
Improving Compiler-Runtime Separation with XIR

Ben L. Titzer
Google

1600 Amphitheatre Parkway
Mountain View, CA 94043

(650) 919-4897

ben.titzer@gmail.com

Thomas Würthinger
Johannes Kepler University

Linz
Altenbergerstr. 69
4040 Linz, Austria

+43 732-2468-7137
wuerthinger@ssw.jku.at

Doug Simon
Sun Microsystems

Laboratories
16 Network Circle

Menlo Park, CA 94025
(650) 568-4871

doug.simon@sun.com

Marcelo Cintra
Secure Systems and
Software Laboratory

University of California Irvine
448B ICS Building
Irvine, CA 92717
(949) 824-9104

mcintra@uci.edu

ABSTRACT
Intense research on virtual machines has highlighted the need for
flexible software architectures that allow quick evaluation of new
design and implementation techniques. The interface between the
compiler and runtime system is a principal factor in the flexibility
of both components and is critical to enabling rapid pursuit of new
optimizations and features. Although many virtual machines have
demonstrated modularity for many components, significant
dependencies often remain between the compiler and the runtime
system components such as the object model and memory
management system. This paper addresses this challenge with a
carefully designed strict compiler-runtime interface and the XIR
language. Instead of the compiler backend lowering object
operations to machine operations using hard-wired runtime-
specific logic, XIR allows the runtime system to implement this
logic, simultaneously simplifying and separating the backend
from runtime-system details. In this paper we describe the design
and implementation of this compiler-runtime interface and the
XIR language in the C1X dynamic compiler, a port of the
HotSpotTM Client compiler. Our results show a significant
reduction in backend complexity with XIR and an overall
reduction in the compiler-runtime interface complexity while still
generating comparable quality code with only minor impact on
compilation time.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Code
Generation; Compilers; Optimization; Runtime Environments

General Terms
Design, Experimentation, Languages, Performance

Keywords
Compilers, JIT, Java, virtual machines, lowering, software
architecture, object model, virtual machine interface, intermediate
representations, register allocation, runtime system

1. INTRODUCTION
The amount and importance of software running on managed
runtime virtual machines continues to grow. New language
features and the demand for ever-greater performance continue to
drive research and development of virtual machines. Flexible
software architecture is needed to support rapid exploration of
new design approaches and implementation techniques. One of
the key factors in achieving the necessary flexibility in virtual
machines is the interface between the dynamic compiler and the
rest of the runtime system, including the garbage collector, object
model, synchronization mechanisms, etc. Achieving this
separation without sacrificing high performance still remains
elusive. Even today, industrial strength virtual machines usually
require compiler changes when significant changes are made to
the runtime system.

Dependencies between the compiler and runtime arise from a
number of sources.

i. Platform configuration. The virtual machine must
configure the compiler with information about the target
architecture such as the instruction set, word width,
reference size (which may differ from the word width
when using compressed references), cache alignment,
stack alignment, supported ISA extensions, allocatable
registers, calling convention, etc.

ii. Runtime data structure access. The compiler must
access a number of the runtime system’s internal data
structures, including some representation of methods
and their code, classes, constant pools, etc. The
compiler may also query the runtime about the
resolution status of types, fields, and methods
referenced from the bytecode.

iii. Optimization selection and tuning. The runtime may
want to selectively enable or influence different
optimizations on a per-method or per-compilation basis.
In particular the runtime system may wish to influence
inlining decisions by making use of dynamic profiling
information [1][4][15][19].

iv. Speculative dependencies. The compiler may
optimistically assume a non-final class to be a leaf class
in order to perform devirtualization and inlining, which
requires communicating a dependency back to the
runtime system for later deoptimization of the compiled
code [18][19].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
VEE’10 March 17–19, 2010, Pittsburgh, Pennsylvania, USA.
Copyright © 2010 ACM 978-1-60558-910-7/10/03…$10.00.

v. Installation of compiled code. The compiler produces
machine code and metadata such as reference maps and
deoptimization information that the runtime system
must install into its code region(s) and internal data
structures for execution.

vi. Implementation of object model. Lowering an object
operation such as a field access, virtual invocation,
synchronization operation, or memory allocation to
machine-level operations such as pointer arithmetic and
memory accesses is heavily runtime-dependent and
comprises a large part of the compiler backend logic.

Although many virtual machines already have adequate interfaces
for platform configuration, access to runtime data structures [18],
and the registration of speculative dependencies [19], we believe
that none of them adequately address every category. In
particular, the dependencies in the compiler on the
implementation of the object model present the most difficult
category. This paper addresses all of these categories (except iii,
control of optimizations). Our bi-directional compiler-runtime
interface abstracts compiler and runtime data structures and our
XIR language allows the runtime system to provide the logic for
lowering all object operations. This leads to the following design
(edges indicate data flow annotated with each category of
dependency):

In this paper we present our techniques to separate the C1X
dynamic optimizing compiler from the runtime system of the VM
in which it is installed. We present the highlights of our compiler-
runtime interface that separates these components from each
other’s internal implementation details, allowing the compiler to
query runtime data structures during compilation and produce a
runtime-independent representation of compiled code. The major
contribution of this paper is the design and implementation of a
domain-specific language called XIR which allows the runtime
system to specify the implementation of object operations,
completely separating the compiler from any details of the object
model, garbage collector, etc.

This paper is organized as follows: Section 2 provides an
overview of the C1X compiler design, which remains very close
to the HotSpot Client Compiler for Java from which it was ported,
providing a background for discussion of XIR’s contribution.
Section 3 describes the separation between the compiler and
runtime through interfaces representing runtime data structures
and compiler data structures. Section 4 describes XIR and how it
further separates the compiler from VM implementation details.
Section 5 discusses results and gives metrics, both in terms of
software complexity, compile time, and runtime performance on a
suite of standard benchmarks. Section 6 discusses related work,
and Section 7 provides a conclusion and acknowledgments.

2. COMPILER DESIGN
This section describes the origin and design of the C1X compiler
to provide context for the compiler-runtime interface discussion
and the presentation of XIR.

2.1 C1X Genesis
Achieving industrial-strength performance for any Java VM
requires a good optimizing dynamic compiler that balances
compilation time versus code quality. When building a new
optimizing dynamic compiler for the Maxine VM, we began
examining the compilers in the HotSpot VM. The HotSpot VM in
fact includes two compilers, the client [18] and the server [19],
also known as C1 and C2, respectively. Both are written in C++
and produce optimized machine code from bytecodes in response
to profiling performed by the interpreter. C1 is typically the
default compiler in client settings due to its fast compile speed
and smaller memory footprint, while C2 is used in server settings
because it performs much more thorough optimization and thus
achieves maximum peak performance. C1’s straightforward
design makes it attractive for porting to the Maxine VM. In
particular it achieves high compilation speed by focusing on “big-
win” optimizations and ignores complex optimizations such as
code motion. C1 performs deep inlining, eager local
optimizations, some global optimizations, speculative leaf class
and leaf method assumption with support for deoptimization, and
a fast, well-tuned linear scan register allocator. We started with
the approximately 58000 lines of C++ code in C1 from OpenJDK

7 and began rewriting it in Java to create C1X.

2.2 FRONT END
C1X parses Java bytecodes into its main high-level IR (HIR),
which consists of both a control flow graph and a value
dependence graph. See Figure 1 for an example and [18] for more
detail. Unlike a value dependency graph or sea of nodes
representation, C1X’s HIR represents control flow with basic
blocks, each with an ordered list of HIR instructions. Each HIR

int f(int z, boolean b, C o) {
 int x = z + 1;
 if (b) y = x + 1;
 else y = o.m();
 return y;
}

Figure 1. Example code and its resulting HIR graph. Solid lines
represent control flow edges while dotted lines represent data flow
edges. Diamonds represent input parameters to the method.

instruction directly references the instructions that produce its
input values. Phi nodes are attached to the beginning of basic
blocks that are join points and merge data flow when necessary.
The SSA nature of this representation is carefully constructed at
bytecode parsing time by processing basic blocks in CFG reverse
post-order and using a conservative estimate for phi creation in
loops. The direct references from uses to definitions that are
characteristic of value dependence graphs allows C1X to perform
numerous optimizations while parsing, including strength
reduction, constant propagation, constant folding, local value
numbering, load elimination, and dead code elimination. All
inlining occurs while parsing bytecodes, and values passed as
arguments to inlined methods are propagated forward, allowing
all of these optimizations to be applied to the inlined method
when it is parsed into the HIR graph. Speculative optimizations
based on class hierarchy analysis [10] allow many call sites to be
devirtualized and inlined because deoptimization can later
invalidate compiled code. Subsequent compiler passes remove
unnecessary phis, merge blocks, remove null checks, replace
some control flow with conditional moves, perform global value
numbering, and remove dead code. There are minor differences in
how these optimizations are implemented in C1X versus C1, but
for a more detailed description, see [18].

2.3 BACK END
After optimization, C1X translates HIR into a lower level IR
(LIR) before performing register allocation and then code
generation. LIR consists of an ordered list of basic blocks, each
with an ordered list of LIR instructions. LIR is a similar to a quad
representation where each instruction has an opcode, an output
operand, and multiple input operands. Operands to instructions
can be physical registers, virtual registers, or constants. LIR
instructions are typically machine-level operations such as pointer
loads and stores, arithmetic, and moves, but some complex
operations may generate multiple machine instructions and may
use internal temporaries. Unlike quads, however, each LIR
instruction may have an unbounded number of input operands, an
unbounded number of temporaries, but at most one output
operand. LIR is not in SSA form and requires phi nodes to be
eliminated by inserting move instructions.

The LIR representation is machine-independent, and most object
operations in HIR can be translated (lowered) to loads, stores,
compares and branches in a machine-independent but runtime-
dependent way. However, some operations that have architectural
constraints are lowered in a machine-dependent manner (e.g. shift
and divide operations on x86) and may have physical registers
pre-assigned. This translation logic is written manually in C1
because it only generates code for HotSpot. However, the
implementation is separated into machine-independent and
machine-dependent parts. We originally ported this logic when
creating C1X and modified it to generate code for the Maxine
VM.

This hard-wired translation process illustrates the major problem
this paper addresses: the lowering phase is the classic place in any
compiler where runtime dependence and machine dependence
converge. Though C1X is separated from the runtime data
structures that need to be queried during compilation (as discussed
in the next section), it must however generate code for object
operations that use object metadata at runtime. Modifying the
runtime system, e.g. to change the implementation of
invokeinterface, requires modifying the compiler backend. In our

port of C1 we were forced to make numerous changes to the C1X
lowering phase due to the implementation differences of object
operations. Although Java’s primitive operations and control flow
constructs can be compiled independently of the object model, we
found that almost no object operations were identical (with some
exceptions such as reading a resolved instance field). Further, a
large amount of complexity arises from handling uncommon cases
such as accesses to unresolved fields or methods and the slow
paths of operations such as monitorenter. Such operations are so
radically different between Maxine and HotSpot that our first
solution was to implement only the slow path on Maxine by
emitting a call to the runtime system (as done in [14]). Eventually
a growing list of Maxine-specific backend changes led to the need
for a more elegant solution: XIR, which we discuss in Section 4.

3. COMPILER RUNTIME INTERFACE
The complex interaction between the compiler and runtime
system during a compilation requires a bi-directional interface,
where each component provides an interface to the other. Our
design explicitly separates interface elements that must be
provided by the runtime from those that must be provided by the
compiler and uses a naming convention where the prefix Ci
denotes a compiler-provided interface object and the prefix Ri
denotes a runtime-provided interface object.

First, the runtime is responsible for creating and configuring the
compiler, including selecting the target architecture and
configuring runtime-specific settings such as the allocatable
registers and stack frame alignment. For this purpose, the
compiler provides a number of concrete Ci classes that can be
constructed by the runtime and passed to the compiler for its
internal configuration. We considered a more sophisticated
configuration interface that avoided exposing concrete compiler
classes but in the end its complexity was not warranted.
Secondly, when the runtime system requests a compilation, it
must provide a representation of the method to be compiled and
related runtime data structures that the compiler will use. For this
purpose the runtime must provide implementations of the RiType,
RiField, RiMethod and RiConstantPool interfaces, each of
which support a number of query operations used by the compiler
during compilation. Java interfaces offer maximum flexibility to
the runtime system; it can either expose its already-defined data
structures by implementing the interfaces, or wrap them with
adapters.
Thirdly, during a compilation the compiler may request additional
information from the runtime system such as the calling
convention for a particular call or advice on inlining decisions.
For this purpose the runtime system must provide an RiRuntime
interface to answer a number of other queries by the compiler.

Lastly, and most importantly, the compiler will produce compiled
code with attached metadata. For this purpose it provides a
concrete data structure, the CiTargetMethod, which the runtime
system can reprocess into its own internal data structures for
installation and execution. Similar to most other Ci classes, we
chose to have the compiler interface provide concrete classes for
this purpose, since in each case no compiler implementation
details are revealed and it is not necessary to control their
construction.

Selected Runtime interface classes:

• RiConstantPool: A constant pool associated with
bytecode that the compiler uses to lookup and resolve
fields, types, and methods.

• RiExceptionHandler: An exception handler entry,
including the range of bytecode indices covered, the
handler index, and the type of exception caught.

• RiField: A resolved or unresolved field referred to in
the bytecode, including a name, a type, and the
enclosing class. Resolved fields also allow queries of
attribute flags such as final, private, volatile, etc.

• RiMethod: A resolved or unresolved method referred to
in the bytecode, including a name, a signature, and the
enclosing class. Resolved methods may refer to a
method selector or a concrete method implementation
with code and allow queries of attribute flags such as
final, private, static, synchronized, etc.

• RiRuntime: An interface of assorted runtime services
needed by the compiler, including converting a Java
class object into an RiType, looking up a system
RiType, getting the calling convention for a particular
method signature, advice on required or disallowed
inlining for certain methods, and various other queries.

• RiSignature: A method signature, including parameter
types and return types.

• RiType: A resolved or unresolved Java class, interface,
or array type referred to in the bytecode or from another
runtime interface object. Resolved types may refer to
any valid Java type and respond to queries for attribute
flags, the super type, whether the type is an array or
interface, etc. Resolved, instantiable types can also
lookup a method implementation for an RiMethod
selector.

• RiXirGenerator: The runtime class that generates
XIR. It is called by the compiler during lowering of
each object operation to machine-level operations
(Section 4).

Selected Compiler interface classes:

• CiArchitecture: An object representing the machine
architecture including the instruction set. Chosen by the
runtime when creating and configuring a compiler.

• CiBailout: Exception that represents an aborted
compile, either due to compiler limitations on input
bytecode or unexpected internal compiler errors.

• CiCodePos: A code location and inlined call chain.
Created by the compiler and used throughout metadata
to refer to source locations in the compiled code.

• CiCompiler: An object capable of producing
CiTargetMethod instances from RiMethod instances.
Created, configured, and used by the runtime to compile
methods.

• CiConstant: A representation of either primitive or
object constants. Created and used by both the runtime
and the compiler to represent and exchange constant
program values.

• CiDebugInfo: Debug information for precise stack
traces and deoptimization. Generated by the compiler
and included as part of the compilation result.

• CiKind: An Enumeration of Java’s primitive types, the
object type, and a special word type. Used by both the
compiler and runtime to refer to JVM-level types.

• CiLocation: A union of either a physical register or a
stack location. Created and used by both the compiler
and runtime to describe locations of parameters and
temporaries within a method.

• CiRegister: A physical register. Created by the
compiler and used by both the compiler and runtime to
refer to specific machine registers.

• CiResult: The result of compilation, consisting of
either a bailout, or a target method plus statistics.
Created by the compiler as the result of compilation.

• CiStatistics: General statistics about the
compilation, including compiled bytes, number of
inlines, etc. Created by the compiler as part of the
compilation result.

• CiTarget: A collection of settings such as the size of
references, cache geometry, allocatable registers, etc.
Created by the VM and used to configure a compiler.

• CiTargetMethod: A compiled method, including
machine code and metadata such as relocation,
patching, and debug information. Created by the
compiler as part of the compilation result.

• CiXirAssembler: An assembler-oriented interface
provided by the compiler to the runtime to build XIR
code. Explained in more detail in Section 4.

In total, the Ri interface classes comprise about 1300 lines of Java
source code, including documentation, while the Ci classes are
about 2300 lines. The implementation of the requisite Ri
interfaces in the Maxine VM totals about 3500 lines of Java
source, which includes implementations of RiType, RiField,
RiConstantPool and RiMethod that wrap existing data
structures in the runtime system rather than modifying them to fit
the Ri interfaces.

4. XIR
Although data structures in the compiler-runtime interface
separate these components from each other’s implementation
details, the compiler must nevertheless generate efficient machine
code to implement object operations consistent with the runtime
system’s design. As discussed previously in Section 2, this
lowering phase from object operations to machine operations is
highly runtime-dependent. Our experience porting C1X from
HotSpot led us to a design where the compiler makes no
assumptions about how the runtime system implements object
operations and all lowering logic is in the runtime system.

C1X provides an interface to the runtime system to generate code
in a small, domain-specific language called XIR that is designed
explicitly for the purpose of reducing object operations. XIR is
very similar to an assembly language for a RISC instruction set.
Unlike RISC instruction sets however, XIR has neither a binary
format nor a textual format and therefore it is more appropriately
considered an intermediate representation. It is a low-level, three-
address intermediate representation that has an unbounded
number of virtual registers, a set of machine-level but machine-
independent instructions such as 32 and 64-bit integer arithmetic,
pointer load and store, and conditional branches, but no computed
jumps. Local branches and jumps may divide the XIR code into
basic blocks. XIR also has support for defining a fast path and a
slow path (see Figure 2), which is useful for implementing

bytecodes that require safety checks that fail infrequently and
therefore must include rarely-executed failure-handling code. The
compiler will always emit the fast path inline while the slow path
will be generated at the end of the method for better instruction
cache utilization. Further, the runtime can also define a stub: a
global piece of XIR that can be called from the instruction-
specific XIR (also in Figure 2). Stubs are useful for complex
shared logic that is too large to be profitably inlined. XIR has two
call instruction variants: CALL_STUB, for calling previously
defined stubs, and CALL_RUNTIME, for calling any method in
the runtime system that it chooses to expose to XIR.

4.1 Two Phases
In addition to separating the compiler from runtime
implementation details, XIR also separates the runtime system
from the specifics of the compiler’s intermediate
representation(s). XIR is like an assembly language that is
specifically designed for the runtime implementer. One only
needs to understand this language in order to describe object
operations, and it is not necessary to maintain SSA form or
explicitly specify data flow edges. This design choice gives rise to
a mismatch between XIR and the actual intermediate
representation(s) of the compiler, in particular the HIR and LIR
representations of C1X.

To reduce this problem, we separated the creation of XIR by the
runtime system and its use by the compiler into two distinct
phases. During the first phase, when the runtime system
instantiates and configures the compiler, it also creates a
collection of pre-built XIR templates for later use. An XIR
template is simply a finished piece of XIR code that has unbound
input parameters known as XirParameters. A template can be as
small as a single XIR instruction or as large as an arbitrary control
flow graph of XIR instructions. In the second phase, during
compilation, the compiler requests XIR from the runtime system;
the runtime system responds by passing back an XIR template and
its inputs, together known as an XIR snippet.

This phase separation has two important benefits. First, it allows
the compiler to pre-process the XIR that will be used by the
runtime system, before any compilations occur. During this
preprocessing it may translate the XIR to an internal SSA or
dataflow representation for use later (e.g. to integrate it into an
HIR graph), or it may gather register allocation constraints (e.g. to
generate LIR that requires certain registers on a particular
architecture). Secondly, allowing the runtime system to reuse a
pre-built template when lowering each object operation improves
compile speed.

4.2 CiXirAssembler interface
The runtime system creates XIR templates in the first phase, but
XIR has no textual format or binary format; it exists only inside
the compiler as a graph of data structures representing XIR
instructions, variables, etc. Instead, the runtime system constructs
XIR using an assembler object provided by the compiler. Figure 3
shows a list of methods available in the CiXirAssembler
interface. The assembler object has methods for creating XIR
variables and labels as well as adding XIR instructions one by one
to an internal ordered list of instructions.
When written sequentially in the runtime implementation, calls on
the assembler object look much like an embedded domain-specific
language with Java syntax. Figure 4 shows an example with two
different implementations of the putfield operation: one with
standard uncompressed references and one with compressed
references. This assembler object interface also obviates the need
for an XIR syntax and XIR parser, reducing the implementation
burden on the compiler, unlike LIL [14], for example, which
required a LIL parser built into the compiler. The implementation
of CirXirAssembler, its internal data structures, and the
interface elements XirTemplate, XirSnippet and XirArgument
comprise a total of about 900 lines of Java source code.

Figure 2. Different fast and slow code paths can be defined with XIR.
The fastpath is generated inline and may branch to the slow path that is
generated at the end of the method. Global stubs can contain common
code and be called from compiled methods, and both can call the
runtime system.

public class CiXirAssembler {
 XV createInputParameter(CK type)
 XV createConstantInputParameter(CK type)
 XV createTemporary(CK type)
 XV createFixedTemporary(CK type, CL location)
 XV createConstant(CC constant)
 XL createLabel(boolean fastpath)
 void add(XV dest, XV a, XV b)
 void sub(XV dest, XV a, XV b)
 . . .
 void mov(XV dest, XV a)
 void pload(XV dest, XV pointer)
 void pstore(XV pointer, XV value)
 void bind(XL label)
 void jump(XL label)
 void jeq(XL label)
 . . .
 void callJava(XV dest)
 void callStub(XT template, XV dest, XV[] args)
 void callRuntime(Object rtcall, XV dest, XV[] args)
 XT finishStub()
 XT finishTemplate()
}

Figure 3. CiXirAssembler interface methods for creating input
parameters, temporaries, constants, labels, adding instructions,
branches, calls, and finishing the template. For brevity, XV =
XirVariable, XT = XirTemplate, XL = XirLabel, CK =
CiKind, CL = CiLocation.

4.3 RiXirGenerator interface
The second phase happens when the compiler is lowering object
operations to machine operations. Note that XIR was not designed
to be an extensibility mechanism for all of Java’s operations. We
divided Java operations into runtime-independent operations, such
as primitive arithmetic and control flow, which the compiler must
handle fully, and runtime-dependent operations where the runtime
system must supply XIR. This reduces the burden on the runtime

system and reduces the set of XIR extension points to those listed
in Figure 5.

The compiler requires the runtime system to supply an
implementation of the RiXirGenerator interface that has
methods to generate XIR for each HIR operation. Each method on
the RiXirGenerator interface corresponds to a Java language
operation and takes two types of parameters: arguments and
operands. Arguments are opaque XirArgument instances passed
by the compiler that represent compiler variables or nodes, such
as the receiver object in a field access or the value written in an
array store. Operands represent the “fixed” part of an operation
such as the field in a getfield operation or the type in a checkcast
operation. From a bytecode perspective, arguments represent
values that would be on the Java stack, and operands represent
quantities in the instruction stream such as a field reference.
Notice again in Figure 5 that most operands are Ri classes, which
naturally allows the runtime to use its own data structures to
decide which XIR to return to the compiler for each instruction.

Each gen() method in the RiXirGenerator interface returns an
XirSnippet, which is simply an XirTemplate with each of its
parameters bound to either an input XirArgument which was
passed to the gen() method or an XirArgument representing a
constant (e.g. a constant field offset). Recall that the
XirTemplate was constructed in the previous phase, when the
runtime system configures the compiler. The two-phase approach
saves compilation time by reusing work from the configuration
phase. Figure 6 shows an example from the Maxine
RiXirGenerator that implements the generation of an
XirSnippet for the putfield operation.

The implementation of the RiXirGenerator for the Maxine VM
is 1350 lines of Java source code, including comments, blank
lines, the code to build XIR templates, the data structures to store
and lookup templates for different situations, the implementation
of the interface methods, and the implementation of runtime calls
that are called from XIR templates and stubs. It contains
approximately 240 calls to the CiXirAssembler interface.

XirTemplate buildPutFieldTemplate(CiKind kind, boolean genWriteBarrier) {
 asm.start(CiKind.Void); // putfield does not produce a value
 XirParameter object = asm.createInputParameter("object", CiKind.Object); // object input
 XirParameter value = asm.createInputParameter("value", kind); // value input
 XirParameter fieldOffset = asm.createConstantInputParameter("fieldOffset", CiKind.Int); // field offset
 asm.pstore(kind, object, fieldOffset, value, true); // store field
 if (genWriteBarrier) addWriteBarrier(asm, object, value); // add write barrier
 return asm.finishTemplate("putfield<" + kind + ", " + genWriteBarrier + ">");
}
XirTemplate buildCompressedPutFieldTemplate(CiKind kind, boolean genWriteBarrier) {
 asm.start(CiKind.Void); // putfield does not produce a value
 XirParameter object = asm.createInputParameter("object", CiKind.Object); // object input
 XirParameter value = asm.createInputParameter("value", kind); // value input
 XirParameter fieldOffset = asm.createConstantInputParameter("fieldOffset", CiKind.Int); // field offset
 XirVariable addr = asm.createTemporary(CiKind.Unsafe); // temp for address
 XirVariable r13 = asm.createFixedTemporary(CiKind.Unsafe, AMD64Register.R13); // R13 contains heap base
 asm.add(addr, r13, object); // add compressed oop to base
 asm.shl(addr, addr, asm.i(3)); // shift left
 asm.pstore(kind, addr, fieldOffset, value, true); // store field
 if (genWriteBarrier) addWriteBarrier(asm, object, value); // add write barrier
 return asm.finishTemplate("putfield<" + kind + ", " + genWriteBarrier + ">");
}

Figure 4 shows an example usage of the CiXirAssembler. It builds two versions of the putfield operation: one for normal object references and one
for compressed object references. Both templates take the object and the field value as inputs and have a constant input which will be the field offset.
The compressed version demonstrates the usage of fixed registers; it assumes the base of the heap is always stored the AMD64 register R13. A helper
method genWriteBarrier() adds XIR code to the template that implements the write barrier (not shown).

public interface RiXirGenerator {
 XS genSafepoint()
 XS genResolveClassObject(RiType type)
 XS genIntrinsic(XA[] args, RiMethod method)
 XS genGetField(XA object, RiField field)
 XS genPutField(XA object, XA value, RiField field)
 XS genGetStatic(RiField field)
 XS genPutStatic(XA value, RiField field)
 XS genMonitorEnter(XA object)
 XS genMonitorExit(XA object)
 XS genNewInstance(RiType type)
 XS genNewArray(XA length, CiKind elementKind,
 RiType arrayType)
 XS genNewMultiArray(XA[] dims, RiType arrayType)
 XS genCheckCast(XA object, RiType type)
 XS genInstanceOf(XA object, RiType type)
 XS genInvokeInterface(XA receiver, RiMethod method)
 XS genInvokeVirtual(XA receiver, RiMethod method)
 XS genInvokeSpecial(XA receiver, RiMethod method)
 XS genInvokeStatic(XA receiver, RiMethod method)
 XS genArrayLoad(XA array, XA index,
 CiKind elementKind, RiType arrayType)
 XS genArrayStore(XA array, XA index, XA value,
 CiKind elementKind, RiType arrayType)
 XS genArrayLength(XA array)
}

Figure 5. RiXirGenerator interface methods. Each method accepts
a number of XirArgument objects that represent opaque compiler IR
variables or nodes, and the operands, such as the field being accessed
in a getfield or the type of a checkcast. The runtime must supply an
RiXirGenerator implementation to the C1X compiler backend.
Each method returns an XirSnippet which contains both an
XirTemplate and bindings for the XirTemplate’s inputs. For
brevity, XA = XirArgument, XS = XirSnippet.

4.4 Compiling XIR
We wanted to preserve as much design freedom for the compiler
implementation as possible. This is done not by what is in the
interface, but what is not. For example, the RiXirGenerator
does not allow the runtime system to make any assumptions about
when lowering occurs during compilation. Secondly, the
XirArgument handles passed by the compiler hide all
implementation details of the IR of the compiler. Further, the
runtime cannot assume that the operations are lowered in any
particular order (either according to the order in which they
appear in the method or inlined methods being compiled, or any
other order) and must consider each operation in isolation. It also
cannot assume that all operations are lowered at the same time;
the compiler might lower some operations, perform optimizations,
issue other queries to the runtime interface, lower more
operations, perform more optimizations, etc. In a sense, the
compiler expects the RiXirGenerator to be stateless.

This allows the compiler implementation maximum freedom in
ordering lowering with its other phases. Although C1 performs all
lowering in its translation from HIR to LIR, other compilers might
perform lowering by replacing object-operation nodes with
machine-level nodes but keeping the same overall IR structure,
allowing the same optimizations to be performed before or after
lowering. Optimizing after lowering is especially important if the
object operations become several machine operations that could
be candidates for common sub-expression elimination (CSE)
and/or code motion. For example, repeated accesses to an object’s
meta-object, such as in an invokevirtual, checkcast or
instanceof operation, may reuse the load of the meta-object after
the load has been generated by the runtime system through XIR.
Additionally, write barriers and synchronization may produce
arithmetic expressions and accesses to thread-local values that are
good candidates for CSE and code motion. However, a different
compiler or the same compiler on a lower optimization level may
not perform many optimizations after lowering and may (like C1
and C1X) translate from a high-level IR to a low-level IR while
lowering. All choices are permitted by our design.

We chose to start implementing XIR in the C1X backend only
after C1X passed our regression suite with hand-written lowering
logic specific to the Maxine VM. In addition to having a stable
platform to work from, this allowed us to assess the
implementation effort and compare the XIR results against the
traditional hand-written logic.
As mentioned in Section 2, the design of C1X’s LIR allows each
LIR instruction to have an arbitrary number of inputs, an arbitrary

number of temporaries, but at most one output. The linear scan
register allocator [23] already handles such instructions, so it was
straightforward to simply add a special XIR instruction that
represents a complete XIR snippet including its inputs,
temporaries, and output. We then modified the translation from
HIR to LIR to either request XIR from the RiXirGenerator or
perform the previous logic depending on an option; that means
that both mechanisms are fully functional in the same compiler. If
the XIR option is enabled, the backend will generate a single LIR
instruction representing the XirSnippet returned from the
runtime system’s RiXirGenerator.

The two-phase approach to XIR production proved useful to our
implementation. In the first phase, when the runtime system
constructs XirTemplates, C1X preprocesses each template to
gather any architectural register constraints (e.g. if it performs a
division, which requires certain registers on x86) and determine
whether the template has a slow path or any calls. The information
computed during preprocessing is attached to the XirTemplate
for later use. It is then transferred to the LIR instruction during
lowering and used by the register allocator to allocate registers to
inputs, temporaries, and output of the LIR instruction. Note that
because the entire XirSnippet is represented as a single LIR
instruction, even if it contains internal control flow, the register
allocator assumes that all of a snippet’s temporaries and inputs
may be simultaneously live within the XirSnippet.
Alternatively, one could generate LIR instructions from the
XIRSnippet as soon as it is returned from the runtime system,
before performing register allocation. This would allow the
register allocator to compute liveness of the temporaries of a
snippet just as it would for other variables and likely make better
overall decisions, but at the expense of dealing with more
variables and more instructions.

After register allocation is performed, C1X performs some simple
optimizations such as removing useless moves and jumps and
may reorder the basic blocks for short loops. C1X then visits the
basic blocks of LIR instructions and generates machine code LIR
instruction by LIR instruction. To support XIR, we simply added
support for compiling the special LIR instructions that represent
XirSnippets. This is done by opening up the XirTemplate and
visiting the XIR instructions from the fast path, generating
machine code for them one by one. If the XirTemplate has a
slow path, then the slow path code will be added at the end of the
method.

The implementation of XIR in the backend of C1X required a
total of 600 additional lines of code.

public class MaxXirGenerator extends RiXirGenerator {
 . . .
 @Override
 public XirSnippet genPutField(XirArgument receiver, RiField field, XirArgument value) {
 XirPair pair = putFieldTemplates[field.kind().ordinal()];
 if (field.isResolved()) {
 XirArgument offset = XirArgument.forInt(field.offset());
 return new XirSnippet(pair.resolved, receiver, value, offset);
 }
 XirArgument guard = XirArgument.forObject(guardFor(field));
 return new XirSnippet(pair.unresolved, receiver, value, guard);
 }
}

Figure 6 shows an example implementation of the RiXirGenerator for the putfield operation. The genPutField() method is passed the receiver
object and the value XirArgument as handles and the RiField. This method simply looks up the correct template using the type of the field, checks
whether the field is resolved, and returns either the resolved or unresolved snippet. (The guardFor() method creates a resolution object needed in the
unresolved template, which is not shown).

5. RESULTS
In this section we report experimental results that compare the
XIR implementation in C1X to C1X without XIR. We report
several static compilation metrics over several code bases,
including the number of compiled methods, bytecode size and
number of HIR instructions. We then compare static compilation
metrics of the XIR implementation with the non-XIR
implementation, including compile speed, number of LIR
instructions, number of XIR-implemented instructions, and
compiled code size. We then compare the code quality of the XIR
implementation with the non-XIR implementation by measuring
the execution time of a number of benchmarks with C1X installed
into the Maxine VM as a dynamic compiler.

5.1 Static Measurements
Figure 7 gives our experimental results in gathering a number of
C1X compilation metrics with and without XIR. These
experiments were run on a quad-core Intel Nehalem CPU @
2.66ghz with 8GB RAM and 64-bit OpenSolaris. We chose to run
C1X as a user application on an industrial-strength VM because it
allowed faster development time and allowed us to obtain more
extensive measurements. For these experiments we ran C1X as a
user application on the HotSpot Server VM 1.6.0_13 with a 2GB
heap. To support this static compilation scenario, the Maxine class
loader, class file parser, verifier and internal runtime data
structures are running in user mode as well. The timing
measurements were collected after allowing the host VM to
“warm up” running C1X and represent an average over 10
iterations following 5 warm up iterations.

Figures 7a and 7b illustrate the effects on compilation on a
number of method suites. First, notice a sizeable increase in
machine code size for several benchmarks. This is due to more of
the fast path operations being implemented in XIR and inlined
than in our hand-written logic, which leaves many cases to slower
but much smaller runtime calls. Secondly, notice that compilation
time is increased by 2-7% for three benchmarks; this is because
the backend must do more work to consult the runtime for
lowering each operation rather than simply execute handwritten
logic. However, two benchmarks actually show a reduction in
compilation time; this is because for these benchmarks, XIR

results in far fewer LIR instructions, which requires less work for
the register allocator and subsequent optimizations on LIR.

5.2 Dynamic Measurements
Figure 8 gives our execution time comparison with and without
XIR. For this experiment, C1X is used to compile itself into the
Maxine VM’s boot image and is configured as the optimizing
compiler. C1X is then triggered at runtime for hot methods by
method invocation counters inserted by Maxine’s non-optimizing
compiler. We chose to run the SpecJVM98 benchmark suite and
the DaCapo [7] suite. Unfortunately due to recent Maxine
regressions, we cannot report results for the bloat, lusearch and
xalan benchmarks.

We performed 5 runs of each benchmark, where each run was a
new VM instance. For each run, the time recorded was the time
from the start of the VM process until the end of the VM process;
any internal timing numbers reported by the benchmarks were
ignored. We ran all benchmarks in their default configurations.

Benchmark methods bytecode code w/XIR time w/XIR

JDK 1.6 -O1 47252 2264265 11413306 17.8% 7.633 6.3%

JDK 1.6 -O3 47252 2264265 12858443 18.2% 10.247 5.0%

Maxine -O1 640 9050 43150 -0.1% 6.939 7.2%

Maxine -O3 640 9050 138844 23.9% 12.687 3.9%

C1X -O1 3694 255160 1069099 11.8% 0.670 5.5%

C1X -O3 3694 255160 1363815 10.5% 1.061 2.6%

SpecJVM98 -O1 3197 285489 1585293 4.5% 0.959 -5.7%

SpecJVM98 -O3 3197 285489 1749927 4.6% 1.237 -5.6%

SciMark2 -O1 157 13094 65672 3.1% 0.054 -1.2%

SciMark2 -O3 157 13094 72717 3.3% 0.065 -1.9%

Figure 7a gives static compilation metrics for each benchmark at two optimization levels. Level
-O1 includes local optimizations and simple control flow optimizations while -O3 enables all
optimizations. The columns indicate: number of methods, bytecode size, machine code size
without XIR, percentage change in machine code size with XIR, compilation time in seconds
without XIR, percentage change in compilation time with XIR.

Figure 8 gives execution time results for the XIR and non-XIR
implementation with C1X installed as the optimizing compiler in the
Maxine VM on the SpecJVM98 benchmark suite and DaCapo
benchmarks. Numbers above bars show relative change with XIR.

HIR LIR w/XIR XIR %

962807 3171828 -4.6% 8.4%

597182 3584689 -6.4% 10.8%

853290 2804920 -0.1% 5.2%

818524 4131852 -1.2% 7.1%

86507 293495 -4.9% 7.9%

71174 369615 -9.4% 13.7%

104216 378096 -17.0% 11.1%

73494 423460 -18.4% 14.9%

4996 16671 -12.1% 10.4%

3337 18874 -14.8% 12.3%

Figure 7b (rows continue from 7a) includes
compiler IR statistics, including the number of HIR
instructions, number of LIR instructions,
percentage change in LIR with XIR, and
proportion of XIR instructions.

Figure 8 shows that most benchmarks are affected by less than
5%, with three outliers: jess and db which are slowed down by
10% and 24% respectively, and pmd, which is sped up by 12%.
Most of the DaCapo benchmarks run faster with XIR yet all of
SpecJVM98 runs faster without it. Speedups from XIR are mostly
because our Maxine XIR implementation provides special
implementations for leaf class type tests, interface dispatch, and
other operations that we did not replicate in the hand-written
logic. On the other hand, the static benchmarks in Figure 7a show
that XIR usually increases compilation time, which of course
contributes to runtime in this scenario. Also, we notice that XIR
can sometimes result in worse code because register allocation
does not happen within XIR templates, but only between them. It
is likely that the slowdowns experienced by some benchmarks
programs are due to this effect appearing in hot loops and also due
to worse instruction cache behavior with the typically larger
machine code size of XIR.

5.3 A Simpler Backend
While the primary goal of XIR is to separate the compiler from
the logic of lowering operations, moving this complexity to the
runtime system has the side effect of simplifying the compiler. To
measure the reduction in complexity, we forked the source code
of C1X and created an experimental branch where we removed all
hand-written lowering logic. (Note that this branch was not used
to obtain any numbers in the previous section). We first removed
the logic to translate HIR object operations to lower-level LIR
operations and the complex LIR instructions that were only
necessary to support that logic; this removed 2000 lines of Java
source code from C1X, from 53000 to 51000, nearly all in the
backend. We then removed 10 or so methods from the interface
which were solely used by this logic; for example, the offset of a
field, the index of a method in a virtual table, the size of an object
header, etc. This reduced the size of the compiler-runtime
interface classes from 4700 lines to 4600 lines, with a similar
reduction in the Maxine implementation size (from about 5500
lines to 5400 lines). But more importantly than the number of
lines of code removed from this interface, concepts such as the
size and offset of object headers, the offset of fields from the start
of an object, the ID of an interface, and the index of a virtual
method no longer appear in the interface, providing more freedom
to the runtime system and less hard-wired logic in the compiler.
Our code deletion exercise was very preliminary (just a few
hours); we expect that more extensive redesign and refactoring of
the backend around XIR will reduce the complexity even further.

6. RELATED WORK
High-level language operations must be translated to machine-
level operations at some point during compilation or
interpretation. In the context of virtual machines, this translation
is implemented in any or all of the JIT compiler, dynamic
compilers, and the interpreter.

Jikes RVM includes two compilers: a baseline compiler that
quickly translates bytecodes to machine code one-by-one,
emulating the Java operand stack, and an optimizing compiler.
The baseline compiler is basically a single-pass code generator
and contains hard-coded semantics in its code generation pass.
The Jikes RVM optimizing compiler has three representations:
HIR, a high-level representation with Java-level operators and
some explicit check operators; LIR, a lower-level but machine-
independent representation; and MIR, a machine-specific

representation. Most lowering occurs in translation from HIR to
LIR where HIR instructions are expanded into LIR operations that
are specific to the Jikes RVM runtime system, such as the object
layout and calling conventions. Here again the specifics of the
Jikes RVM runtime system are hard-coded in the translation. For
example, to expand a HIR instruction that represents a call to a
virtual method, an additional LIR instruction is generated to load
the address of a virtual method via the object's TIB reference and
the loaded address is used by a LIR call instruction. Write barriers
are injected in the translation from LIR to MIR. An interface
between the compilers and the GC exists for barrier injection, but
it does not encompass the actual lowering of object operations.

The mostly closely related work is LIL language [9][14] for the
Open Runtime Platform (ORP). LIL is a language much like XIR
for describing the implementation of object operations and other
runtime services. Unlike XIR, LIL is a textual language that is
generated as C strings within the runtime system and fed to a
parser implemented in the compiler during compilation. Though
neither paper reports on the performance implications of this
strategy, our assembler object interface avoids the overhead of
parsing strings and (we believe) is clearer. Also, the two-phase
approach to generating XIR eliminates the need to construct and
verify XIR during compilation time. A second difference is that
LIL stubs execute with their own activation frame, even though
[9] states that they are “inlined” by the compiler. It unclear what
the actual inlining mechanism is; in particular it is unclear if they
treat temporaries and inputs to LIL stubs equivalently in the
register allocator or whether they are required to be in particular
registers or stack locations by a calling convention. In contrast,
XIR inputs, temporaries, and outputs are treated equally to other
variables in the register allocator. XIR is always “inlined” in this
sense, and as described in Section 4, it has support for fast paths,
slow paths, global stubs, and runtime calls. LIL also has some
runtime-specific constructs such as access to thread locals. As
shown in the putfield example, it is not necessary for XIR to have
any such constructs because C1X allows the runtime to reserve
some physical registers that cannot be used by the register
allocator but can be used in XIR instructions. In [9] the authors
describe support for other language features such as multiple
inheritance and mix-ins using LIL. Exploring such ideas for XIR
is future work.

The problem of translating high-level operations to machine-level
operations is closely related to the problem of implementing a
meta-circular virtual machine, i.e. a virtual machine implemented
in the same language that it implements. There have been a
number of meta-circular virtual machines [1][2][16][20][21], and
inevitably the problem of expressing lower-level operations in the
higher-level language [13] arises. All of these virtual machines
provide low-level primitives as language extensions of one form
or another, either as magic types or classes or special library
routines. The ability to use low-level primitives in the source
provides the opportunity to express the lowering of higher-level
operations by writing an interpreter in source code with low-level
primitives. The compiler or translator can use the interpreter’s
code as the specification of how to perform lowering for each
object operation, e.g. by partial evaluation. This “fully
metacircular” approach is taken by Maxine’s previous compiler
[2], the PyPy VM [20] and the Klein VM [21], which inspired
Maxine. Unfortunately Maxine’s meta-circular compiler produced
poor quality code and had poor compilation time, thus we could
not assess the effectiveness of this approach in an industrial

strength, optimizing compiler. Our experience with Maxine’s
previous compiler was the main impetus for building C1X. The
PyPy VM also has poor performance. It requires 40 minutes to
translate itself to C code and the resulting interpreter-only VM has
performance between 3.5 and 11 times slower than the standard
CPython implementation, which is also interpreter only.

7. CONCLUSION AND FUTURE WORK
We have presented a compiler-runtime interface that separates the
C1X compiler from the runtime system of the virtual machine.
This includes Ri and Ci classes with well-defined roles as well as
a new XIR extension mechanism that allows the runtime system
to express the machine-level implementation of object operations.
We implemented and evaluated XIR in C1X and have shown that
XIR has a small impact on compilation time without reducing
performance. In fact, we found it so much easier to express the
fast path operations in XIR (as opposed to the backend of the
compiler) that we implemented more fastpath variants than in the
hand-written logic and achieved a significant speedup on nearly
all test programs.

Porting C1X to another VM would validate the separation
mechanisms discussed in this paper. One obvious choice given the
origin is to back-port C1X to HotSpot. As with any port, this
would require implementing the runtime interface (Ri) classes
that expose and adapt the runtime’s data structures. A significant
amount of JNI would be required to access data structures and
functionality in HotSpot’s runtime. A previous project in 2001 by
Thomas Kotzmann at Johannes Kepler University Linz took
HotSpot, removed the compilers, and rewrote a simpler version of
C1 in Java. He modified HotSpot to dynamically load the
compiler as normal Java code, with a special JNI interface to VM
internals to install compiled code. While elegant and functional,
this system suffered from poor startup time due to the compiler’s
code initially being interpreted by the VM, requiring the compiler
to also warm up and begin compiling itself to approach peak
performance. To achieve competitive startup performance, we
believe that C1X would have to be pre-compiled into a form
suitable for linking with the HotSpot executable. Unfortunately,
many issues beyond the scope of this paper arise when pre-
compiling arbitrary Java code, particularly for HotSpot.

Jikes RVM [1] also represents an attractive target for porting
C1X, since it is also written in Java and provides all of the
necessary runtime infrastructure that is demanded by our runtime
interface. We have discussed this possibility with a number of
Jikes RVM core developers and identified a number of issues,
most of which relate to magic [13] types and operations. For
example, both Jikes and Maxine provide unboxed types, which are
Java classes at the source language and bytecode level but are
compiled into value types with special knowledge by the Jikes and
Maxine compilers, respectively. C1X would have to recognize
such magic types and produce appropriate machine operations,
reference maps, etc. Another issue arises when compiling
memory-model sensitive operations and restricting code motion in
certain situations. We believe that the addition of an unsafe
CiKind for XIR may be key to solving this issue. This unsafe type
would be used by the runtime for XIR values that must not cross a
safepoint (e.g. because the value represents a temporary pointer to
the middle of an object) and certain compiler optimizations would
be restricted for unsafe types.

The backend support in C1 for instructions with an arbitrary
number of inputs and temporaries proved useful in implementing

XIR by translation to LIR. However, as mentioned in Section 4,
the ability to perform more optimization after lowering could
significantly improve code quality. We plan to explore a lowering
implementation that uses XIR to translate from object-level HIR
operations to machine-level HIR operations and preserve the SSA
value-dependence graph nature of HIR. This could be made
efficient by preprocessing the XirTemplates into a small HIR
graphs that can be weaved into the method’s HIR at code
generation time.

One lacking area of the current compiler-runtime interface is
support for specifying and driving optimizations. For example, the
runtime system may have information to drive inlining heuristics
in the form of the class hierarchy, receiver method and type
profiles, and call tree profiling. The Jikes RVM has an interface
for the runtime system to make inlining decisions for the
optimizing compiler, including monomorphic, n-morphic, and
guarded inlining suggestions. Other optimizations that can benefit
from profiling information in the runtime system include trace
scheduling, block layout, and register allocation. We intend to
explore interface designs for these optimizations in future work.

Our source code is freely available under the GPL version 2
license as a sub-project of the Maxine VM [2] and is separated
into the compiler-runtime interface module (CRI) and the C1X
module (C1X), neither of which have dependencies on any
Maxine VM classes. Further, the Maxine VM does not have any
source code dependencies on C1X; instead, an adapter module
(MaxineC1X) that depends on both Maxine and C1X implements
both the runtime interface (Ri interfaces) and the functionality
required to use C1X as a compiler in the Maxine VM.

7.1 ACKNOWLEDGEMENTS
We would like to thank the original designers of the client
compiler and many who have contributed to its maintenance and
evolution over the years, including Robert Griesemer, Tom
Rodriguez, David Cox, John Rose, Thomas Kotzmann, and
Hanspeter Mössenböck. Special thanks to Ken Russell and
Christian Wimmer for numerous fruitful discussions during the
port of C1 to C1X. Thanks to Michael Van De Vanter, Jens
Palsberg, Mario Wolczko, and Peter Kessler for comments on
drafts of this paper.

8. REFERENCES
[1] Jikes RVM. http://jikesrvm.org
[2] The Maxine VM. http://kenai.com/projects/maxine

[3] M. Arnold, S. Fink, V. Sarkar, and P.F. Sweeney. A
Comparative Study of Static and Profile-Based Heuristics for
Inlining. In Dynamic and Adaptive Compilation and
Optimization (Dynamo ’00). Boston, MA. January 2000.

[4] M. Arnold and D. Grove. Collecting and Exploiting High-
Accuracy Call-Graph Profiles in Virtual Machines. In
International Symposium on Code Generation and
Optimization (CGO ’05). San Jose CA. March 2005.

[5] D. Ancona, M. Ancona, A Cuni, and N. Matsakis. RPython:
a Step Towards Reconciling Dynamically and Statically
Typed OO Languages. In Dynamic Languages Symposium
(DSL ’07). Montreal, Canada. October 2007.

[6] D. Bacon, S. Fink, and D. Grove. Space- and Time-efficient
Implementation of the Java Object Model. In ECOOP ’02,

the 16th European Conference on Object-Oriented
Programming, University of Malaga, Spain. June 2002.

[7] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M.,
McKinley, K. S., Bentzur, R., Diwan, A., Feinberg, D.,
Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A., Jump,
M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovic, D.,
VanDrunen, T., von Dincklage, D., and Wiedermann, B. The
DaCapo Benchmarks: Java Benchmarking Development and
Analysis. In Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA '06). Portland, OR.
October 2006.

[8] C. Bolz and A. Rigo. How not to write Virtual Machines for
Dynamic Languages. In Dynamic Languages and
Applications (DYLA ’07). Berlin, Germany. July 2007.

[9] M. Cierniak, N. Glew, S. Triantafyllis, M. Eng, B. Lewis,
and J. Stichnoth. Object-Model Independence with Code
Implants. In Multiparadigm Programming with Object
Oriented Languages (MPOOL ’03). Anaheim, CA. October
2003.

[10] C. Click and M. Paleczny. A Simple Graph-based
Intermediate Representation. In ACM SIGPLAN Workshop
on Intermediate Representations. San Francisco, CA.
January 1995.

[11] J. Dean, D. Grove, and C. Chambers. Optimization of
Object-Oriented Programs using Static Class Hierarchy
Analysis. In ECOOP ’95, the 9th European Conference on
Object-Oriented Programming. Aarhus, Denmark. August
1995.

[12] A. Diwan, K. McKinley, and J. E. Moss. Using Types to
Analyze and Optimize Object-Oriented Programs. In ACM
Transactions on Programming Languages and Systems,
23(1), 30-72. 2001.

[13] D. Frampton, S. Blackburn, P. Cheng, R. Garner, D. Grove,
J. Moss, S. Salishev. Demystifying magic: high-level low-
level programming. In Virtual Execution Environments (VEE
’09). Washington, DC. March 2009.

[14] N. Glew, S. Triantafyllis, M. Cierniak, M. Eng, B. Lewis and
J. Stichnoth. LIL: An Architecture-Neutral Language for
Virtual-Machine Stubs. In 3rd Virtual Machine Research and
Technology Symposium. San Jose, CA. May 2004.

[15] K. Hazelwood and D. Grove. Adaptive online context-
sensitive inlining. In International Symposium on Code
Generation and Optimization (CGO ’03). San Francisco, CA.
March, 2003.

[16] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: the story of Squeak, a practical Smalltalk
written in itself. . In Object Oriented Systems, Languages,
and Applications (OOPSLA ’97). Atlanta, GA. October 1997.

[17] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, T.
Nakatani. A Study of Devirtualization Techniques for a Java
Just-in-time Compiler. In OOPSLA ’00, the 15th Annual
Conference on Object-Oriented Systems, Languages, and
Applications. Minneapolis, MN. October 2000.

[18] T. Kotzmann, C. Wimmer, H. Mossenbock, T. Rodriguez, K.
Russell, and D. Cox. Design of the Java HotSpotTM client
compiler for Java 6. In ACM Transactions on Architecture
and Code Optimization (TACO), Volume 5, Issue 1. May
2008.

[19] M. Paleczny, C. Vick, and C. Click. The JavaTM HotSpot
Server Compiler. In JVM ’01. Monterey CA. April 2001.

[20] A. Rigo and S. Pedroni. PyPy’s Approach to Virtual Machine
Construction. In Dynamic Languages Symposium (DSL ’06).
Portland, OR. October 2006.

[21] D. Ungar, A. Spitz, and A. Ausch. Constructing a meta-
circular virtual machine in an exploratory programming
environment. In Object Oriented Systems, Languages, and
Applications (OOPSLA ’05). San Diego, CA. October 2005.

[22] D. Weise, R. Crew, M. Ernst, and B. Steensgaard. Value
Dependency Graphs: Representation without Taxation. In
Principles of Programming Languages (POPL ’94).
Portland, OR. January 1994.

[23] C. Wimmer. Linear Scan register allocation for the Java
HotSpot client compiler. Master’s thesis, Institute for
Systems Software, Johannes Kepler University Linz. 2004.

[24] G. Wright, M. Seidl, and M. Wolczko. An object-aware
memory architecture. Science of Computer Programming
62(2): 145-163 (2006).

[25] T. Wuerthinger, C. Wimmer, and H. Mossenbock. Array
bounds check elimination in the context of deoptimization. In
Science of Computer Programming, Volume 74, Issue 5-6.
March 2009.

