 166-70, 176, 177, 

181, 183, 187-91, 193, 197, 
199-200, 203, 211-12, 229, 242, 
245,327,333 

(tsym ~ typenamed bytoken), 114, 
115 

tsym, 108, 110, 112, 113, 115, 117, 
120, 123, 164-65, 167-68, 170, 
256,259,270-71,273, 278,280, 
287, 295 

ttob, 73, 73-74, 81, 99, 167, 169, 
193-94,197,203-7,209, 305,346, 
447,449-50,453,483, 518 

tval,117, 118, 120-21, 123 
(ty is an enumeration or has a tag), 

258 
(type cast), 164, 180-81 
(type-check e), 233 
type-checking, 53, 147, 172 

actual arguments, 189 
pointer comparisons, 201 

type constructors, 53 
TYPEDEF, 39, 115, 170, 256, 259-61, 

301 
typedef,34,37-39,47,54,66, 78-79, 

81,96, 148,217,231,355,358, 
361-62, 365 

(typedefs), 16 
typeerror,178, 192,194, 197,201 
Type, 39, 47-48, 54, 55, 57, 63, 73, 75, 

149, 180 
type, 56, 57, 61, 69, 76, 78, 80-81, 85, 

93, 450-51 
(type!nit), 58-59,61 
type!nit, 58, 59-60, 306, 327 
type metrics, 58, 78 
type-name, 308 
typename,165,180,309 
type predicates, 53 
type-qualifier, 2 54 
types 

alignments of, 55, 78, 81 
assumptions about, 58, 79, 527 
back-end extension to, 55 
categories of, 54 
compatible, 69 
composite, 71 
decaying to other types, 62, 173 
enumeration, 68 
equality of, 56, 69 
incomplete, 264 
intermediate, 53 

metrics, 58, 78 
new-style function, 63 
old-style function, 63 
opaque, see opaque types 
operators, 54, 60, 74 

INDEX 

parameter prototypes in, 63, 75 
predefined, 58 
predicates, 98 
prefix form for, 55 
qualified,60,267 
scope of, 59 
sizes of, 55, 78, 81 
tags, 55, 65, 276 
typedefs for, 115, 256 
unqualified,60 

types.c,75 
types, 40, 41, 44, 55, 58, 59, 61, 66, 67, 

219, 278, 294 
type-specifier, 254 
typestring, 75-76 
type suffixes, 50, 73, 82, 91, 98 
(type sufflx for tmp->type), 346, 348 
(types with names or tags), 54, 55 
typetable,56, 56-58, 59,67 
(typicalfunction), 93 

u.block,295 
u.c, 371 
u.c. loc, 81 
u.c.v,80 
u.c.v.sc,389 
u.c.v.uc,389 
u.f,290 
(u fields for Tree variants), 149, 168, 

183 
u.i,371 
UINT_MAX, 117 
u. l. label, 80 
Ultrix operating system, 431 
unary-expression, 154, 163 
unary, 153, 157, 161, 162, 164, 165, 

166, 180, 214 
unary operators, 153 
undag,340, 342,343, 348 
(undeclared identifier), 170 
uninitialized objects, 304 
union-find, 351 
UNION, 54,60,69, 73, 109,256,283 
unlist, 325, 350 
unqual,48,60, 60-62, 71, 73, 168-69, 

175, 180, 182, 186-87, 190-91, 
193-95, 197, 200-202, 281, 
288-89,319, 327 

unreachable code, 218, 246 
unreferenced identifiers, 292, 296, 298 
unsignedchar, 57, 58, 177,257 
UNSIGNED,48, 54, 58,60,69, 73,82, 

109, 175, 256-57 
unsignedlong, 57,58, 117-18,257 
unsigned operands of unary-, 178 
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unsigned-preserving conversions, 173 
unsignedshort,58, 177,206,257 
(unsigned-to-double conversion), 176, 

177 
unsignedtype,58, 66, 74, 118,165, 

173, 175-78, 190, 194-95, 198, 
202,204, 206-9, 245, 257,281, 
283-84,330-31 

upcalls, 97 
in the back end, 357 

usedmask, 358, 410, 410, 428, 451, 
454-55,488 

u.seg, 80,90 
use,51, 52, 170,227,256,278,290 
uses,37, 38-39, 51,422 
u.s.flist, 279 
u.t.cse,80,412 
u.value,310 

va_alist, 18, 142,449 
va_init, 17, 1~ 142 
Value,47,49,91,168, 204,455, 522 
value,47,69, 155, 156, 157,160, 

169-70, 174, 175, 188-89 
value numbering, 349 
value-preserving conversions, 173 
varargs.h, 17 
VARARGS, 18, 142 
variadic functions, 17, 64, 99, 187, 274 

MIPS, 448-49, 453 
SPARC,478,484-85,489 

variadic,65, 71, 99,449,484 
va_start, 17 
vbl,361,412,424,48~489 
vfields,65, 66,282, 319 
visibility, see scope 
(visit), 345, 346-48 
visit,343,344, 345,347,351 
(visit the operands), 347, 348 
vmask, 358, 410, 413, 434, 468, 500, 

518 
VOID, 54-5~ 59, 73,82, 109,256 
void pointers, 194, 196, 201 
voidptype,58,61, 74,201,242 
voidtype,58, 59, 61-62,65, 168-69, 

181, 186-87, 18~ 194, 197, 202, 
242-43, 273-74, 291 

VOLATILE, 54,60,63,69, 72-73,109, 
180,183, 201,256-57,266,268 

volatile, 48 
volatile variables, 319 
v.p,92 
VREG,361,384, 395,399,420,508 
VREGP,383,400-401 
v.sc,91 
v.ss, 91 
vtoa,48 
v.uc, 91 
v.us,91 

walk,223-2~227-28,229,232,234, 
242,244, 245-47,294,296, 302, 
311, 312, 339, 348 

ending a basic block with, 223 
wants_argb,80,88, 168, 169-70, 

183-85, 188, 190, 292, 483, 486, 
529 

wants_callb, 85, 88, 183, 185-86, 
245, 291-92, 294-95, 332, 333, 
483, 529 

wants_dag, 80, 82, 85, 89, 340, 343, 
353, 373 

(warn about non-ANSI literals), 123 
(warn about overflow), 120, 121 
(warn if more than 127 identifiers), 44 
(warn if p denotes the address of a 

local), 245 
warning, 143 
warnings, see errors, reporting 
wchar_t, 122, 126 
where,150 
(while statement), 221 
%w,99 
wide-character constants, 121 
(wide-character constants), 112 
widen, 73, 74, 188, 190,245 
widening, 185 
wildcard,363, 398-99 
wildcards, 363, 399 

initializing, 363 
MIPS, 434 
SPARC, 467 
X86, 500 

word-addressed machines, 528 

X86 
address calculations, 503 
argument transmission, 512, 519 
assemblers, 496 
block moves, 512 
branch tables, 515 
calling conventions, 496 
defining constants, 522 
entry sequence, 519 
exit sequence, 520 
external identifiers, 523 
formals, 519 
frame, 520 
frame pointer, 498 
l burg nonterminals, 503 
locals, 518 
registers, 498 
register variables, 500 
return address, 519 
return register, 517 
sample instructions, 496 
scratch registers, 500 
segments, 501 
stack pointer, 498 
wildcards, 500 
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x86.c,373,496 
(XB6 clobber), 502, 513, 517-18 
(XB6 defconst), 522 
(X86 defsymbol ), 521 
(XB6 emit2), 511 
(X86 function), 519-20 
(X86 interface definition), 497 
x86IR,96,497, 513 
(x86.md),496 
(XB6 progbeg), 498, 499-501, 509 
(X86 rules), 497, 503-18 
(XB6target), 502, 508-10, 512-13, 

517 
x.argno,359,445-46 
x.blkfetch,355,369 
x.blkloop,356,368 
x.blkstore,356,369 
x.clobber,357,417 
x.copy,360, 394,416,419 
x. doarg, 356, 357, 403 
x.emit2,356, 392 
x.emitted,360, 392,394 
x.equatable,360, 393, 394,419,420 
xfoldcnst,205 
-x, 51' 
x.inst,358, 359,382, 385,386, 394, 

419, 427, 470 
(Xinterface),355-57 
Xinterface, 79,355 
(Xi nterface initializer), 355, 379, 

432,464,498 
x.isinstruction,382 
x.kids,359, 385,386-87,394-95,400, 

409, 413, 415-16, 418-19, 422, 
426-27, 446-47, 479, 482, 502, 
511 

x.lastuse,362,415-16,418,420,423 
x.listed,359,385,403,417 
x.max_unaligned_load, 355, 369, 

483, 493 . 
x.mayrecalc,360, 384, 385 
x.name,90,362,363,365,392,394, 

396,413,424,434,449,452, 
455-56, 451-58, 484, 486, 488, 
491, 511,519, 520, 522 

x.next,359, 393,395-96,413-14, 
422-23,425,428 

(Xnode fields), 358-59 
(Xnode flags), 358, 359-61 
Xnode,81, 82,358 
x.offset,362,365,388,449,453-54, 

457-58,484,486, 520 
x.prev,359,413-14 
x.prevuse,359,415,419,423 
x.registered,360,417,419,423-24, 

428, 437, 473, 476 
x. regnode, 362, 363, 395, 410-11, 412, 

419,422-24,428,445-46,449, 
453-54,477,485,488-90,509 

x.state,358,375,382,384 

Xsymbol,38, Bl, 89-90,93,362 
x.target,357,400 
x._templates, 390,419 

INDEX 

(*xty has all of*yty's qualifiers), 196 
Xtype,54, 55 
x.usecount,362,384,386-87 
x.wildcard,363,400,404,411,422 

YYnull,179,181-82, 214 
_YYnull,215 

zerofield,208,209 
zero register 

MIPS, 432, 437 
SPARC, 465, 473 



How to Obtain Ice 

The complete source code for 1 cc is available free of charge to the pur
chaser of this book. All distributions include the source code for the 
front end, the code generators for the SPARC, MIPS R3000 and Intel 386, 
the source code for the code-generator generator, and documentation 
that gives instructions for installing and running 1 cc on a variety of plat
forms. 1 cc runs on UNIX systems and on PCs with a 386 processor or its 
successor running DOS 6.0 or Windows 3.1. 

There is an electronic 1 cc mailing list. To subscribe, send a e-mail 
message with the one-line body 

subscribe lee 

to majordomo@cs. pri nceton. edu. This line must appear in the message 
body; "Subject:" lines are ignored. Additional information about 1 cc is 
also available on the Wide World Web via Mosaic and other Web browsers. 
The universal resource locator is 

http://www.cs.princeton.edu/software/lcc 

1 cc may be obtained from the sources listed below. 

Internet 

The distribution is available for downloading via anonymous ftp from 
ftp. cs. pri nceton. edu (128.112.152.13) in the directory pub/lee. To re
trieve information about the distribution, ftp to ftp. cs. p ri nee ton. edu; 
for example, on UNIX systems, use the command 

ftp ftp.cs.princeton.edu 

Log in as anonymous, and use your e-mail address as your password. 
Once connected, change to the 1 cc directory with the command 

cd pub/lee 

The file named README gives instructions for retrieving the distribution 
with ftp and information about 1 cc since this book went to press. The 
command 

get README 

will retrieve this file. Follow the instructions therein for retrieving the 
distribution in the form that is appropriate for your system. 

563 



HOW TO OBTAIN LCC 

Diskette 

The distribution is available free of charge on a 3.5", high-density diskette 
to the original purchaser of this book. To obtain your copy, fill in the 
coupon on the next page and return it to Benjamin/Cummings. 

l cc is an active research compiler and will continue to change over 
time. Thus, the diskette version cannot be as up to date as the online 
versions. 



To obtain a free 3.5" diskette containing the 1 cc distribution, fill in 
the coupon below, carefully remove this entire page from the book, fold 
the page so that the Benjamin/Cummings Publishing Company address, 
printed on the reverse side, is visible, attach appropriate postage, and 
mail. Allow two weeks from receipt of this coupon for delivery. 

Only an original of this page can be redeemed for a diskette; photo
copies are not accepted. 



Computer Science Marketing Department 
Benjamin/Cummings Publishing Company 
390 Bridge Parkway 
Redwood City, CA 94065 

Attention: l cc Disk Fulfillment 
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